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ABSTRACT

The ability of a person to perceive image details falls pre-
cipitously with larger angle away from his visual focus. At
any given bitrate, perceived visual quality can be improvedby
employing region-of-interest (ROI) coding, where higher en-
coding quality is judiciously applied only to regions closeto
a viewer’s focal point. Straight-forward matching of viewer’s
focal point with ROI coding using a live encoder, however,
is computation-intensive. In this paper, we propose a system
that supports ROI coding without the need of a live encoder.
The system is based on dynamic switching between two pre-
encoded streams of the same content: one at high quality
(HQ), and the other at mixed quality (MQ), where quality of
a spatial region depends on its pre-computed visual saliency
values. Distributed source coding (DSC) frames are periodi-
cally inserted to facilitate switching. Using a Hidden Markov
Model (HMM) to model a viewer’s temporal gaze movement,
MQ stream is pre-encoded based on ROI coding to minimize
the expected streaming rate, while keeping the probabilityof
a viewer observing low quality (LQ) spatial regions below an
application-specificǫ. At stream time, the viewer’s gaze lo-
cations are collected and transmitted to server for intelligent
stream switching. In particular, server employs MQ stream
only if: i) viewer’s tracked gaze location falls inside the high-
saliency regions, and ii) the probability that a viewer’s gaze
point will soon move outside high-saliency regions, computed
using tracked gaze data and updated saliency values, is below
ǫ. Experiments showed that video streaming rate can be re-
duced by up to44%, and subjective quality is noticeably bet-
ter than a competing scheme at the same rate where the entire
video is encoded using equal quantization.

Index Terms— Region-of-Interest encoding, video
streaming, visual saliency

1. INTRODUCTION

High-definition video is already a part of people’s every-
day life, from television to casual video captured in mobile
phones. Similarly, streaming content for both live sources
such as Skype and stored sources such as Netflix are increas-
ingly moving towards high-definition and consumed on larger
displays to keep up with user’s expectation. This need to

stream high-definition video to be consumed on large displays
is both a curse and a blessing from an engineering perspective.

While high-definition streaming generally entails higher
transmission cost, the use of large displays on both comput-
ers and televisions means that a viewer cannot simultaneously
pay attention to all details being displayed. This is consistent
with known observation that human’s ability to perceive im-
age details falls precipitously as function of the viewing angle
away from his focal point of visual attention [1]. Therefore,
one effective method to reduce transmission rate when view-
ing content on large displays is to employ a Region-of-Interest
(ROI)-based approach [2, 3]. Specifically, if one can track
a viewer’s attention focal point in real-time, the server can
encode a suitably sized spatial region (ROI) of the stream-
ing video containing the viewer’s focal point in high qual-
ity (HQ), and encode the other regions in low quality (LQ)1.
However, there are two factors that can limit the practicality
of such systems. First is the need of a computationally expen-
sive live encoder for each viewer. Second is the need to react
promptly to changes in visual focus with high probability.

In this paper, we propose a new ROI-based video stream-
ing system that does not require real-time encoding, yet still
reaps the benefit of bitrate reduction with low probability of
visual quality degradation. We first pre-encode two bitstreams
representing the same video contenta priori. The first stream,
calledHQ stream, is encoded in HQ for entire video frames.
The second stream, calledmixed quality (MQ) stream, is en-
coded in two different qualities: spatial regions withsalient
objects(contiguous areas with per-pixel saliency values, pre-
computed using a visual saliency model like [4], above a cho-
sen thresholdτ ) are encoded in HQ, while other regions are
encoded in LQ. In addition, to be discussed further in Sec-
tion 3.2, Distributed Source Coding (DSC) frames [5] are pe-
riodically inserted into both streams to facilitate switching be-
tween the streams. Assume first that the server will switch
from MQ to HQ stream at the next DSC frame boundary if
viewer’s gaze location falls outside the high-saliency regions
(and vice versa). Using a Hidden Markov Model (HMM) [3]
to model a viewer’s temporal gaze movement, MQ is pre-

1Spatial regions outside ROI cannot be encoded using overly coarse quan-
tization parameter (QP), so that the resulting coding artifacts draw unneces-
sary visual attention. We discuss selection of QPs in Section 3.5.



encoded to minimize the expected streaming rate, while keep-
ing the probability of a viewer observing a LQ region to below
an application-specificǫ.

