
Qualitative Analysis of User-based and Item-based Prediction Algorithms

for Recommendation Systems

Manos Papagelis1, 2, Dimitris Plexousakis1, 2, Ioannis Rousidis2 and Elias Theoharopoulos1,2

1 Institute of Computer Science, Foundation for Research and Technology - Hellas

P.O. Box 1385, GR-71110, Heraklion, Greece

{papaggel, dp, theohar}@ics.forth.gr, rousidis@csd.uoc.gr
2 Department of Computer Science, University of Crete

P.O. Box 2208, GR-71409, Heraklion, Greece

ABSTRACT
Recommendation systems employ prediction algorithms to
provide users with items that match their interests. In this paper,
we describe and assess several prediction algorithms, some of
which are novel in that they combine user-based and item-based
similarity measures derived from either explicit or implicit
ratings. We compare both statistical and decision-support
accuracy metrics of the algorithms against different levels of data
sparsity and different operational thresholds. The first metric
evaluates the accuracy in terms of average absolute deviation,
while the second evaluates how effectively predictions help a user
select high-quality items. Our experimental results indicate better
performance of item-based predictions derived from explicit
ratings in relation to both metrics. Finally, we present theoretical
extensions of our work that permit to achieve incremental update
of similarity measures and to identify virtual, self-organized,
online communities.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – information filtering, retrieval models; H.3.4
[Information Storage and Retrieval]: Systems and Software –
Performance evaluation (efficiency and effectiveness);

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Collaborative filtering, social filtering, similarity measures,
content analysis, item-based prediction algorithms, user-based
prediction algorithms, recommendation systems, community
coherence grade, online communities.

1. INTRODUCTION
Recommendation systems [1] have been a popular topic of
research ever since the ubiquity of the web made it clear that
people of hugely varying backgrounds would be able to access
and query the same underlying data. The initial human-computer
interaction challenge has been made even more challenging by the
observation that customized services require sophisticated data
structures and well thought-out architectures to be able to scale up
to thousands of users and beyond.

In recent years, such systems are extensively adopted by both
research and e-commerce applications in order to provide an
intelligent mechanism to filter out the excess of information

available and to provide customers with the prospect to
effortlessly find out items that they will probably like according to
their logged history of prior transactions.

The use of efficient and accurate prediction algorithms is vital for
a system that aims to provide recommendations to its users. If we
define a prediction to be a number value that expresses the
predicted likelihood that a user will “like” an item, then a
recommendation is defined as the list of N items with respect to
the top N predictions from the set of items available. Improved
prediction algorithms indicate better recommendations. This
explains the essentiality of exploring and comprehending the
broad characteristics and potentials of prediction algorithms and
the reason why this work concentrates on this research direction.

Recommendation algorithms are classified into content-based and
collaborative filtering based, while hybrid techniques have been
proposed as well. Content-based algorithms [3, 4] take into
account the content of documents and filter in the ones that better
match with user’s preferences and logged profile. Collaborative-
filtering based algorithms [1, 3, 5] aim to identify users that have
relevant interests and preferences by calculating similarities and
dissimilarities between user profiles. The idea behind this method
is that it may be of benefit to one’s search for information to
consult the behaviour of other users who share the same or
relevant interests and whose opinion can be trusted.

The challenges for recommendation algorithms expand to three
key dimensions, identified as sparsity, scalability and cold-start.
Sparsity occurs, as only a few of the total number of items
available in a database are rated by the users. Scalability refers to
the need of providing high quality recommendations promptly,
even when the number of users and items in database scales up to
thousands and beyond. Finally, cold-start describes the case in
which a number of items cannot be recommended. This problem
applies to new and obscure items and is particularly detrimental to
users with eclectic taste [6, 7].

2. SIMILARITY MEASURES
In this section, we present a set of similarity measures based on
the Pearson correlation coefficient, a metric of relevance between
two vectors [8]. When the values of these vectors are associated
with a user’s model then we call it user-based similarity, whereas
when they are associated with an item’s model then we call it
item-based similarity. The similarity measure can be effectively
used to balance the ratings significance in a prediction algorithm
and therefore to improve accuracy.

There are several similarity algorithms that have been used:
cosine vector similarity, Pearson correlation, Spearman
correlation, entropy-based uncertainty measure and mean-squared
difference. In [9] Breese et al. suggest that Pearson correlation
performs better than cosine vector similarity, while in [10]
Herlock et al. suggest that Pearson’s correlation performs better
than Spearman’s correlation, entropy-based uncertainty and mean-
squared difference for collaborative filtering. According to these
remarks we decide on Pearson correlation to calculate item-based
and user-based similarities taking advantage of both explicit and
implicit ratings.

