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ABSTRACT 
Recommendation systems employ prediction algorithms to 
provide users with items that match their interests. In this paper, 
we describe and assess several prediction algorithms, some of 
which are novel in that they combine user-based and item-based 
similarity measures derived from either explicit or implicit 
ratings. We compare both statistical and decision-support 
accuracy metrics of the algorithms against different levels of data 
sparsity and different operational thresholds. The first metric 
evaluates the accuracy in terms of average absolute deviation, 
while the second evaluates how effectively predictions help a user 
select high-quality items. Our experimental results indicate better 
performance of item-based predictions derived from explicit 
ratings in relation to both metrics. Finally, we present theoretical 
extensions of our work that permit to achieve incremental update 
of similarity measures and to identify virtual, self-organized, 
online communities. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – information filtering, retrieval models; H.3.4 
[Information Storage and Retrieval]: Systems and Software – 
Performance evaluation (efficiency and effectiveness);  

General Terms 
Algorithms,  Measurement, Performance, Experimentation. 

Keywords 
Collaborative filtering, social filtering, similarity measures, 
content analysis, item-based prediction algorithms, user-based 
prediction algorithms, recommendation systems, community 
coherence grade, online communities. 

1. INTRODUCTION 
Recommendation systems [1] have been a popular topic of 
research ever since the ubiquity of the web made it clear that 
people of hugely varying backgrounds would be able to access 
and query the same underlying data. The initial human-computer 
interaction challenge has been made even more challenging by the 
observation that customized services require sophisticated data 
structures and well thought-out architectures to be able to scale up 
to thousands of users and beyond.  

In recent years, such systems are extensively adopted by both 
research and e-commerce applications in order to provide an 
intelligent mechanism to filter out the excess of information 

available and to provide customers with the prospect to 
effortlessly find out items that they will probably like according to 
their logged history of prior transactions. 

The use of efficient and accurate prediction algorithms is vital for 
a system that aims to provide recommendations to its users. If we 
define a prediction to be a number value that expresses the 
predicted likelihood that a user will “like” an item, then a 
recommendation is defined as the list of N items with respect to 
the top N predictions from the set of items available. Improved 
prediction algorithms indicate better recommendations. This 
explains the essentiality of exploring and comprehending the 
broad characteristics and potentials of prediction algorithms and 
the reason why this work concentrates on this research direction. 

Recommendation algorithms are classified into content-based and 
collaborative filtering based, while hybrid techniques have been 
proposed as well. Content-based algorithms [3, 4] take into 
account the content of documents and filter in the ones that better 
match with user’s preferences and logged profile. Collaborative-
filtering based algorithms [1, 3, 5] aim to identify users that have 
relevant interests and preferences by calculating similarities and 
dissimilarities between user profiles. The idea behind this method 
is that it may be of benefit to one’s search for information to 
consult the behaviour of other users who share the same or 
relevant interests and whose opinion can be trusted. 

The challenges for recommendation algorithms expand to three 
key dimensions, identified as sparsity, scalability and cold-start. 
Sparsity occurs, as only a few of the total number of items 
available in a database are rated by the users. Scalability refers to 
the need of providing high quality recommendations promptly, 
even when the number of users and items in database scales up to 
thousands and beyond. Finally, cold-start describes the case in 
which a number of items cannot be recommended. This problem 
applies to new and obscure items and is particularly detrimental to 
users with eclectic taste [6, 7]. 

2. SIMILARITY MEASURES 
In this section, we present a set of similarity measures based on 
the Pearson correlation coefficient, a metric of relevance between 
two vectors [8]. When the values of these vectors are associated 
with a user’s model then we call it user-based similarity, whereas 
when they are associated with an item’s model then we call it 
item-based similarity. The similarity measure can be effectively 
used to balance the ratings significance in a prediction algorithm 
and therefore to improve accuracy. 