To achieve timely response to gaze movement, we employ
a runtime gaze tracker at client with an eye-gaze prediction
algorithm at the server. While it is not possible to guarantee
that gaze prediction is always correct, prediction failures are
generally less noticeable. This is because prediction failures
usually take place during gaze redirection (calledsaccadein
the literature), where it is known that human’s ability to per-
ceive details is decreased [6]. The probability of observing
LQ regions due to switching delay associated with periodic
insertion of DSC frames is hence contained in real-time as
follows. The server updates the observation probabilitiesof
saliency objects at DSC frame boundaries2 given the real-time
tracked gaze points, in order to recursively update probabili-
ties of gaze evolution into future frames. The server chooses
the MQ stream only if: i) viewer’s latest tracked gaze location
falls inside the high-saliency regions, and ii) the probability
that a viewer’s gaze moves and observes low-saliency regions
before the next DSC boundary, calculated using updated ob-
ject observation probabilities, is belowǫ.

Leveraging available software components for gaze track-
ing [7] and video encoding and streaming [8], we have built
an operational video streaming system prototype that collects
gaze data at 30Hz using a web camera and correspondingly
makes intelligent stream-switching decisions during uninter-
rupted video streaming. Experiments show that video stream-
ing rate can be decreased by up to44% using our proposed
system, and through an extensive subjective test that involved
20 human participants, we conclude with statistical confi-
dence that the quality of our system is noticeably better than a
competing scheme at the same streaming rate where the entire
video is encoded using equal quantization.

The outline of the paper is as follows. We first overview
related work in Section 2. We then discuss our system model
in Section 3. We discuss how system parameters can be op-
timized and how optimal stream-switching decision can be
made in Section 4 and 5. Finally, experimental results and
conclusions are provided in Section 6 and 7, respectively.

2. RELATED WORK

Research in visual attention modeling has been very active in
the last decades [4, 9], with numerous computational models
proposed to identify spatial locations that attract the eyegaze.
Most models compute a saliency map that values each pixel
according to its visual saliency. Our goal here is not to pro-
pose new models of visual saliency maps, but to use saliency
maps of video frames as per-pixel prior probability distribu-
tion of gaze location to estimate viewer’s temporal eye move-
ments in future frames. In this paper, we compute saliency
maps using methodology in [4] based on a plausible model

2A saliency map for a video frame can be interpreted as probability dis-
tribution function (PDF) of a viewer’s per-pixel visual attention.

of bottom-up visual attention. This model offers good per-
formance with reasonable computational cost. An existing
implementation of the model is also available online.

In our previous work [3], we have designed a HMM to
predict viewer’s future gaze locations based on recent col-
lected gaze data for real-time ROI-based video coding &
streaming over networks with non-negligible delay. While
using a similar HMM, our current work addresses a differ-
ent problem: how real-time video encoding can be avoided
altogether while still reaping the benefit of reduced rate in
gaze-driven video streaming.

3. SYSTEM DESCRIPTION

We first overview our proposed gaze-driven video streaming
system. We then describe the dual-stream frame structure
used for stream-switching, and discuss how saliency objects
are identified using visual saliency maps.

3.1. Streaming System Overview
Our proposed store-and-playback video streaming system
employs two pre-encoded video streams with the same con-
tent in different qualities: HQ stream has all spatial regions
encoded in HQ, while MQ stream only has visually salient
regions encoded in HQ. DSC frames are inserted periodi-
cally everyT frames to facilitate stream-switching depend-
ing on real-time tracked gaze locations. The system essen-
tially switches to HQ stream when a viewer’s gaze travels out-
side visually salient regions, and switches back to MQ stream
when the server is confident that the viewer’s gaze will remain
in visually salient regions in the foreseeable future.

In theory, it is possible to setT small enough so thatzero
visual degradation is observed. This is because when human
gaze shifts from one object of interest to another—a move-
ment calledsaccade—the observer cannot perceive visual de-
tails until his vision has settled on the new object [6]. Hence if
T is small enough that the server can switch from MQ stream
to HQ stream before saccade has completed, the observer will
always perceive HQ. Doing so would require a very smallT ,
however, which is not practical given the non-negligible over-
head of encoding stream-switching DSC frames. Hence, we
take the alternative approach of limiting the probability of ob-
serving LQ regions to be below an application-specificǫ in-
stead.

Fig. 1. Proposed frame structure in gaze-driven video streaming
system. I-, P-, and DSC frames are denoted as circles, squares, and
diamonds, respectively. DSC frames are inserted everyT frames.