An explicit rating identifies the preference of a user to a specific
item. A user is prompted by the system’s interface to provide
ratings for items so as to improve his model. The more ratings the
user provides, the more accurate the recommendations provided to
him are. Ratings range from 1 to 10 with 1 expressing greatest
aversion to the item and 10 expressing greatest liking to the item.
Explicit ratings are logged by the system and form the user’s
model.

An implicit rating [11, 12] identifies the preference of a user to
specific categories1. We use here the term “implicit” somewhat
excessively so as to express that a user is never actually prompted
to express his preference to categories. We take advantage of the
fact that an item belongs to some categories and we develop a user
model based on category preference. If the explicit rating of a user
concerning a specific item belonging to a set of categories is
considered “good” then his model is updated so as to include the
preference and vice versa. A rating is considered as “good” when
it is greater than or equal to a threshold.

Before describing the algorithms we introduce some definitions
that facilitate the explanation process. First of all, we define

• A set of m users { : 1,2,..., }xU u x m= =

• A set of n items { : 1, 2,..., }xI i x n= =

• A set of p categories { : 1,2,..., }xC c x p= =

• A set of q explicit ratings

{ : 1,2,..., * }xR r x q q m n= = ∧ ≤

• A set of t implicit ratings

{ : 1,2,..., * }xR r x t t m p′ ′= = ∧ ≤

We also define three matrices that derive from our data, the user-
item matrix, the user-category matrix and the item-category
bitmap matrix.

User-item matrix is a matrix of users against items that have as
elements the explicit ratings of users to items. Some of the user-
matrix cells are not filled, as there are items that are not rated by
some users.

User-category matrix is a matrix of users against item categories
that have as elements, values that show the number of times a user
has rated positively or negatively for a category. For each
category we keep two columns, one for positive ratings and one
for negative ratings.

1 Items in the database belong to categories.

Item-category bitmap matrix is a matrix of items against
categories that have as elements the value 1 if the item belongs to
the specific category and the value 0 otherwise.

Similarity is calculated over the parts of two vectors that derive
from one of these matrices as it is depicted by the shadowed parts
in figure 1.

 i1 … ix … iy … in

u1 7 4 7 -

…

ux rx,1 rx,x rx,y rx,n

…

uy ry,1 ry,x ry,y -

…

um 5 4 6 4

 c1pos c1neg … Cppos Cpneg

u1

…

ux 15 3 … 3 6

…

uy 28 4 … 0 0

…

um
User-item matrix User-category matrix

 c1 c2 … cx … cp

i1

…

ix 1 0 … 1 … 0

…

iy 1 1 … 0 … 1

…

in
Item-category Bitmap

Figure 1. Matrices for calculating similarities

2.1 User-based Similarity

2.1.1 Based on Explicit Ratings
If we define the subset of items that users xu and yu have co-

rated as { : 1,2,..., }xI i x n n n′ ′ ′= = ∧ ≤ , where n is the

total number of items in the database, then the similarity between
the two users is defined as the Pearson correlation of their
associated rows in the user-matrix and is given by equation 1.

, ,
1

,

2 2
, ,

1 1

()()
(,)

() ()

x h x y h y

x h x y h y

n

u i u u i u
h

x y x y n n

u i u u i u
h h

r r r r
sim u u

r r r r

κ

′

=

′ ′

= =

− −
= =

− −

∑

∑ ∑

(1)

2.1.2 Based on Implicit Ratings
The values of the user-category matrix elements are used to

calculate the preference of the user xu U∈ to the category

xc C∈ and the result is considered as an implicit rating

,x xu cr R′ ′∈ to that category, where , *10pos

x x

pos neg

x

u c
x x

c
r

c c
′ =

+

and
posxc ,

negxc are respectively the number of positive and

negative ratings2 that user xu has implicitly given to category x .

The similarity between the two users is defined as the Pearson

correlation of their implicit ratings to categories c C∈ and is
given by equation 2.

, ,
1

,

2 2
, ,

1 1

()()
(,)

() ()

x h x y h y

x h x y h y

p

u c u u c u
h

x y x y p p

u c u u c u
h h

r r r r
sim u u

r r r r

λ =

= =

′ ′ ′ ′− −
= =

′ ′ ′ ′− −

∑

∑ ∑

(2)

Where p is the number of categories available.

2.2 Item-based Similarity

2.2.1 Based on Explicit Ratings
If we define the subset of users that have rated both items xi and

yi as { : 1,2,..., }xU u x m m m′ ′ ′= = ∧ ≤ , where m is

the total number of users in database then the similarity between
the two items is defined as the Pearson correlation of their
associated columns in the user-matrix and is given by the equation
3.

, ,
1

,

2 2
, ,

1 1

()()
(,)

() ()

h x x h y y

h x x h y y

m

u i i u i i
h

x y x y m m

u i i u i i
h h

r r r r
sim i i

r r r r

µ

′

=

′ ′

= =

− −
= =

− −

∑

∑ ∑

(3)

2.2.2 Based on Item-category Bitmap
There is also an alternative way to calculate the correlation
between two items taking into account the categories in which
they belong. The similarity between the two items is defined as
the Pearson correlation of their associated rows in the item-
category bitmap matrix and is given by equation 4.