There are several similarity algorithms that have been used: 
cosine vector similarity, Pearson correlation, Spearman 
correlation, entropy-based uncertainty measure and mean-squared 
difference. In [9] Breese et al. suggest that Pearson correlation 
performs better than cosine vector similarity, while in [10] 
Herlock et al. suggest that Pearson’s correlation performs better 
than Spearman’s correlation, entropy-based uncertainty and mean-
squared difference for collaborative filtering. According to these 
remarks we decide on Pearson correlation to calculate item-based 
and user-based similarities taking advantage of both explicit and 
implicit ratings. 

An explicit rating identifies the preference of a user to a specific 
item. A user is prompted by the system’s interface to provide 
ratings for items so as to improve his model. The more ratings the 
user provides, the more accurate the recommendations provided to 
him are. Ratings range from 1 to 10 with 1 expressing greatest 
aversion to the item and 10 expressing greatest liking to the item. 
Explicit ratings are logged by the system and form the user’s 
model. 

An implicit rating [11, 12] identifies the preference of a user to 
specific categories1. We use here the term “implicit” somewhat 
excessively so as to express that a user is never actually prompted 
to express his preference to categories. We take advantage of the 
fact that an item belongs to some categories and we develop a user 
model based on category preference. If the explicit rating of a user 
concerning a specific item belonging to a set of categories is 
considered “good” then his model is updated so as to include the 
preference and vice versa. A rating is considered as “good” when 
it is greater than or equal to a threshold. 

Before describing the algorithms we introduce some definitions 
that facilitate the explanation process. First of all, we define 

• A set of m  users { : 1,2,..., }xU u x m= =  

• A set of n  items { : 1, 2,..., }xI i x n= =  

• A set of p  categories { : 1,2,..., }xC c x p= =  

• A set of q explicit ratings 

{ : 1,2,..., * }xR r x q q m n= = ∧ ≤  

• A set of t  implicit ratings 

{ : 1,2,..., * }xR r x t t m p′ ′= = ∧ ≤  

We also define three matrices that derive from our data, the user-
item matrix, the user-category matrix and the item-category 
bitmap matrix. 

User-item matrix is a matrix of users against items that have as 
elements the explicit ratings of users to items. Some of the user-
matrix cells are not filled, as there are items that are not rated by 
some users. 

User-category matrix is a matrix of users against item categories 
that have as elements, values that show the number of times a user 
has rated positively or negatively for a category. For each 
category we keep two columns, one for positive ratings and one 
for negative ratings. 

                                                 
1 Items in the database belong to categories. 

Item-category bitmap matrix is a matrix of items against 
categories that have as elements the value 1 if the item belongs to 
the specific category and the value 0 otherwise. 

Similarity is calculated over the parts of two vectors that derive 
from one of these matrices as it is depicted by the shadowed parts 
in figure 1. 
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in        
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Figure 1. Matrices for calculating similarities  

2.1 User-based Similarity 

2.1.1 Based on Explicit Ratings 
If we define the subset of items that users xu  and yu  have co-

rated as { : 1,2,..., }xI i x n n n′ ′ ′= = ∧ ≤ , where n  is the 

total number of items in the database, then the similarity between 
the two users is defined as the Pearson correlation of their 
associated rows in the user-matrix and is given by equation 1. 
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2.1.2 Based on Implicit Ratings 
The values of the user-category matrix elements are used to 

calculate the preference of the user xu U∈  to the category 

xc C∈  and the result is considered as an implicit rating 
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x x
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and 
posxc , 

negxc are respectively the number of positive and 

negative ratings2 that user xu  has implicitly given to category x .  

The similarity between the two users is defined as the Pearson 

correlation of their implicit ratings to categories c C∈  and is 
given by equation 2. 
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Where p  is the number of categories available. 

