
Fall 2018, EECS – York University M.S. Brown and Amir H. Chinaei

EECS1012

Lecture 7

Computational Thinking

Net-centric Introduction
to Computing

algorithms/flowcharts

overview

5-2

 computational thinking
 the thought process involved in expressing a solution in

such a way that a computer can effectively execute it

 algorithm
 an unambiguous specification of how to solve a

problem in finite steps and finite memory

 flowchart
 visualization of an algorithm

 other design tools
 uml, pseudocode, etc.

algorithms/flowcharts

software development life-cycle

5-3

 requirements
 understand/analyze what the problem/project is

 design
 find/define a solution and present it in a schematic way

 implementation
 code it in a programming language

 verification
 verify the solution for test cases and fix possible flaws

learn more about: waterfall, agile, spiral, v-model, etc.

our focus

algorithms/flowcharts

algorithm

5-4

 an unambiguous specification of how to solve a
problem in finite steps and finite memory

 it’s like a recipe for problem solving

 it’s the design phase of writing a program

• you don’t want to miss this phase

 history

 the concept existed for centuries

• example: Euclid’s method of computing the greatest
common divisor (gcd)

 the term derives from the 9th Century mathematician
Muḥammad ibn Mūsā al'Khwārizmī, latinized 'Algoritmi'

algorithms/flowcharts

recipe example

5-5

 making a bagel sandwich
1. place bagel in toaster and toast as desired

2. over medium heat, fry egg in frying pan

3. turn off heat but, leave pan on burner

4. place meat on top of egg and then the cheese
on top of the meat

5. cover with a lid and let the heat melt the
cheese

6. place egg, meat, and cheese pile on one half of
bagel and top with the other half

7. enjoy!

https://www.geniuskitchen.com/recipe/breakfast-bagel-sandwich-123960

algorithms/flowcharts

example 2, try it, what do you think?

5-6

 making a paper boat
1. lay out a rectangular piece of paper

2. fold the sheet of paper in half from top to bottom to create a
horizontal crease in the middle

3. fold the top corners in towards the middle so that they meet. You
should now have a triangle shape

4. fold the flaps at the bottom of the triangle shape up on both sides

5. pop out the middle to make a hat shape

6. using your fingers, open the hat shape out even more until it forms a
square. Tuck the corners of one flap under the other

7. fold up the bottom flaps of the square on both sides so you are left
with a triangle shape

8. pull out the middle of the triangle to form a square

9. pull out the middle of the square

10. press the shape flat

11. open out from the bottom to assemble your boat shape

https://www.persil.com/uk/dirt-is-good/arts-crafts/how-to-make-a-paper-boat-step-by-step.html

algorithms/flowcharts

algorithm example 3

5-7

 problem: write a program that receives two
numbers and calculate their sum.

 solution: instead of rushing to implementation,
the idea is to provide an algorithm first:

Steps

1. start

2. receive a number from the end-user

3. receive another number from the end-user

4. calculate sum of the two numbers

5. show the sum to the end-user

6. stop

algorithms/flowcharts

algorithm example 3 revisited

5-8

 problem: write a program that receives two
numbers and calculate their sum.

 we try to make our algorithm a bit more specific
and less ambiguous

Steps

1. start

2. receive a number from the end-user and store it as a

3. receive a number from the end-user and store it as b

4. calculate sum of a and b

5. show the sum to the end-user

6. stop

algorithms/flowcharts

algorithm example 4

5-9

 problem: write a program that calculates sum of
numbers 10, 11, 12, …, 30.

 solution: instead of rushing to implementation,
the idea is to provide an algorithm first:

1. start

2. store 10 in a memory space and call it a

3. store 0 in a memory space and call it s

4. add a to s and store it in s

5. add 1 to the value stored in a

6. if a<31 go to step 4; otherwise, go to the next step

7. show s to the end-user

8. stop

algorithms/flowcharts

flowchart

5-10

 visual presentation
of algorithms

 like a blueprint
outlines an
architecture/design
details visually, a
flowchart visualizes
an algorithm

a picture is worth a thousand words

algorithms/flowcharts

start, end, input, output

5-11

end

start the process

end the process

input data
and store

output data
typically the stored data

m

m

examples:

input data &

store it as m

output m

start

m

early computers used punched cards for data input, and papers for data output

https://www.google.com/search?client=firefox-b&biw=1368&bih=810&tbm=isch&sa=1&ei=3VqqW7bvGuKZjwSo2Ym4CA&q=punched+cards+IBM+360&oq=punched+cards+IBM+360&gs_l=img.3...4413.5613.0.5843.4.4.0.0.0.0.95.334.4.4.0....0...1c.1.64.img..0.0.0....0.tdjzkCmy4y4

algorithms/flowcharts

example 5

5-12

• receive two numbers and show their sum.