, ,
1

,

2 2
, ,

1 1

()()
(,)

() ()

h x x h y y

h x x h y y

p

c i i c i i
h

x y x y p p

u i i u i i
h h

v v v v
sim i i

v v v v

ν =

= =

− −
= =

− −

∑

∑ ∑

(4)

where p is the number of categories and ,h xc iv is a value equal to

1 if the item x belongs to category h and equal to 0 otherwise.

3. PREDICTION ALGORITHMS
Prediction algorithms [9] try to guess the rating that a user is
going to provide for an item. We will refer to this user as active

user au and to this item as active item ai . These algorithms take

advantage of the logged history of ratings and of content
associated with users and items in order to provide predictions.

2 Ratings are considered as positive or negative when they are

greater or lower than a threshold respectively

3.1 Random Prediction Algorithms
The random prediction algorithm represents the worst case of
prediction algorithm3, since instead of applying a sophisticated
technique to produce a prediction it generates a random one. We
refer to the random prediction algorithm so as to have a reference
point at how much better results we obtain by the utilization of
more sophisticated ones.

3.2 User-based Prediction Algorithms
Description
User-based prediction algorithms are based on user’s average
rating and an adjustment to it, as given by equation 5.

_prediction user average adjustment= + (5)
Adjustment is most often a weighted sum that integrates user-
based or item-based similarity measures. Since prediction arises
as the sum of the two, improvements can be considered in both
operators. Next, we present the classic user-based collaborative
filtering prediction algorithm and we suggest some improvements
taking advantage of the different user-based and item-based
similarity algorithms described in the earlier section.

3.2.1 User-based with Explicit Ratings (CFUB-ER)
This is the classic user-based collaborative filtering prediction
algorithm and comes up as the sum of the active user’s average
rating, regarding the whole set of items that the active user has
rated, and an adjustment. The adjustment is a weighted sum of the
other users’ ratings concerning the active item and their similarity
with the active user. The algorithm is given by the equation 6.

'

, ,
1

, '

,
1

()
h a h

a a a

m

a h u i u
h

UB ER u i u m

a h
h

k r r
CF p r

k

=
−

=

−
= = +

∑

∑
 (6)

where 'm is the number of users that have rated the item ai and

,
1

a h

a

n

u i
h

u

r
r

n
==
∑

, i.e. the user’s average rate, and n is the

number of items that the active user has rated.

3.2.2 User-based with Explicit Ratings and Category
Boosted (CFUB-ER-CB)
Instead of calculating the active user average rating over the total
number of rated items, we can calculate the active user average
rating over the subset of rated items that belong to the same
categories as the active item. The algorithm is given in equation 7.

, ,
1

,

,
1

()
h a h

a a a

m

a h u i u
h

UB ER CB u i u m

a h
h

k r r
CF p r

k

′

=
− − ′

=

−
= = +

∑

∑
 (7)

3 Actually, this is not absolutely true. We can artificially produce

worse prediction algorithms than the random-based one but in
order to do this we also need some kind of logged information

where m′ the number of users that have rated the item ai and

,
1

a h

a

n

u i
h

u

r
r

n
==
∑

, i.e. the user’s average rate, where n is the

number of items that the active user has rated and at least one of

the categories that ai and hi belong to are common

3.2.3 User-based with Implicit Ratings (CFUB-IR)
Instead of using the user-based explicit ratings similarity κ , we

can use the user-based implicit ratings similarity λ in order to
calculate the similarity between the active user and the other
users. The prediction algorithm is given by the equation 8.

, ,
1

,

,
1

()
h a h

a a a

m

a h u i u
h

UB IR u i u m

a h
h

r r
CF p r

λ

λ

′

=
− ′

=

−
= = +

∑

∑
 (8)

where m′ is the number of users that have rated the item ai and

,
1

a h

a

n

u i
h

u

r
r

n
==
∑

, i.e. the user’s average rate, and n is the

number of items that the active user has rated.

3.3 Item-based Prediction Algorithms
Description
We refer to item-based prediction algorithms as the algorithms
that are based on item’s average rating and an adjustment to it, as
given by equation 9.

_prediction item average adjustment= + (9)
Adjustment is most often a weighted sum that integrates user-
based or item-based similarity measures. Since prediction arises
as the sum of the two, improvements can be considered in both
operators. Next, we suggest an item-based collaborative filtering
prediction algorithm based on explicit ratings and also an item-
based collaborative filtering prediction algorithm based on
implicit ratings. In both cases we use the item-based similarity
algorithms described in the earlier section.