3.2. Dual-quality Frame Structure
We now describe the frame structure used to facilitate peri-
odic switching between two pre-encoded bitstreams, shown in
Fig. 1. HQ stream is encoded in HQ for entire video frames.
MQ stream is encoded in two quality: spatial regions with
per-pixel visual saliency values above a saliency threshold τ
(ROI) are encoded in HQ, while the other regions are encoded
in LQ. Frames in each stream are encoded in IPPP struc-
ture, with DSC frames [5] periodically inserted with period
T frames to enable stream-switching at DSC frame bound-
ary. More specifically, each DSC frameW q

nT of instantnT ,
n ∈ Z+ andq ∈ {HQ,MQ}, is encoded with two predictor
P-frames of previous instantnT − 1 from the two streams,
P

HQ
nT−1 and PMQ

nT−1. The reconstruction property of DSC
frame guarantees thatW q

nT can be correctly decoded ifany
oneof the predictor frames is available at decoder buffer as
side information. Thus, a client can switch fromPHQ

nT−1 in

HQ stream orPMQ
nT−1 in MQ stream toW q

nT in q stream at
DSC boundarynT .

3.3. Identification of Saliency Object
We now describe how ROI is determined in MQ stream for
pre-encoding in HQ. First, per-pixel visual saliency map for
each video frame is computed using methodology in [4].
Saliency values of a spatial region roughly correspond to the
amount of visual attention the region is likely to attract from
viewers. Having computed visual saliency maps, we first
normalize each one, so that the sum of saliency values in
each map equals to1. Then, spatially connected pixels with
saliency value larger than a saliency thresholdτ are grouped
together as asaliency object. See Fig. 2 for examples of
saliency objects in video frames. Saliency objects are en-
coded in HQ, as described earlier.

Fig. 2. Saliency objects in video frames, and how correspon-
dence among them are found using motion estimation.

3.4. Temporal Correspondence of Saliency Objects
Having identified saliency objects in each frame, we can es-
tablish correspondence among saliency objects in consecu-
tive frames using motion estimation (ME), commonly used in
video coding standards like H.263 [10]. In details, for each
n× n target blockin a saliency objectot+1,i in framet + 1,
we find the most similarpredictor blockin framet, i.e., the
block in framet with corresponding RGB pixel values most
similar to target block in framet + 1. If a sufficiently large
fraction of target blocks ofot+1,i in framet+1 map to blocks
of the same objectot,i′ in framet, then we declare they are

the same object. If no such object exists in previous mapt,
then we declare objectot+1,i to be a new object appearing for
the first time in mapt + 1. As an example, in Fig. 2, we see
that a block in object1 in framet + 1 has found a matching
block in object1 in framet.

3.5. QP Selection for MQ Encoding
Obviously, the coarser the QP used for encoding of spa-
tial regions outside saliency objects (non-salient regions), the
smaller the streaming rate. However, if non-salient regions
are encoded using an overly coarse QP, then the resulting cod-
ing artifacts could potentially draw unnecessary visual atten-
tion, which is not desirable. To avoid this, we select the QPs
for salient and non-salient regions in MQ stream as follows.
QP for saliency objects in MQ stream and all spatial regions in
HQ stream is first selected based on visual quality required for
the given streaming application. Then, QP for the non-salient
spatial regions in MQ stream is selected to be the coarsest
possible, such that the difference between the visual saliency
maps of frames in HQ stream and of frames in MQ stream, as
measured by Kullback-Leibler (KL) divergence, remains no
larger than a pre-defined thresholdψ. This ensures that the
visual salient objects in the original frames are still the most
salient regions, even after unequal quantization.

4. DUAL-STREAM CODING OPTIMIZATION

We are now ready to formulate our optimizations: i) how
MQ stream is optimized during coding, and ii) how optimal
stream-switching decision can be made at stream time with
the benefit of real-time collected gaze data.

4.1. Hidden Markov Model for Gaze Movement
We first briefly discuss a simplified version of a previously
proposed HMM [3] for viewer’s temporal gaze movement
during a video streaming session. The simplified HMM has
two latent states: fixation, and saccade. StateF (fixation)
models the case when eye gaze is fixated at an object. State
S (saccade) models the case where gaze rapidly moves from
one fixation point to another. An HMM is Markovian in that
the determination of state variableXn+1 at timen + 1 (F or
S) depends solely on the value ofXn of previous timen. In
particular, givenXn = i, the probability ofXn+1 = j is rep-
resented bystate transition probabilityαij of switching from
statei to j. We assume that the speed at which a viewer’s gaze
moves from one object of interest to another is slower than the
sampling rate of the gaze data (hence he must enter saccade
state first before entering in fixation state again for observa-
tion of the new object). Our previous empirical results [3]
showed this is approximately true.

