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Non local self similarity (NLS)

NLS is a common approach for signal denoising (NLM, BM3D, low rank
matrix etc.)
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NLS in time series

Monthly Global Air Passenger Dataset (Box-Jenkins)
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Non parametric regression

Problem: Given (Xi ,Yi )i=1..n and x , predict y .
Average estimate: Take the mean of past outputs associated with
similar inputs

y(x) =

∑n
i=1 I‖x−Xi‖≤hYi∑n
i=1 I‖x−Xi‖≤h

(1)

Nadaraya-Watson estimate, assuming (Xi ,Yi ) are drawn from the same
distribution

y(x) =

∑n
i=1 K ( x−Xi

h )Yi∑n
i=1 K ( x−Xi

h )
(2)

where K denotes the kernel function, for example truncated Gaussian
kernel

K (x) = e−
x2
2 1|x |≤a
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Forecasting vs denoising

Simple NW estimate is similar to NLM in signal denoising

X̂j =
∑
i

WijXi ,

where
∑

i Wij = 1.
Average or NW estimate is sensitive to outliers.
We want to have a counterpart algorithm of BM3D for time
series/spatio temporal forecasting.
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Problem formulation

We assume that the dynamics of the time series follows an
autoregressive model

St = m(St−1, . . . ,St−L) + εt (3)

Given (St−s)s≥0 predicting a vector of future values (St+h)1≤h≤H

Denote x = (St−l)0≤l≤L−1 and y = (St+h)1≤h≤H (y is unknown). We
denote (Xi ,Yi ) the historical data.
Similarity matching:

Ih(x) = {s : d(Xs , x) ≤ h} (4)

where d denotes a pseudo distance such as Pearson correlation or
Euclidean distance.
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Matrix completion
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Matrix completion without noise

Denote A the matrix formed by stacking up the vectors z = (x , y)′ and
Zi = (Xi ,Yi )

′ as columns:

A = A(y) =

[
X ′1 . . . X ′n x ′

Y ′1 . . . Y ′n y ′

]
= [Z1 . . .Zn z ] (5)

Matrix completion with exact observations (Ω)

min
M
{rank(M) : MΩ = AΩ} = min

y
{rank(A(y))} (6)

The previous problem is NP-hard and non convex. A convex relaxation
version is

min
M
{‖M‖∗ : MΩ = AΩ} (7)

where ‖M‖∗ denotes the nuclear norm.
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Matrix completion is powerful!

Figure: 80% missing values Figure: recovered image

10 / 28



Matrix completion (MC) with noise

In practice, data are observed with noise. Moreover, when the missing
ratio is small (which is the case of this work), the missing values do not
have significant impact on the rank of the matrix.
Method 1. Low rank MC with noise

min
M
{‖MΩ − AΩ‖2F : rank(M) ≤ r} (8)

Notice that when there is no missing values, the solution is obtained by
PCA: The rank r approximation of a matrix A is given by

Ar = U rΣr (V r )′

where A = UΣV ′ denotes the SVD of A.
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Low rank MC with noise

Theorem
The predicted value ŷ of problem 8 satifies the following fixed point equation

y = [A(y)]rΩc

where Ωc denotes the complement set of Ω.

The above theorem gives an iterative algorithm to solve y : start with
an initial guess for y (e.g. average estimate), then apply PCA on A(y)
to obtain an approximate matrix of rank r which give a new estimate of
y . Repeat until convergence.
This algorithm is monotonic. Indeed, if M0 has rank r and corresponds
to y0, then this algorithm gives M1 and y1 such that

‖[M1]Ω − AΩ‖2F ≤ ‖[M0]Ω − AΩ‖2F
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Algorithm

Algorithm 1 Low rank matrix completion with noise

1: Initialize the missing values: y = y0
2: Apply PCA on the matrix A(y0) to obtain the low rank matrix M1 =

A(y0)r and the new estimate y1 = [M1]Ω
3: If d := ‖y1 − y0‖ > ε : replace y0 by y1 and repeat the previous step

until d ≤ ε
4: Return yn .
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Hard and soft thresholding

This algorithm does not ensure the uniqueness of solution nor the
global optimality.
If the rank is replaced by nuclear norm, then the PCA step is replaced
by the soft thresholding operator.