3.3.1 Item-based with Explicit Ratings
Item-based collaborative filtering prediction algorithm comes up
as the sum of the active item’s average rating, regarding the whole
set of users that have rated it, and an adjustment. The adjustment
is a weighted sum of the ratings that the active user has given to
other items and their similarity with the active item. This
algorithm can be seen as a reversed user-based collaborative
filtering prediction algorithm and is given in equation 10.

, ,
1

,

,
1

()
a h a

a a a

n

a h u i u
h

IB ER u i i n

a h
h

r r
CF p r

µ

µ

′

=
− ′

=

−
= = +

∑

∑
 (10)

where n′ the number of items that user au have rated and

,
1

h a

a

n

u i
h

i

r
r

n
==
∑

, i.e. the item’s mean rate, where n is the

number of users that have rated the active item.

3.3.2 Item-based with Implicit Ratings
Instead of using the item-based explicit ratings similarity µ , we

can use the item-based implicit ratings similarity ν in order to
calculate the similarity between the active item and the other
items. The prediction algorithm is given by equation 11.

, ,
1

,

,
1

()
a h a

a a a

n

a h u i u
h

IB IR u i i n

a h
h

r r
CF p r

ν

ν

′

=
− ′

=

−
= = +

∑

∑
 (11)

where n′ is the number of items that user au have rated and

,
1

h a

a

n

u i
h

i

r
r

n
==
∑

, i.e. the item’s average rating, and n is the

number of users that have rated the active item.

4. EXPERIMENTAL EVALUATION AND
RESULTS

4.1 Data Set
Our experimental data comes from our movie recommendation
system, named MRS (http://marouli.csd.uoc.gr:8989/web/rs)..
The MRS database consists of 2068 ratings provided by 114 users
to 641 movies, which belong to at least 1 of 21 categories.
Therefore the lowest level of sparsity for our tests is defined by
114 641 2068

0.9717
114 641

× −
× . For our tests we run all the prediction

algorithms over a pre-selected 300-item set extracted randomly by
the set of 2068 actual ratings. We encourage interested readers to
visit the web site of the system and obtain a more detailed view.

4.2 Metrics
There are two key dimensions on which the quality of a prediction
algorithm can be measured, namely coverage and accuracy.

4.2.1 Coverage
Coverage is a measure of the percentage of items for which a
recommendation system can provide predictions. A basic
coverage metric is the percentage of items for which predictions
are available. Coverage can be reduced by defining small
neighborhood sizes or by sampling users to calculate predictions.
All experimental results demonstrated in this paper had coverage
slightly less than perfect (99% in our experiments) for a high level
of sparsity. A prediction is impossible to be computed in case that
very few people rated an item or in case that the active user has
zero correlations with other users.

4.2.2 Accuracy
Several metrics have been proposed for assessing the accuracy of
a collaborative filtering system. They are divided into two main

categories: statistical accuracy metrics and decision-support
accuracy metrics.

4.2.2.1 Statistical Accuracy Metrics
Statistical accuracy metrics evaluate the accuracy of a filtering
system by comparing the numerical prediction values against user
ratings for the items that have both predictions and ratings. Some
of them frequently used are Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE) and correlation between ratings and
predictions [10]. All of the above metrics were computed on result
data and generally provided the same conclusions.

For our statistical accuracy measure, we use Mean Absolute Error
(MAE). MAE is a measure of the deviation of predicted ratings
from their actual ratings. Formally, if we define n as the number
of actual ratings in an item set, then MAE is defined as the

average absolute difference between the n pairs ,h hp r< > of

predicted ratings hp and the actual ratings hr and equals to

1

n

h h
h

p r
MAE

n
=

−
=
∑

(12)

The lower the MAE, the more accurate the predictions are
permitting to provide better recommendations. We calculated the
MAE for the different prediction algorithms and for different
levels of Sparsity. The results are shown in figure 2.

Sparsity Levels
0.972 0.975 0.98 0.985 0.99 0.995 0.999

CFUB-ER 1.385 1.457 1.541 1.637 1.801 1.746 1.865

CFUB-ER-

CB
1.34 1.412 1.518 1.606 1.807 1.667 1.771

CFUB-IR 1.703 1.739 1.796 1.781 1.755 1.863 2.147

CFIB-ER 0.838 0.91 1.06 1.14 1.28 1.626 1.66

CFIB-IR 1.35 1.38 1.445 1.45 1.521 1.804 1.665

P
re

di
ct

io
n

A
lg

or
it

hm
s

Random 3.166 3.515 3.414 3.024 3.256 3.174 3.398

Figure 2. Prediction Algorithms Statistical Accuracy

As far as statistical accuracy is concerned, we reach the following
outcomes about the performance of the prediction algorithms.