Assuming stationar gaze movement statistics in a short
video sequence,αi,j ’s can be estimated using either collected
eye gaze traces of test subjects [3], or off-line analysis ofthe
video frames’ saliency maps [11]. See [3] and [11] for details.



4.2. Saccade & Non-salient Observation Probabilities
Using the HMM, we can derive thenon-salient observation
probabilityet: the probability that a viewer will observe spa-
tial regions different from the designated saliency objects in
framet during normal video playback.et’s are crucial in de-
riving the failure probabilityρ: the probability that a viewer
will observe LQ spatial regions using our dual-stream system.

Let pt,i be thesaliency object probabilityof a viewer ob-
serving a saliency objectot,i, in framet. pt,i can be computed
simply as the sum of the per-pixel normalized saliency values
within the saliency area. Letst be thesaccade probability
that a viewer is switching from one object of interest to an-
other (in saccade state) in framet. st andet are unknown for
each framet. To find these unknowns, we first derive two sets
of equations in consecutive frames.

4.2.1. Total Probability Equations
First, we know that for each framet, the sum of saliency
object probabilitiespt,i’s, saccade probabilityst, and non-
salient observation probabilityet equals to one due to the total
probability theorem:

∑

i

pt,i + st + et = 1 (1)

(1) obviously holds true for probabilities in any frame.

4.2.2. Consistency Equations
We can write consistency equations for consecutive frames
given the constructed HMM with estimatedαi,j ’s. Assume
first that there are no new saliency objects in framet+1; i.e.,
each objectot+1,i in framet + 1 has a corresponding object
ot,i′ in framet. By the HMM, probabilitypt+1,i is the the sum
of: i) saliency object probabilitypt,i′ that a viewer watched
objectot,i′ in framet multiplied by probabilityαFF that the
viewer stays in the same objectot+1,i in framet + 1, and ii)
saccade probabilityst that a viewer was in transition in frame
t and switches to objectot+1,i in framet+ 1:

pt+1,i = αFF pt,i′ + αSF st

(

pt+1,i
∑

j pt+1,j + et+1

)

(2)

Note that in (2), there is a scaling factor in the second
term, indicating that only a proportional fraction of the sac-
cade transition probabilityαSF st will enter objectot+1,i.
(2) holds true for all saliency object probabilitiespt+1,i’s in
frame t + 1, as well as non-salient observation probability
et+1. For saccade probabilityst+1, we can write it as a sim-
ple sum of: i) saccade probabilityst in framet multiplied by
the probability that the viewer stays in saccade state, and ii)
the probability that a viewer first enters into saccade stateat
framet+ 1:

st+1 = αSS st + αFS





∑

j

pt,j + et



 (3)

If frame t+ 1 hask saliency objects, then we havek + 2
consistency equations for consecutive framet andt+ 1. To-
gether with the two total probability equations for two frames,
we have a total ofk + 4 equations. However, we only have
4 unknowns:st, et, st+1 andet. Hence in general, we have
more equations than unknowns3, and equations are not linear
in unknown variables. To resolve this in a computationally
efficient manner, we first identify the objectot+1,i with the
largest saliency object probabilitypt+1,i, and solve forst in
(2) assuminget+1 is 0. Given (1),et can then be computed.
Finally, having computedst andet, st+1 can then be com-
puted using (3).

4.3. Dual-Stream Coding Optimization
We now describe how MQ stream coding is optimized. As-
suming server switches from MQ to HQ stream when a
viewer’s gaze travels outside high-saliency regions (and vice
versa), the objective is to minimize expected streaming rate
while keeping the failure probabilityρ below an application-
specific valueǫ. There are two degrees of freedom in the op-
timization: i) saliency thresholdτ used to define saliency ob-
jects in each framet (as described in Section 3.3), and ii) DSC
frame insertion periodT .