• other solutions:

w+h

start

end

w,h

"sum: ",w+h

start

end

w,h

"sum: ",s

start

end

s  w+h

w,h

visual approach to example 3

assignment box

algorithms/flowcharts

assignment

5-13

• it’s used to assign a value to a memory space

• the memory space that we want to assign the value
to it, should be on the left side

• the value normally is an expression

• example:

• the value stored in memory space called width is added
to the value stored in height; the result multiply by 2
generates a new value that is stored in p

• use meaningful names for memory spaces

• p in the example above is not a good name, why?

• in a flowchart, it’s discouraged to use = instead of 

memory  value

p  2*(width + height)

algorithms/flowcharts

example 6

5-14

 problem: write a program that receives
numerical coefficients of a quadratic equation and
calculates its roots. (assume coefficients are good
enough such that a solution exists.)

 solution:
 first, let’s understand/analyze what the problem is

 we may need to review/learn about quadratic equations

• if the equation is in form of 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, the
roots are calculated as follows:

𝑥1 =
−𝑏 + 𝑏2 − 4𝑎𝑐

2𝑎
𝑥2 =

−𝑏 − 𝑏2 − 4𝑎𝑐

2𝑎
 now, draw a flowchart for this program

algorithms/flowcharts

branching (if-then)

5-15

condition

True

False

• branching used to change the flow of
steps based on certain boolean conditions

• the cloud part is actually replaced by
any combination of flowchart constructs

• examples:

rainy

True

False

“take an umbrella“

balance>100

T

F

interest  balance*0.01

fee  0

algorithms/flowcharts

example 7

5-16

 problem: write a program that receives
numerical coefficients of a quadratic equation and
calculates its roots if a solution exists.

 solution:
…

algorithms/flowcharts

branching (if-then-else)

5-17

condition

True

False

• examples:

grade>79

T

F

"great  "
“room to improve“

temp>26

T

F

"hot"
temp<15

T

F

"cold"

if-then-else

if-then

algorithms/flowcharts

example 8

5-18

 draw a flowchart
for a program to
receive numerical
coefficients of a
quadratic equation
and determine if it
has two distinct
roots, one root, or
no root.

start

end

t1  b*b

t2  4*a*c

a,b,c

t1>t2

T

F

“two"
t1=t2

T

F

"one"
"none"

algorithms/flowcharts

many branches (cases)

5-19

day

=0 =1 =2

otherwise

“sun” “mon” “tue”

memory space

case1 case2 caseN

otherwise

=3

“wed” “thu” “fri” “sat”

=4 =5 =6 “error”

• deciding based on
different values of a
memory space or
expression

• example:

algorithms/flowcharts

example 9

5-20

 draw a flowchart for a program to receive a grade
and map it to a letter based on York standard.

…

algorithms/flowcharts

iteration (while-do loop)

5-21

condition

True

False• as long as the boolean condition
holds, the steps in the cloud
part are iterated

• normally it’s used for non
deterministic iterations

• example: rainy

True

False

use-the-umbrella

algorithms/flowcharts

example 10

5-22

draw a flowchart to
keep receiving
numbers from the
end-user and
determine if they are
positive or negative,
until a zero is
received.

num ≠ 0

T

F

“positive”

start

end

num

num>0
F

T
“negative”

num

algorithms/flowcharts

iteration (for loop)

5-23

• as long as the boolean
condition holds, the steps in
the cloud part are iterated

• normally it’s used for
deterministic* iterations

• initialize a memory space

• specify how you want that
memory space be modified
after each iteration

• example:

True

False
initialization

modification

condition

T

Fi  1

i  i +1
i ≤ 10

“coding is cool”

*deterministic: in this context, this means we know in advance

how many times something will happen. This is different than

our while-loop examples.

algorithms/flowcharts

example 11

5-24

draw a flowchart to
compute the sum of
numbers between 10
and 30, inclusively.