• Item-based prediction algorithms perform better than user-
based algorithms

• Implicit rating based algorithms (in the sense that they have
been defined for these tests) perform much worse than
explicit rating based algorithms

• Our item-based algorithm, based on explicit ratings (CFIB-ER)
seems to be very sensitive to sparsity levels. As sparsity
reduces, the MAE of the algorithm goes down, which means
that accuracy is increased. CFIB-ER performs as much as
39,5% better than classic Collaborative Filtering prediction
algorithm CFUB-ER when sparsity level is 97,2%

• CFUB-ER-CB increases the accuracy precision of CFUB-ER, as it
calculates the user average based only on the subset of items
that belong to the same categories as the active item.
However, this increment is insignificant taking into
consideration the extra computation needed to include
category information.

Experimental results indicate that item-based algorithms provide
more accurate recommendations than user-based algorithms. In
particular, our item-based algorithm based on explicit ratings,
behaves much better as sparsity increases in comparison to all
other algorithms presented. Our agent provides predictions of
rating with an average MAE lower than 1 (i.e. 0.838). In our
system, ratings range from 1 to 10, while in other common
systems (GroupLens, EachMovie dataset) ratings range from 1 to
5. In order to obtain a clear comparative view of our MAE results,
one needs to divide the results with a factor of 2. This in the best
case leads to 0,419 for MAE, which is especially satisfactory for
providing high-quality recommendations.

4.2.2.2 Decision-support Accuracy Metrics
Decision-support accuracy metrics evaluate how effectively
predictions help a user select high-quality items. Some of them
frequently used are reversal rate, weighted errors, Precision-
Recall Curve (PRC) sensitivity and Receiver Operating
Characteristic (ROC) sensitivity [13]. They are based on the
observation that, for many users, filtering is a binary process.
Consequently, prediction algorithms can be treated as a filtering
procedure, which distinguishes “good” items from “bad” items.

For our decision support accuracy measure, we use the ROC
sensitivity. ROC sensitivity is a measure of the diagnostic power
of a filtering system. Operationally, it is the area under the
receiver operating characteristic (ROC) curve-a curve that plots
the sensitivity and the 1-specificity of the test. Sensitivity refers to
the probability of a randomly selected “good” item being accepted
by the filter. Specificity is the probability of a randomly selected
“bad” item being rejected by the filter. The ROC curve plots
sensitivity (from 0 to 1) and 1 – specificity (from 0 to 1),
obtaining a set of points by varying the quality threshold. The
ROC sensitivity range between 0 to 1, where 0.5 is random and 1
is perfect.

If we denote the predicted rate as PR , the actual rate as

AR and the quality threshold as QT , then the following

possible cases are defined by the filter for one item

• True Positive (TP) when PR QT AR QT≥ ∧ ≥

• False Positive (FP) when PR QT AR QT≥ ∧ <

• True Negative (TN) when PR QT AR QT< ∧ <

• False Negative (FN) when PR QT AR QT< ∧ ≥

For a set of items sensitivity is defined as the True Positive
Fraction (TPF) and the 1-specificity as the False Positive Fraction
(FPF), where

tp
sensitivity TPF

tp fn
= =

+
, where tp , fn is the

number of true positive and false negative occurrences over the
set of items respectively.

1
fp

specificity FPF
fp tn

− = =
+

, where tn , fp is

the number of true negative and false positive occurrences over
the set of items respectively.

We calculated the ROC curve for the different prediction
algorithms and for quality thresholds ranging between 1 and 9,
while the sparsity level was equal to 0,972. We use the symbolism
ROC-threshold to represent the point on the ROC curve for the
specific quality threshold value. The results are shown in figure 3.

Quality Threshold

ROC-6 ROC-7 ROC-8 ROC-9
CFUB-ER 0.77 0.55 0.28 0.21
CFUB-ER-CB 0.77 0.59 0.33 0.24
CFUB-IR 0.75 0.39 0.2 0.1
CFIB-ER 0.89 0.71 0.53 0.41 T

P
F

 o
r

Se
ns

it
iv

it
y

P
re

di
ct

io
n

A
lg

or
it

hm
s

CFIB-IR 0.78 0.53 0.28 0.21
Figure 3. Prediction Algorithms Decision support accuracy (ROC

sensitivity)

The following remarks can be made about the performance of the
prediction algorithms as far as decision-support accuracy is
concerned.

• Item-based prediction algorithms perform better than user-
based algorithms

• Implicit rating based algorithms (In the sense that they have
been defined for these tests), perform much worse than
explicit rating based algorithms

• Our CFIB-ER performs 95% better than classic collaborative
filtering CFUB-ER for ROC-9, 89% better for ROC-8 and 29%
better for ROC-7. This means that if we define as “good”
items the ones that have average rating more than 9 or 8 or 7
repsectively and as “bad” items the ones that have average
rating less than 9 or 8 or 7 respectively, then CFIB-ER predicts
and therefore recommends items with 95% or 89% or 29%
respectively more accuracy than classic collaborative
filtering CFUB-ER.