4.3.1. Objective Function for MQ Stream Optimization
Given computed saccade and non-salient observation prob-
abilities for each framet as discussed in Section 4.2, the ex-
pected streaming rateR can be written simply. Let|F q

t | be the
size of frameF q

t of quality q and instantt. R is the sum of
sizes ofN(T ) segments, where each segmentn of T frames
(starts with a DSC frame) is HQ if viewer’s gaze is outside
high-salient regions with probabilitysnT +enT , and MQ oth-
erwise:

R =

N(T)
∑

n=1

[

(snT + enT )

T−1
∑

k=0

|FHQ
nT+k| + (1 − snT − enT )

T−1
∑

k=0

|FMQ
nT+k(τ)|

]

(4)

where each frameFMQ
t (τ) in MQ stream depends on saliency

thresholdτ . Largeτ means designated saliency objects are
smaller, hence fewer pixels require HQ encoding and the re-
sulting frameFMQ

t (τ) is smaller.

4.3.2. Failure Probability Constraint
We now compute failure probabilityρ. Failure happens if a
viewer is observing a saliency objectonT,i at the DSC frame
nT with probabilitypnT,i, but drifts to a low-salient regionaf-
ter going through at least one saccade state in an intermediate
frame. See Fig. 3 for an illustration. Note thatρ is not sim-
ply the average of non-salient observation probabilitieset’s,
since here we are computingρ assuming the viewer watches a
saliency object in framenT , while et’s are computed uncon-
ditionally.

Nevertheless, we can derive the probabilities that a viewer
is observing a saliency object, is in saccade, or is observing

3This is due to our assumption of stationarity of gaze statistics (roughly
true for short video sequence), resulting in fixedαi,j ’s for all frames.



Fig. 3. Example where viewer observes LQ spatial region at
framenT + 2.

a low-saliency region, (PnT+k, SnT+k andEnT+k respec-
tively) similar to our consistency equations in Section 4.2.2.
At the DSC framenT , we have initial condition:PnT = 1,
SnT = EnT = 0. Probabilities of subsequent framesnT +k,
k = {1, . . . , T }, can be derived recursively:

PnT+k+1 = αFFPnT+k + αSFSnT+k

(

∑

i
pnT+k+1,i

∑

i
pnTk+1,i + enT+k+1

)

EnT+k+1 = αFFEnT+k + αSFSnT+k

(

enT+k+1
∑

i
pnTk+1,i + enT+k+1

)

SnT+k+1 = αSS SnT+k + αFS (PnT+k + EnT+k) (5)

ρ is then just the average ofEnT+k ’s for all k andn:

ρ =
1

N(T )

N(T )
∑

n=1

1

T

T
∑

k=1

EnT+k (6)

4.3.3. Optimization Procedure

To minimizeR while keepingρ < ǫ, we perform a greedy
search: starting with the smallest saliency thresholdτ and
DSC insertion periodT possible, we iteratively attempt to in-
crease each one until the constraintρ < ǫ can no longer be
maintained.

5. REAL-TIME STREAM-SWITCHING
OPTIMIZATION

During actual streaming, the viewer’s eye gaze is tracked real-
time by a normal web camera. The gaze data allow us to
make intelligent stream-switching decisions as follows. At
the DSC frame boundaryt = nT , we know the viewer is
observing a particular saliency objectonT,i with certainty
(if viewer’s gaze point is outside saliency objects, we trans-
mit HQ stream). Thus, using initial conditionpnT,i = 1,
pnT,j = snT = enT = 0, ∀j 6= i, we can compute saliency
object, saccade and non-salient observation probabilities for
future frames using recursive equations similar to (5). Fail-
ure probabilityρ until the next DSC frame can be computed
similar to (6). Server will hence switch to MQ stream only if
computedρ < ǫ.

6. EXPERIMENTATION

6.1. Experimental Setup

To demonstrate the effectiveness of our proposed system, we
used two300-frame HD video test sequences,park joy and

town scene, at resolution1280×720. Both videos have 30
frames per second (fps) playback speed. For simplicity, DSC-
frame insertion period was fixed atT = 5, which from em-
pirical evidence achieved a good tradeoff between streaming
rate and the probability of observing LQ. HQ stream was en-
coded with quantization parameter (QP) set at10, while MQ
stream has low-saliency region encoded at a coarser (larger)
QP value (QP2) to be discussed later. A LQ stream was en-
coded at fixed QP with roughly the same bitrate as the com-
peting scheme.

The experiments were conducted with a standard web
camera running free eye-tracking software [7] in a quiet room
with 20 subjects (12 males and 8 females, and of age between
21 and 40). All participants had normal or corrected to nor-
mal vision. A 24-inch Dell monitor with the native resolution
1920×1200was used, with brightness and contrast set to 30%
and 50%. The sequences were displayed in their original reso-
lution, whose actual height on the screen was 196 millimeters.
Each subject sat at a station facing a monitor with a fixed dis-
tance55cm, and was asked to hold his/her head motionless.