2.2 Item-based Similarity 

2.2.1 Based on Explicit Ratings 
If we define the subset of users that have rated both items xi  and 

yi  as { : 1,2,..., }xU u x m m m′ ′ ′= = ∧ ≤ , where m  is 

the total number of users in database then the similarity between 
the two items is defined as the Pearson correlation of their 
associated columns in the user-matrix and is given by the equation 
3. 
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2.2.2 Based on Item-category Bitmap 
There is also an alternative way to calculate the correlation 
between two items taking into account the categories in which 
they belong. The similarity between the two items is defined as 
the Pearson correlation of their associated rows in the item-
category bitmap matrix and is given by equation 4. 
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where p  is the number of categories and ,h xc iv is a value equal to 

1 if the item x belongs to category h  and equal to 0 otherwise. 

3. PREDICTION ALGORITHMS 
Prediction algorithms [9] try to guess the rating that a user is 
going to provide for an item. We will refer to this user as active 

user au  and to this item as active item ai . These algorithms take 

advantage of the logged history of ratings and of content 
associated with users and items in order to provide predictions. 

                                                 
2 Ratings are considered as positive or negative when they are 

greater or lower than a threshold respectively 

3.1 Random Prediction Algorithms 
The random prediction algorithm represents the worst case of 
prediction algorithm3, since instead of applying a sophisticated 
technique to produce a prediction it generates a random one. We 
refer to the random prediction algorithm so as to have a reference 
point at how much better results we obtain by the utilization of 
more sophisticated ones. 

3.2 User-based Prediction Algorithms 
Description 
User-based prediction algorithms are based on user’s average 
rating and an adjustment to it, as given by equation 5. 

_prediction user average adjustment= +  (5) 
Adjustment is most often a weighted sum that integrates user-
based or item-based similarity measures. Since prediction arises 
as the sum of the two, improvements can be considered in both 
operators. Next, we present the classic user-based collaborative 
filtering prediction algorithm and we suggest some improvements 
taking advantage of the different user-based and item-based 
similarity algorithms described in the earlier section. 

3.2.1 User-based with Explicit Ratings (CFUB-ER) 
This is the classic user-based collaborative filtering prediction 
algorithm and comes up as the sum of the active user’s average 
rating, regarding the whole set of items that the active user has 
rated, and an adjustment. The adjustment is a weighted sum of the 
other users’ ratings concerning the active item and their similarity 
with the active user. The algorithm is given by the equation 6. 

'

, ,
1

, '

,
1

( )
h a h

a a a

m

a h u i u
h

UB ER u i u m

a h
h

k r r
CF p r

k

=
−

=

−
= = +

∑

∑
 (6) 

where 'm  is the number of users that have rated the item ai  and 
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, i.e. the user’s average rate, and  n  is the 

number of items that the active user has rated. 

3.2.2 User-based with Explicit Ratings and Category 
Boosted (CFUB-ER-CB) 
Instead of calculating the active user average rating over the total 
number of rated items, we can calculate the active user average 
rating over the subset of rated items that belong to the same 
categories as the active item. The algorithm is given in equation 7. 
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3 Actually, this is not absolutely true. We can artificially produce 

worse prediction algorithms than the random-based one but in 
order to do this we also need some kind of logged information 



where m′  the number of users that have rated the item ai  and 
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, i.e. the user’s average rate, where n  is the 

number of items that the active user has rated and at least one of 

the categories that ai  and hi  belong to are common 

3.2.3 User-based with Implicit Ratings (CFUB-IR) 
Instead of using the user-based explicit ratings similarity κ , we 

can use the user-based implicit ratings similarity λ  in order to 
calculate the similarity between the active user and the other 
users. The prediction algorithm is given by the equation 8. 
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where m′  is the number of users that have rated the item ai  and 
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, i.e. the user’s average rate, and  n  is the 

number of items that the active user has rated. 

3.3 Item-based Prediction Algorithms 
Description 
We refer to item-based prediction algorithms as the algorithms 
that are based on item’s average rating and an adjustment to it, as 
given by equation 9. 