• To obtain a clear view of the overall performance of each
algorithm one need to calculate the area under the ROC
curve. It is clear from the figure 3 that our CFIB-ER performs
much better than any other algorithm examined.

5. EXTENSIONS
In this section, we present preliminary theoretical approach of
future research directions. Our first objective is to bring
recommendation algorithms on the Web that can be proved
accurate and require soft computations. Subsequently, we try to
investigate how similarity measures can be used in order to
identify online, virtual, self-organized communities of users that
share similar interests.

5.1 Incremental calculation of similarity
measures
Recommendation algorithms are based on similarity measures, as
described in the previous section. However, these measures
require expensive computations. Each time a recommendation is
requested by an active user, the algorithm needs to calculate the
similarity between the active user and all other users, based on
their co-rated items, so as to pick the ones with similar behavior.
Next, the algorithm recommends to the active user, items that are
highly rated by the already selected most similar users.

In this extension, we aim to achieve incremental update of the
user similarities, and as a result to be able to recommend items in
short time. In order to achieve this, we propose a caching scheme
that permits to update the user similarities after each single rating
is provided or an older one is updated. At the time that a
recommendation is requested, cached information permits to
provide recommended items to users on the fly, as only trivial
computations are required. Our approach maintains a high–level
of quality as recommendation algorithms employ the total of the
information that is logged into the system and not just a part of it.
Our method permits highly scalable and accurate recommendation
algorithms to effectively be brought on the Web.

The similarity between user xu and yu for the subset of items

they have co-rated, is given by equation 1, where 'n is the

number of the co-rated items, ,x hu ir is user’s xu rating for item

hi and
xur ,

yur are the averages of items rated by xu , yu

respectively. Whenever a user xu , rates an item or updates the

value of an already submitted rating, his user model is updated
and thus all similarity measures between him and the other users
need to be re-calculated. The new similarity between a user

xu and a user yu is given by the equation below:

''

, ,
1

'' ''
2 2

, ,
1 1

(')()
(,)

(') ()

x h x y h y

x h x y h y

n

u i u u i u
h

x y n n

u i u u i u
i i

r r r r
sim u u

r r r r

=

= =

− −
=

− −

∑

∑ ∑
,

where '
xur is the new average of user xu and ''n is the new

number of co-rated items. If a new item rated by the active user is

also rated by user yu , then the number of co-rated items is

incremented by one, so '' ' 1n n= + . In the case that user yu

has not rated this item or a rating update occurs, the number of co-

rated items remains the same, so '' 'n n= . Our objective is to
express the new similarity between two users as a sum of the old
similarity and an increment. To smooth on the progress of this
task we adopt the following notation for the old Pearson
Correlation similarity:

B
A

C D
= , where (,)x yA sim u u= ,

'

, ,
1

()()
x h x y h y

n

u i u u i u
h

B r r r r
=

= − −∑ ,

'
2

,
1

()
x h x

n

u i u
i

C r r
=

= −∑ and
'

2
,

1

()
y h y

n

u i u
i

D r r
=

= −∑

and the following notation for the new Pearson Correlation
similarity:

''

, ,
1

' (')()
x h x y h y

n

u i u u i u
h

B r r r r B e
=

= − − = +∑

''
2

,
1

' (')
x h x

n

u i u
i

C r r C f
=

= − = +∑

''
2

,
1

' (')
y h y

n

u i u
i

D r r D g
=

= − = +∑

where e , f and g are the increments that need to be added to

each factor after the submission of a new or the update of an
already existing rating. Actually, we split the similarity measure
into three factors, independently calculate the new values of each
factor and then combine their updated values so as to yield the

value of the new similarity. Combination of 'B , 'C and 'D
values yields the value of the new similarity, which equals to:

'
'

' '

B B e
A A

C D C f D g

+′= ⇔ =
+ +

There are two cases that we need to examine. The first occurs
when the active user submits a new rating and the second when
the active user updates an already submitted rating. Furthermore,
for each one of these cases we distinguish between two instances.

As similarities are defined between the active user and a user yu ,

the first instance refers to the case that the active item is co-rated

by user yu and the second when it is not. We finally conclude on

four cases that need to be examined.

The factors that may be affected during these computations are the

average of the active user, the average of the user yu and the

total number of their co-rated items. Taking these factors into

consideration we calculate the factors e , f , g . Results are

displayed on Table 1 of the Appendix.

In order to achieve our method we propose a caching scheme that
permits to calculate the incremental factors with trivial

calculations. We need to cache the values of B , C and D for
all couple of users. We also need to cache the average rating of
each user and the number of items that he/she has rated. Part of
the cached information needs to be updated every time a user
submits a new rating or updates an existing one. In Table 2 of the

Appendix we explain how incremental factors e , f , g are

calculated.