In each trial, a subject was shown two videos back-to-
back (with 3 seconds break in-between) at center of the
screen. Each video lasted for 10 seconds as recommended
by ITU-R BT.500 [12]. After these presentations, subject was
asked to indicate which of the two videos looks better (Firstor
Second). Each subject was familiarized with the task before
the start of experiment with a short instruction. Two random
combinations of two from HQ, MQ and LQ, using 4 different
QP2 for low-saliency region of MQ stream and equal quan-
tization parameter for encoding of LQ stream, gave a total of
3× 4× 2 = 24 pairs. Then, a Two Alternative Forced Choice
method [13] was used to compare subjective video quality.

6.2. Experimental Results

During video playback, the viewer’s gaze points were tracked
and sent to server. The server then performed optimal stream-
switching decisions at DSC frame boundaries. Fig. 4 shows
example traces of how the system switched between HQ and
MQ streams (red) as function of time. Also shown are bi-
trates if HQ streams were used at all frames (blue). It is ob-
served that the performance is correlated with the character-
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QP2 KL div. MQ : HQ MQ : LQ HQ : LQ
12 1.09E-08 23:17 35:5 33:7

(0.343) (2.1E-06) (3.94E-05)
15 1.90E-08 17:23 38:2 40:0

(0.343) (1.25E-08) (2.54E-10)
20 2.36E-08 17:23 38:2 39:1

(0.343) (1.25E-08) (1.87E-09)
25 3.08E-08 11:29 38:2 38:2

(0.0044) (1.25E-08) (1.25E-08)

Table 1. Number of viewer who prefer the schemes HQ, MQ
and LQ, with correspondingp-value shown in parenthesis.

istics of test sequences:park joy contains higher motion
thantown scene.

The subjective testing results are given in Table 1, where
we indicate the number of responses showing preference for
HQ, MQ and LQ at differentQP2 values. We used the two-
sided chi-square test [14] to examine the statistical signifi-
cance of the results. The null hypothesis is that there is no
preference for either two of HQ, MQ and LQ. Under this hy-
pothesis, the expected number of votes is 20 for each method.
Thep-value [14] is also indicated in the table. In experimen-
tal sciences, as a rule of thumb, the null hypothesis is rejected
whenp < 0.05. When this happens in Table 1, it means that
the two methods cannot be considered to have the same sub-
jective quality, since one of them has obtained a statistically
significantly higher number of votes.

As seen in Table 1, the subjects showed a statistically sig-
nificant preference for our proposed MQ method and HQ over
LQ, as thep-value is much smaller than 0.05 for all choices
of QP2. Furthermore, for a wide range ofQP2 between 12
and 20, the difference between our proposed method and HQ
are statistically insignificant, withp-value significantly above
0.05. While more subjects prefer HQ atQP2 of 15 and 20,
it should be noted that an equal number prefer MQ over HQ
atQP2 of 12. This further indicates that such difference are
not statistically significant. WhenQP2 is increased to 25,
the subjects show clear preference of HQ over MQ. The cor-
responding KL divergence is 3.08E-08. It is a subject of fur-
ther study of whether KL divergenceψ = 3.0E-08 will ensure
similar visual quality across sequences.

QP outside ROI park joy town scene
QP2=12 20.41% 24.08%
QP2=15 31.58% 31.10%
QP2=20 44.14% 44.78%
QP2=25 55.95% 59.10%

Table 2. Average bitrate reduction of MQ over HQ /10 times.

Table 2 shows the average bitrate reduction achieved by
different values ofQP2. Over the large range ofQP2 be-
tween 12 and 25, meaningful bitrate savings between 20%
and 60% can be obtained. In particular, atQP2 of 20, savings

of above 44% is realized without loss of visual quality that is
statistically significant.

7. CONCLUSION

By only encoding spatial regions containing viewer’s focal
points of visual attention in high quality (HQ), ROI-based
video streaming can reduce transmission rate without degrad-
ing perceived video quality. Unlike previous ROI-based sys-
tems that require real-time encoding, we present a system
that switches between two pre-encoded streams based on real-
time tracked gaze data. Streams are pre-encoded to minimize
streaming rate while satisfying an application-specific quality
requirement. Stream-switching decision is optimized based
on tracked gaze data and real-time updated observation prob-
abilities. Experiments using our constructed real-time stream-
ing system show that bitrate can be reduced by up to44%with
test subjects noticing very little visual degradation.
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