_prediction item average adjustment= +  (9) 
Adjustment is most often a weighted sum that integrates user-
based or item-based similarity measures. Since prediction arises 
as the sum of the two, improvements can be considered in both 
operators. Next, we suggest an item-based collaborative filtering 
prediction algorithm based on explicit ratings and also an item-
based collaborative filtering prediction algorithm based on 
implicit ratings. In both cases we use the item-based similarity 
algorithms described in the earlier section. 

3.3.1 Item-based with Explicit Ratings 
Item-based collaborative filtering prediction algorithm comes up 
as the sum of the active item’s average rating, regarding the whole 
set of users that have rated it, and an adjustment. The adjustment 
is a weighted sum of the ratings that the active user has given to 
other items and their similarity with the active item. This 
algorithm can be seen as a reversed user-based collaborative 
filtering prediction algorithm and is given in equation 10. 
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where n′  the number of items that user au have rated and 
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, i.e. the item’s mean rate, where n  is the 

number of users that have rated the active item. 

3.3.2 Item-based with Implicit Ratings 
Instead of using the item-based explicit ratings similarity µ , we 

can use the item-based implicit ratings similarity ν  in order to 
calculate the similarity between the active item and the other 
items. The prediction algorithm is given by equation 11. 
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where n′  is the number of items that user au have rated and 
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, i.e. the item’s average rating, and n  is the 

number of users that have rated the active item. 

4. EXPERIMENTAL EVALUATION AND 
RESULTS 

4.1 Data Set 
Our experimental data comes from our movie recommendation 
system, named MRS (http://marouli.csd.uoc.gr:8989/web/rs).. 
The MRS database consists of 2068 ratings provided by 114 users 
to 641 movies, which belong to at least 1 of 21 categories. 
Therefore the lowest level of sparsity for our tests is defined by 
114 641 2068

0.9717
114 641

× −
× . For our tests we run all the prediction 

algorithms over a pre-selected 300-item set extracted randomly by 
the set of 2068 actual ratings. We encourage interested readers to 
visit the web site of the system and obtain a more detailed view. 

4.2 Metrics 
There are two key dimensions on which the quality of a prediction 
algorithm can be measured, namely coverage and accuracy. 

4.2.1 Coverage 
Coverage is a measure of the percentage of items for which a 
recommendation system can provide predictions. A basic 
coverage metric is the percentage of items for which predictions 
are available. Coverage can be reduced by defining small 
neighborhood sizes or by sampling users to calculate predictions. 
All experimental results demonstrated in this paper had coverage 
slightly less than perfect (99% in our experiments) for a high level 
of sparsity. A prediction is impossible to be computed in case that 
very few people rated an item or in case that the active user has 
zero correlations with other users. 

4.2.2 Accuracy 
Several metrics have been proposed for assessing the accuracy of 
a collaborative filtering system. They are divided into two main 



categories: statistical accuracy metrics and decision-support 
accuracy metrics. 

4.2.2.1 Statistical Accuracy Metrics 
Statistical accuracy metrics evaluate the accuracy of a filtering 
system by comparing the numerical prediction values against user 
ratings for the items that have both predictions and ratings. Some 
of them frequently used are Mean Absolute Error (MAE), Root 
Mean Squared Error (RMSE) and correlation between ratings and 
predictions [10]. All of the above metrics were computed on result 
data and generally provided the same conclusions.  

For our statistical accuracy measure, we use Mean Absolute Error 
(MAE). MAE is a measure of the deviation of predicted ratings 
from their actual ratings. Formally, if we define n  as the number 
of actual ratings in an item set, then MAE is defined as the 

average absolute difference between the n  pairs ,h hp r< >  of 

predicted ratings hp  and the actual ratings hr  and equals to 

1

n

h h
h

p r
MAE

n
=

−
=
∑

 
(12) 

The lower the MAE, the more accurate the predictions are 
permitting to provide better recommendations. We calculated the 
MAE for the different prediction algorithms and for different 
levels of Sparsity. The results are shown in figure 2. 