M1 = USλ(Σ)V ′

where Sλ replaces Σii by (Σii − λ)+
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Graph Laplacian Regularizer Approach

Method 2. Graph Laplacian Regularizer.
Define the graph adjacency matrix W = (Wij) where

Wij = e−γ‖Xi−Xj‖2 .

And similarly Wi = e−γ‖x−Xi‖2 .

We ignore the inputs in the matrix A :

A(y) = [Y ′1 . . .Y
′
n y
′] = [Y ′ y ′],Y ∈ Rn×d

The objective function

min
Ŷ ,y
‖Ŷ − Y ‖2 + λ

∑
ij

Wij‖Ŷi − Ŷj‖2 + λ
∑
i

Wi‖Ŷi − y‖2
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GLR approach

Fixing Ŷ we obtain the NW-like estimate

y =

∑
i Wi Ŷi∑
i Wi

= αŶ , α ∈ R1×n

Plug this into the objective function:

min
Ŷ ,y
‖Ŷ − Y ‖2 + λ

∑
ij

[Wij +
WiWj∑

i Wi
]‖Ŷi − Ŷj‖2

Explicit solution w.r.t the modified Graph Laplacian:

Ŷ = (1 + λL̃)−1Y .

So y is weighted average of denoised outputs.
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GLR approach

Lemma
The predicted value y is a weighted average of historical outputs Y , i.e.

y = βY ,
n∑

i=1

βi = 1.

Notice that β = α(1 + λL̃)−1. Moreover, L̃1 = 0. Hence β1 = α1 = 1.
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Empirical results

For illustration purposes, consider the set of Monthly air passengers, from
1949 to 1961. We test the predictive power of different models: our model
and

Parametric models: ARIMA
Nadaraya-Watson with uniform kernel.
Nuclear norm model
Graph signal model.

We use the relative root mean squared error to measure the predictive power
of a given method

êT =
100H∑H
h=1 YT+h

√∑H
h=1(ŶT+h − YT+h)2

H
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Empirical results
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Empirical results
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Empirical results

Table: Relative Errors for different methods

Nuclear Norm PCA GLR Avg ARIMA

0.50% 0.53% 0.53% 0.60% 1.29%
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Spatio-temporal forecasting: a technical extension

Consider a spatio-temporal process of d−dimension

St = m(St−1, . . . ,St−L) + εt (9)

Our goal is to predict St+1.

By similar method as in the time series case, we come to a low rank
tensor completion problem
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Tensor
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Tensor completion

Definition (Tensor completion with noisy observations)
Given an incomplete tensor T with observed values on the set Ω, estimate
the low rank tensor X such that

min
X
‖XΩ − TΩ‖2 (10)

subject to f (rank(X )) ≤ r . (11)

where the function f can be a vector-valued or scalar function.
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Tensor decomposition
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Tensor completion

Low Tucker rank tensor completion

‖Ω ◦ (T − G ×1 A1 ×2 A2 ×1 A3)‖2F

where G denotes the core tensor of small rank (r1, r2, r3).

Low rank tensor completion

‖Ω ◦ (T − X )‖2F + Regularization.

For the low rank tensor completion problem, we use HOSVD and the
approach in the time series case. For the Graph Laplacian Regularizer
method, we unfold the tensor along the spatial mode to exploit the
spatial relationship.
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Low rank Tensor completion

Matricize the tensor and apply matrix completion techniques -> we
need to choose the right mode.
We propose the following method: unfold the tensor along three modes.
Along each mode, apply the matric completion techniques. Finally take
the average of three solutions.
We are still open to choose a setup/algorithm for this low rank tensor
completion problem.
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Thank You!
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