5.2 Formation of Communities
In this paragraph, we present ideas about how similarity
measures can be employed, in order to identify self-
organized, online, virtual communities and sub-
communities in an information system.

5.2.1 The “Community Coherence Grade”
The similarity measures described earlier are detecting
relationships between users and they can consequently be
functional in the formation, description and behavioral
explanation of communities [14]. In order to examine the
tightness or looseness of these communities we introduce the
“Community Coherence Grade” (CCG), which is defined as the

average correlation between user au and the rest members m′ of

the community. A user hu is considered as a member of user’s

au community if the correlation between them is greater than a

threshold. CCG is given by the equation 13.

1

(,)

a

m

a h
h

u

sim u u
CCG

m

′

==
′

∑
 (13)

In our approach, communities are self-organized. This means that
there is not any intentional registration to a community, and there
is not any kind of external moderation. Membership to a
community or not is decided without any human intervention and
is merely based on user’s rating behavior. These communities are
also considered virtual as they exist just from the current user’s
perspective and dynamic as any user’s single rating can result in
an adjustment of the community’s state.

5.2.2 Detecting Sub-communities
We also describe a filtering algorithm that facilitates the detection
of users that are relevant according to just a part of their profile
and consider them as sub-community. We apply criteria that
typify the degree of preference to specific categories in a five-
level scale (0-20, 20-40, 40-60, 60-80, 80-100 %). For example

we can detect the sub-community, which likes Comedy (e.g. 80-
100%) but dislikes Drama (e.g. 0-20%). The algorithm calculates
the users that satisfy all the criteria by applying a Boolean AND
operation to the criteria specified by the filtering procedure. The
algorithm steps are shown below.

1. Find the categories for which criteria have been specified

2. For each category find which one out of the five
preferences has been specified

3. Find the users of the system that have rated at least once

4. For each user decide whether he satisfies the criteria

a. For each category calculate the positive percentage
that corresponds to the user.

b. If the percentage satisfies the criteria then continue
with the next category.

c. If a user satisfies the criteria of all categories then is
returned by the algorithm

5. Continue with step 4 until there are no remaining users

The complexity of the algorithm is linear on the number of
categories on which criteria have been specified and the number
of users on the system. Detection of sub-communities is valuable
when recommending items to users with eclectic state.

6. CONCLUSIONS
Recommendation systems are effectively used to filter out excess
information and to provide personalized services to users by
employing sophisticated, well though-out prediction algorithms.
We described how explicit ratings could be utilized in order to
implicitly provide user’s preference to specific categories. We
designed, implemented and tested a number of prediction
algorithms based on either user or item similarity and we
thoroughly evaluated their performance in relation to statistical
and decision-support accuracy. Our analysis shows that item-
based are much better than user-based predictions. Category-
boosted predictions can lead to slightly better predictions when
combined with explicit ratings, while implicit ratings (in the sense
that we have defined them here) perform much worse than explicit
ratings.

In the sequence, we presented preliminary theoretical extensions
of our future research direction. We present a methodology that
permits to efficiently bring recommendation algorithms on Web.
The novelty of our approach yields in incremental calculation of
the similarity measures between users, contrary to dimensionality
reduction techniques previously adopted. Although there are no
experimental results to depict the efficiency of our work at the
moment, we expect that our approach will do better than the
existing recommendation algorithms in both performance and
accuracy aspects. Finally, we drew the direction to another
interesting aspect of similarity measures, as they can be
effectively used to identify self-organized, virtual, online
communities and we introduced the CCG term to define the
relevance between community members.

7. REFERENCES
1. Paul Resnick and Hal R. Varian. Recommender Systems

(introduction to special section). Communications of the ACM,
40(3), March 1997

2. R.B. Allen, “User Models: Theory, method and Practice”.
International Journal of Man-Machine Studies, 1990

3. M. Balabanovic and Y. Sholam. “Combining Content-Based
and Collaborative Recommendation”. Communications of the
ACM, 40 (3), March 1997.

4. Ning Zhong, Jiming Liu, Yiyu Yao, “Web Intelligence:
Algorithmic Aspects of Web Intelligent Systems”, eds.,
Springer-Verlag, 2003, pp. 323-345

5. Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl,
“Explaining Collaborative Filtering Recommendations”.
Proceedings of the ACM Conference on Computer Supported
Cooperative Work (CSCW 2000).

6. Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar,
“Methods and Metrics for Cold-Start Recommendations”.
Proceedings of the 25th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (SIGIR 2002).

7. Prem Melville, Raymond J. Mooney and Ramadass Nagarajan,
“Content-Boosted Collaborative Filtering for Improved
Recommendations”. Proceedings of the National Conference
of the American Association Artificial Intelligence (AAAI-
2002)

8. Karl Pearson, “Mathematical contribution to the theory of
evolution: VII, on the correlation of characters not
quantitatively measurable”. Phil. Trans. R. Soc. Lond. A,
195,1-47, 1900.