 

Sparsity Levels  
0.972 0.975 0.98 0.985 0.99 0.995 0.999 

CFUB-ER 1.385 1.457 1.541 1.637 1.801 1.746 1.865 

CFUB-ER-

CB 
1.34 1.412 1.518 1.606 1.807 1.667 1.771 

CFUB-IR 1.703 1.739 1.796 1.781 1.755 1.863 2.147 

CFIB-ER 0.838 0.91 1.06 1.14 1.28 1.626 1.66 

CFIB-IR 1.35 1.38 1.445 1.45 1.521 1.804 1.665 
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Random 3.166 3.515 3.414 3.024 3.256 3.174 3.398 

Figure 2. Prediction Algorithms Statistical Accuracy 

As far as statistical accuracy is concerned, we reach the following 
outcomes about the performance of the prediction algorithms.  

• Item-based prediction algorithms perform better than user-
based algorithms 

• Implicit rating based algorithms (in the sense that they have 
been defined for these tests) perform much worse than 
explicit rating based algorithms 

• Our item-based algorithm, based on explicit ratings (CFIB-ER) 
seems to be very sensitive to sparsity levels. As sparsity 
reduces, the MAE of the algorithm goes down, which means 
that accuracy is increased. CFIB-ER performs as much as 
39,5% better than classic Collaborative Filtering prediction 
algorithm CFUB-ER when sparsity level is 97,2% 

• CFUB-ER-CB increases the accuracy precision of CFUB-ER, as it 
calculates the user average based only on the subset of items 
that belong to the same categories as the active item. 
However, this increment is insignificant taking into 
consideration the extra computation needed to include 
category information. 

Experimental results indicate that item-based algorithms provide 
more accurate recommendations than user-based algorithms. In 
particular, our item-based algorithm based on explicit ratings, 
behaves much better as sparsity increases in comparison to all 
other algorithms presented. Our agent provides predictions of 
rating with an average MAE lower than 1 (i.e. 0.838). In our 
system, ratings range from 1 to 10, while in other common 
systems (GroupLens, EachMovie dataset) ratings range from 1 to 
5. In order to obtain a clear comparative view of our MAE results, 
one needs to divide the results with a factor of 2. This in the best 
case leads to 0,419 for MAE, which is especially satisfactory for 
providing high-quality recommendations. 

4.2.2.2 Decision-support Accuracy Metrics 
Decision-support accuracy metrics evaluate how effectively 
predictions help a user select high-quality items. Some of them 
frequently used are reversal rate, weighted errors, Precision-
Recall Curve (PRC) sensitivity and Receiver Operating 
Characteristic (ROC) sensitivity [13]. They are based on the 
observation that, for many users, filtering is a binary process. 
Consequently, prediction algorithms can be treated as a filtering 
procedure, which distinguishes  “good” items from “bad” items. 

For our decision support accuracy measure, we use the ROC 
sensitivity. ROC sensitivity is a measure of the diagnostic power 
of a filtering system. Operationally, it is the area under the 
receiver operating characteristic (ROC) curve-a curve that plots 
the sensitivity and the 1-specificity of the test. Sensitivity refers to 
the probability of a randomly selected “good” item being accepted 
by the filter. Specificity is the probability of a randomly selected 
“bad” item being rejected by the filter. The ROC curve plots 
sensitivity (from 0 to 1) and 1 – specificity (from 0 to 1), 
obtaining a set of points by varying the quality threshold. The 
ROC sensitivity range between 0 to 1, where 0.5 is random and 1 
is perfect.  

If we denote the predicted rate as PR , the actual rate as 

AR and the quality threshold as QT , then the following 

possible cases are defined by the filter for one item 

• True Positive (TP) when PR QT AR QT≥ ∧ ≥  

• False Positive (FP) when PR QT AR QT≥ ∧ <  



• True Negative (TN) when PR QT AR QT< ∧ <  

• False Negative (FN) when PR QT AR QT< ∧ ≥  

For a set of items sensitivity is defined as the True Positive 
Fraction (TPF) and the 1-specificity as the False Positive Fraction 
(FPF), where 

tp
sensitivity TPF

tp fn
= =

+
, where tp , fn  is the 

number of true positive and false negative occurrences over the 
set of items respectively. 