T

Fi  10

i  i +1
i ≤ 30

“10+11+..+30=“,

sum

sum  sum + i

sum  0

end

start

algorithms/flowcharts

iteration (do-while loop)

5-25

condition
True

False

• the steps in the cloud part are
iterated as long as the boolean
condition holds

• it’s similar to the while-do loop,
however the cloud part will be
iterated at least once

• similar to while-do, it’s used for
non deterministic iterations

• exercise: draw a flowchart to keep receiving numbers and
adds the positive numbers and negative numbers separately,
until a zero is received. compare the structure of your
flowchart with that of example 10.

algorithms/flowcharts

example 12

5-26

a < 31T

F

a  10
sum  0

start

sum  sum+a
a  a +1

“10+11+..+30=“,

sum

end

draw a flowchart for
the algorithm
presented in example 4:
sum of 10, 11,..., 30

algorithms/flowcharts

proper nesting

5-27

 common constructs
 the flowchart constructs introduced so far are

supported in most well-known languages

 nesting
 you can use a construct inside another

construct as long as they are properly nested

 bad practice
 jumping into a construct or jumping outside a

construct is considered a bad practice

 in general, jumping is considered a bad practice

badgood

algorithms/flowcharts

example of a bad thing

5-28

draw a flowchart to
receive numbers
and count positive
and negative ones,
until a zero is
received. Also, at
any time the
number of positives
gets more than
twice the number of
negatives, the
program should
stop.

start

num

p  0
n  0

num ≠ 0

T

F

num>0
F

p  p+1

T

n  n+1

p>2*n
T

F

num
end

num<0

T

F

algorithms/flowcharts

example 14

5-29

start

p  0
n  0

num ≠ 0 and

p ≤ 2*n
T

num

num>0
F

p  p+1

T

n  n+1

num<0

T

F

end

F

 good thing

 proper nesting

algorithms/flowcharts

verification

5-30

 design tip
 it’s also a bad practice to develop algorithms/flowcharts

and rush into implementation without testing them first

 trace
 to test and debug our solutions

 let’s trace example 12, for sum of 10 to 13

a sum output

10
0
10

11
21

12
33

13
46

14
46

algorithms/flowcharts

advanced example 1

5-31

devise a program to
receive 3 numbers
and output them in
non-ascending order.

start

a, b, c

a>b
F

b>c
F

T

T

a,b,c
a>c

T

a,c,b

F

c,a,b

a>c
F

T

b,a,c
b>c

T

b,c,a

F

c,b,a

end

algorithms/flowcharts

trace it

5-32

a b c output

9 6 7
9 7 6

let’s trace it when the input is 9, 6, 7

a b c output

5 8 5
8 5 5

let’s trace it when the input is 5, 8, 5

a b c output

6 7 9
9 7 6

let’s trace it when the input is 6, 7, 9

algorithms/flowcharts

advanced example 2

5-33

devise a program to
receive a positive
whole number, n, and
compute n!

start

num

f  f * i

T

Fi  1

i  i +1
i ≤ num

f  0

num,”!= “, f

end

algorithms/flowcharts

trace it

5-34

• let’s trace our solution for when the input is 3

num f i output

3
0

1
0

2
0

3
0

4
0

• we know 3! is 6. but, our solution outputs 0. where is

the bug?

http://www.computerhistory.org/tdih/september/9/

algorithms/flowcharts

advanced example 3

5-35

devise a program to
receive a number
greater than 1 and
determine if it is a
power of 2 or not

start

num

num  num / 2

“no“

end

num > 1
T

F

num=1

T

“yes“

F

algorithms/flowcharts

trace it

5-36

• let’s trace our solution

for when the input is 8

num output

8
4
2
1

yes

• exercises: provide a solution using the “while-do”

symbol; and, one with the “for” symbol.

• let’s modify the question a bit: devise a program to

receive a number & determine if it is a power of 2 or not

• now modify and compare the 3 solutions

• let’s do another trace,

for when the input is 18

num output

18
9

4.5
2.25
1.125
0.5625

no

algorithms/flowcharts

advanced example 4

5-37

devise a program to
receive a number
and determine if it is
a prime or not

start

num

prime false

T

Fprime=true and

d < num/2

prime  true
d  2

num,” is prime”

end

num mod d = 0

T

F

d  d + 1

prime=true

T ”is not prime”

F

algorithms/flowcharts

trace it

5-38

• let’s trace our solution

for when the input is 7

num prime d output

7
true

2
3
4

7 is prime

• exercises: trace the algorithm for when the number is 1

(or 0). Note that 1 (or 0) is not a prime number.

• when you find a bug, debug it.