9. John S. Breese, David Heckerman and Carl Kadie. Empirical
analysis of predictive algorithms for collaborative filtering.
Proceedings of the 14th Conference on Uncertainty in Artificial
Intelligence (UAI-98)

10. Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers and
John Riedl, “An Algorithmic Framework for Performing
Collaborative Filtering”. Proceedings of the 22nd ACM SIGIR
conference on Research and development in information
retrieval, (SIGIR 1999)

11. Jon Kleinberg, Christos H. Papadimitriou, Prabhakar
Raghavan, “On the Value of Private Information”. Proceedings
of 8th Conference on Theoretical Aspects of Reasoning about
Knowledge (TARK VIII), 2001

12. David Nichols, “Implicit Rating and Filtering”. Proceedings of
5th DELOS Workshop on Filtering and Collaborative
Filtering, 1997, pp. 31-36

13. Badrul M. Sarwar, Joseph A. Konstan, Al Borchers, Jon
Herlocker, Brad Miller and John Riedl, “Using Filtering
Agents to Improve Prediction Quality in the GroupLens
Research Collaborative Filtering System”. Proceedings of the
ACM Conference on Computer Supported Cooperative Work
(CSCW 1998).

14. Nick Papadopoulos and Dimitris Plexousakis, “The Role of
Semantic Relevance in Dynamic User Community
Management and the Formulation of Recommendations”.
Proceedings of 14th International Conference on Advanced
Information Systems Engineering, (CAiSE 2002).

15. Chun Zeng, Chun-Xiao Xing,Li-Zhu Zhou. “Similarity
measure and instance selection for collaborative filtering”.
Proceedings of 12th international conference on World Wide
Web (WWW 2003).

16. Thomas Hofmann. "Collaborative Filtering via Gaussian
Probabilistic Latent Semantic Analysis". Proceedings of the
26th ACM SIGIR conference on Research and development in
information retrieval (SIGIR 2003)

Appendix
Table 1. Summary of incremental factors that need to be calculated after each rating so as to achieve incremental update of
similarity measure

Submission of a new rating ,a au ir for an item ai by the active user au

e
'

, , ,
1

(')() ()
a a a y a y a y h y

n

u i u u i u u u i u
h

e r r r r dr r r
=

= − − − −∑

f
' '22

, ,
1 1

(') 2 ()
a a a a a a h a

n n

u i u u u u i u
h h

f r r d r dr r r
= =

= − + − −∑ ∑
In case that item ai has

been rated by user yu

g
2

,()
y a yu i ug r r= −

e
'

,
1

()
a y h y

n

u u i u
h

e d r r r
=

= − −∑

f
' '2

,
1 1

2 ()
a a a h a

n n

u u u i u
h h

f d r dr r r
= =

= − −∑ ∑
In case that item ai has

not been rated by user yu

g 0g =

Update of an existing rating ,a au ir for an item ai by the active user au

e
'

, , ,
1

() ()
a a y a y a y h y

n

u i u i u u u i u
h

e dr r r dr r r
=

= − − −∑

f
' '22

, , , ,
1 1

2 (') ' 2 '()
a a a a a a a a a a h a

n n

u i u i u i u u u u i u
h h

f dr dr r r dr dr r r
= =

= + − + − −∑ ∑
In case that item ai has

been rated by user yu

g 0g =

e
'

,
1

()
a y h y

n

u u i u
h

e d r r r
=

= − −∑

f
' '2

,
1 1

' 2 '()
a a a h a

n n

u u u i u
h h

f d r dr r r
= =

= − −∑ ∑
In case that item ai has

not been rated by user yu

g 0g =

Table 2. Calculation of operands that appear in incremental factors

Operand Calculation

m Cached Information (The number of the items that a user has rated is cached)

aur Cached information (Average ratings of all users are cached)

'
aur

The new average of the active user is calculated incrementally based on the cached values of the
previous average and the number of already rated items. If a new rating is submitted the new average

equals to
,'
1 1

a a

a a

u i
u u

r m
r r

m m
= +

+ +
. if an update of an existing rating is submitted then the new

average equals to
,' a h

a a

u i
u u

dr
r r

m
= + . In both equations, m is the number of items that the active

user had rated before his new rating to ai .

yur Cached information (Average ratings of all users are cached)

,a au ir The rating of the active user to the active item is provided through the system’s interface

aud r
The difference of user’s previous and current average rating is calculated as described earlier based

on the cached value of
aur , m and the new or updated rating ,a au ir

,y au ir The rating of the user yu to the item ai is found by querying the database

'

,
1

()
a a h a

n

u u i u
h

d r r r
=

−∑ The sum of all ratings of active user au is found using an aggregation query