1
fp

specificity FPF
fp tn

− = =
+

, where tn , fp  is 

the number of true negative and false positive occurrences over 
the set of items respectively. 

We calculated the ROC curve for the different prediction 
algorithms and for quality thresholds ranging between 1 and 9, 
while the sparsity level was equal to 0,972. We use the symbolism 
ROC-threshold to represent the point on the ROC curve for the 
specific quality threshold value. The results are shown in figure 3. 

 
Quality Threshold  

ROC-6 ROC-7 ROC-8 ROC-9 
CFUB-ER 0.77 0.55 0.28 0.21 
CFUB-ER-CB 0.77 0.59 0.33 0.24 
CFUB-IR 0.75 0.39 0.2 0.1 
CFIB-ER 0.89 0.71 0.53 0.41 T
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CFIB-IR 0.78 0.53 0.28 0.21 
Figure 3. Prediction Algorithms Decision support accuracy (ROC 

sensitivity) 

The following remarks can be made about the performance of the 
prediction algorithms as far as decision-support accuracy is 
concerned.  

• Item-based prediction algorithms perform better than user-
based algorithms 

• Implicit rating based algorithms (In the sense that they have 
been defined for these tests), perform much worse than 
explicit rating based algorithms 

• Our CFIB-ER performs 95% better than classic collaborative 
filtering CFUB-ER for ROC-9, 89% better for ROC-8 and 29% 
better for ROC-7. This means that if we define as “good” 
items the ones that have average rating more than 9 or 8 or 7 
repsectively and as “bad” items the ones that have average 
rating less than 9 or 8 or 7 respectively, then CFIB-ER predicts 
and therefore recommends items with 95% or 89% or 29% 
respectively more accuracy than classic collaborative 
filtering CFUB-ER. 

• To obtain a clear view of the overall performance of each 
algorithm one need to calculate the area under the ROC 
curve. It is clear from the figure 3 that our CFIB-ER performs 
much better than any other algorithm examined. 

5. EXTENSIONS 
In this section, we present preliminary theoretical approach of 
future research directions. Our first objective is to bring 
recommendation algorithms on the Web that can be proved 
accurate and require soft computations. Subsequently, we try to 
investigate how similarity measures can be used in order to 
identify online, virtual, self-organized communities of users that 
share similar interests. 

5.1 Incremental calculation of similarity 
measures 
Recommendation algorithms are based on similarity measures, as 
described in the previous section. However, these measures 
require expensive computations. Each time a recommendation is 
requested by an active user, the algorithm needs to calculate the 
similarity between the active user and all other users, based on 
their co-rated items, so as to pick the ones with similar behavior. 
Next, the algorithm recommends to the active user, items that are 
highly rated by the already selected most similar users. 

In this extension, we aim to achieve incremental update of the 
user similarities, and as a result to be able to recommend items in 
short time. In order to achieve this, we propose a caching scheme 
that permits to update the user similarities after each single rating 
is provided or an older one is updated. At the time that a 
recommendation is requested, cached information permits to 
provide recommended items to users on the fly, as only trivial 
computations are required. Our approach maintains a high–level 
of quality as recommendation algorithms employ the total of the 
information that is logged into the system and not just a part of it. 
Our method permits highly scalable and accurate recommendation 
algorithms to effectively be brought on the Web. 