• let’s do another trace,

for when the input is 8

num prime d output

8
true

2
false

3
is not prime

algorithms/flowcharts

advanced example 5

5-39

devise a program to
output sum of values
stored in an array of
100 elements

”sum=“, sum

start

sum  sum + a[i]

T

Fi  1

i  i +1
i ≤ 100

end

sum  0

algorithms/flowcharts

trace it

5-40

to trace our solution, we do it for

an array of a smaller size. let’s

assume size of the array is 3, and

indexing starts from 1. also,

assume the values stored in the

array are 6, 3, and 12

a[1] a[2] a[3] sum i output

6 3 12
0

1
6

2
9

3
21

4
sum=21

exercise: assume

indexing starts from

0, modify the

flowchart accordingly

algorithms/flowcharts

advanced example 6

5-41

devise a program to
output sum of values
stored at odd
positions of an array
of 100 elements

”sum=“, sum

start

sum  sum + a[i]

T

Fi  1

i  i +2
i ≤ 100

end

sum  0

algorithms/flowcharts

trace it

5-42

to trace our solution, we do it for

an array of a smaller size. let’s

assume size of the array is 3, and

indexing starts from 1. also,

assume the values stored in the

array are 6, 3, and 12

a[1] a[2] a[3] sum i output

6 3 12
0

1
6

3
18

5
sum=18

algorithms/flowcharts

advanced example 7

5-43

devise a program to output sum of even values stored in
an array of 100 elements

Do it yourself. The flowchart should look like the previous

examples, except for—inside the loop—you need to check if

the value is odd or even; add it to sum only if it’s even.

algorithms/flowcharts

trace it

5-44

to trace your solution, do it for an array of a smaller size.

Let’s assume size of the array is 5, and indexing starts from

0. Also, assume the values stored in the array are 3, 2, 22,

11, and 12. Your trace should like the following table

a[0] a[1] a[2] a[3] a[4] sum i output

3 2 22 11 12
0

0
1

2
2

24
3
4

36
5

sum=36

algorithms/flowcharts

advanced example 8

5-45

devise a program to receive two positive whole
numbers and output their GCD

Do it yourself. First, you may want to review the Euclid’s

method for finding GCD, here.

https://en.wikipedia.org/wiki/Euclidean_algorithm

algorithms/flowcharts

trace it

5-46

trace your solution for the following 3 cases: when the two

inputs are (12,30), (13,8) and (0, 15)

algorithms/flowcharts

advanced example 9

5-47

devise a program to
receive a positive whole
number and output its
binary representation

start

num

bin concatenate (‘0’, bin)

T

Fn ≠ 0

bin  ‘’
n  num

num,“ in binary:”,

bin

end

n mod 2 = 0

T

F

n  n / 2

bin concatenate (‘1’, bin)

algorithms/flowcharts

trace it

5-48

num bin n output

13
‘’

13
‘1’

6
‘01’

3
‘101’

1
‘1101

0
13 in binary: 1101

let’s trace it for when

the input is 13:

algorithms/flowcharts

advanced example 10

5-49

devise a program to receive
a positive number, and print
all prime numbers less than
or equal to that number

we are going to reuse our

solution to adv’d example 4

(to check if a number is prime

or not). we need to modify it a

bit to return a True or False

answer though.

i

start

T

Fi  2

i  i + 1
i ≤ num

end

num

prime(i)=true

T

F

algorithms/flowcharts

continued

5-50

start

flag false

T

Fflag=true and

d ≤ num/2

flag  true
d  2

num mod d = 0

T

F

d  d + 1

prime(num)

ret flag

 this is called sub-algorithm.

 a sub-algorithm is called from

other algorithms

 like we called the prime sub-algorithm

from inside our adv’d example 10

 when we trace an algorithm, we

normally treat the sub-algorithms

as a black box (and, we assume

they are correct)

 exercise: trace adv’d example

10, for when input is 8

algorithms/flowcharts

sotware dev life cycle (revisit)

5-51

 requirements
 understand/analyze what the problem/project is

 design
 find/define a solution and present it in a schematic way

 implementation
 code it in a programming language

 verification
 verify the solution for test cases and fix possible flaws

algorithms/flowcharts

wrap up

5-52

 tips
 understanding the project is a crucial phase

 never miss the design phase

• this is a common weakness/mistake of many

• no matter how tiny/easy the problem/project is

 use meaningful names for memory spaces

• by the way, in programming languages we refer to a
“memory space” by a “variable”; review all slides

 nest properly

• avoid use of goto, continue, or alike statements

 verify the design before the implementation