The similarity between user xu and yu for the subset of items 

they have co-rated, is given by equation 1, where 'n  is the 

number of the co-rated items, ,x hu ir is user’s xu  rating for item 

hi  and 
xur , 

yur  are the averages of items rated by xu , yu  

respectively. Whenever a user xu , rates an item or updates the 

value of an already submitted rating, his user model is updated 
and thus all similarity measures between him and the other users 
need to be re-calculated. The new similarity between a user 

xu and a user yu is given by the equation below: 
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where  '
xur  is the new average of user xu  and ''n  is the new 

number of co-rated items. If a new item rated by the active user is 

also rated by user yu , then the number of co-rated items is 

incremented by one, so '' ' 1n n= + . In the case that user yu  

has not rated this item or a rating update occurs, the number of co-

rated items remains the same, so '' 'n n= . Our objective is to 
express the new similarity between two users as a sum of the old 
similarity and an increment. To smooth on the progress of this 
task we adopt the following notation for the old Pearson 
Correlation similarity: 
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and the following notation for the new Pearson Correlation 
similarity: 
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where e , f  and g are the increments that need to be added to 

each factor after the submission of a new or the update of an 
already existing rating. Actually, we split the similarity measure 
into three factors, independently calculate the new values of each 
factor and then combine their updated values so as to yield the 

value of the new similarity. Combination of 'B , 'C  and 'D  
values yields the value of the new similarity, which equals to:  

'
'

' '

B B e
A A

C D C f D g

+′= ⇔ =
+ +

 

There are two cases that we need to examine. The first occurs 
when the active user submits a new rating and the second when 
the active user updates an already submitted rating. Furthermore, 
for each one of these cases we distinguish between two instances. 

As similarities are defined between the active user and a user yu , 

the first instance refers to the case that the active item is co-rated 

by user yu  and the second when it is not. We finally conclude on 

four cases that need to be examined. 

The factors that may be affected during these computations are the 

average of the active user, the average of the user yu  and the 

total number of their co-rated items. Taking these factors into 

consideration we calculate the factors e , f , g . Results are 

displayed on Table 1 of the Appendix. 

In order to achieve our method we propose a caching scheme that 
permits to calculate the incremental factors with trivial 

calculations.  We need to cache the values of B , C and D  for 
all couple of users. We also need to cache the average rating of 
each user and the number of items that he/she has rated. Part of 
the cached information needs to be updated every time a user 
submits a new rating or updates an existing one. In Table 2 of the 

Appendix we explain how incremental factors e , f , g  are 

calculated. 

5.2 Formation of Communities 
In this paragraph, we present ideas about how similarity 
measures can be employed, in order to identify self-
organized, online, virtual communities and sub-
communities in an information system.  

5.2.1 The “Community Coherence Grade” 
The similarity measures described earlier are detecting 
relationships between users and they can consequently be 
functional in the formation, description and behavioral 
explanation of communities [14]. In order to examine the 
tightness or looseness of these communities we introduce the 
“Community Coherence Grade” (CCG), which is defined as the 

average correlation between user au  and the rest members m′ of 

the community. A user hu is considered as a member of user’s 

au  community if the correlation between them is greater than a 

threshold. CCG is given by the equation 13. 
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In our approach, communities are self-organized. This means that 
there is not any intentional registration to a community, and there 
is not any kind of external moderation. Membership to a 
community or not is decided without any human intervention and 
is merely based on user’s rating behavior. These communities are 
also considered virtual as they exist just from the current user’s 
perspective and dynamic as any user’s single rating can result in 
an adjustment of the community’s state. 

5.2.2 Detecting Sub-communities 
We also describe a filtering algorithm that facilitates the detection 
of users that are relevant according to just a part of their profile 
and consider them as sub-community. We apply criteria that 
typify the degree of preference to specific categories in a five-
level scale (0-20, 20-40, 40-60, 60-80, 80-100 %). For example 



we can detect the sub-community, which likes Comedy (e.g. 80-
100%) but dislikes Drama (e.g. 0-20%). The algorithm calculates 
the users that satisfy all the criteria by applying a Boolean AND 
operation to the criteria specified by the filtering procedure. The 
algorithm steps are shown below. 

1. Find the categories for which criteria have been specified 

2. For each category find which one out of the five 
preferences has been specified 

3. Find the users of the system that have rated at least once 

4. For each user decide whether he satisfies the criteria 

a. For each category calculate the positive percentage 
that corresponds to the user. 

b. If the percentage satisfies the criteria then continue 
with the next category. 

c. If a user satisfies the criteria of all categories then is 
returned by the algorithm 

5. Continue with step 4 until there are no remaining users 

The complexity of the algorithm is linear on the number of 
categories on which criteria have been specified and the number 
of users on the system. Detection of sub-communities is valuable 
when recommending items to users with eclectic state. 

6. CONCLUSIONS 
Recommendation systems are effectively used to filter out excess 
information and to provide personalized services to users by 
employing sophisticated, well though-out prediction algorithms. 
We described how explicit ratings could be utilized in order to 
implicitly provide user’s preference to specific categories. We 
designed, implemented and tested a number of prediction 
algorithms based on either user or item similarity and we 
thoroughly evaluated their performance in relation to statistical 
and decision-support accuracy. Our analysis shows that item-
based are much better than user-based predictions. Category-
boosted predictions can lead to slightly better predictions when 
combined with explicit ratings, while implicit ratings (in the sense 
that we have defined them here) perform much worse than explicit 
ratings.  

In the sequence, we presented preliminary theoretical extensions 
of our future research direction. We present a methodology that 
permits to efficiently bring recommendation algorithms on Web. 
The novelty of our approach yields in incremental calculation of 
the similarity measures between users, contrary to dimensionality 
reduction techniques previously adopted. Although there are no 
experimental results to depict the efficiency of our work at the 
moment, we expect that our approach will do better than the 
existing recommendation algorithms in both performance and 
accuracy aspects. Finally, we drew the direction to another 
interesting aspect of similarity measures, as they can be 
effectively used to identify self-organized, virtual, online 
communities and we introduced the CCG term to define the 
relevance between community members. 
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Appendix 
Table 1. Summary of incremental factors that need to be calculated after each rating so as to achieve incremental update of 
similarity measure 

Submission of a new rating ,a au ir  for an item ai  by the active user au  
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Update of an existing rating ,a au ir  for an item ai  by the active user au  

e 
'

, , ,
1

( ) ( )
a a y a y a y h y

n

u i u i u u u i u
h

e dr r r dr r r
=

= − − −∑  

f 
' '22

, , , ,
1 1

2 ( ') ' 2 '( )
a a a a a a a a a a h a

n n

u i u i u i u u u u i u
h h

f dr dr r r dr dr r r
= =

= + − + − −∑ ∑  
In case that item ai  has 

been rated by user yu  

g 0g =  

e 
'

,
1

( )
a y h y

n

u u i u
h

e d r r r
=

= − −∑  

f 
' '2

,
1 1

' 2 '( )
a a a h a

n n

u u u i u
h h

f d r dr r r
= =

= − −∑ ∑  
In case that item ai  has 

not been rated by user yu  

g 0g =  



Table 2. Calculation of operands that appear in incremental factors 

Operand Calculation 

m  Cached Information (The number of the items that a user has rated is cached) 

aur  Cached information (Average ratings of all users are cached) 

'
aur  

The new average of the active user is calculated incrementally based on the cached values of the 
previous average and the number of already rated items. If a new rating is submitted the new average 

equals to 
,'
1 1
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u i
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r m
r r
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+ +
. if an update of an existing rating is submitted then the new 

average equals to 
,' a h
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u i
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dr
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m
= + . In both equations, m  is the number of items that the active 

user had rated before his new rating to ai . 

yur  Cached information (Average ratings of all users are cached) 

,a au ir  The rating of the active user to the active item is provided through the system’s interface 

aud r  
The difference of user’s previous and current average rating is calculated as described earlier based 

on the cached value of 
aur , m  and the new or updated rating ,a au ir  

,y au ir  The rating of the user yu to the item ai  is found by querying the database 
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−∑  The sum of all ratings of active user au  is found using an aggregation query 

 

 


