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ABSTRACT stream high-definition video to be consumed on large display

The ability of a person to perceive image details falls preis both a curse and a blessing from an engineering perspectiv
cipitously with larger angle away from his visual focus. At ~ While high-definition streaming generally entails higher
any given bitrate, perceived visual quality can be imprdwed transmission cost, the use of large displays on both comput-
employing region-of-interest (ROI) coding, where higher e €rs and televisions means that a viewer cannot simultafyeous
coding quality is judiciously applied only to regions cldse ~Pay attention to all details being displayed. This is cdesis

a viewer's focal point. Straight-forward matching of vievge with known observation that human’s ability to perceive im-
focal point with ROI coding using a live encoder, however,age details falls precipitously as function of the viewimgle

is computation-intensive. In this paper, we propose a Byste away from his focal point of visual attention [1]. Therefpre
that supports ROI coding without the need of a live encode@ne effective method to reduce transmission rate when view-
The system is based on dynamic switching between two prd2d contenton large displays is to employ a Region-of-keser
encoded streams of the same content: one at high qualiffOl)-based approach [2, 3]. Specifically, if one can track
(HQ), and the other at mixed quality (MQ), where quality of & viewer’s attention focal point in real-time, the serven ca

a spatial region depends on its pre-computed visual sglien€ncode a suitably sized spatial region (ROI) of the stream-
values. Distributed source coding (DSC) frames are periodind video containing the viewer's focal point in high qual-
cally inserted to facilitate switching. Using a Hidden Mavk ity (HQ), and encode the other regions in low quality (EQ)
Model (HMM) to model a viewer’s temporal gaze movement,However, there are two factors that can limit the practigali
MQ stream is pre-encoded based on ROI coding to minimiz€f such systems. First is the need of a computationally expen
the expected streaming rate, while keeping the probaloifity sive live encoder for each viewer. Second is the need to react
a viewer observing low quality (LQ) spatial regions below anPromptly to changes in visual focus with high probability.
application-specific. At stream time, the viewer's gaze lo-  In this paper, we propose a new ROI-based video stream-
cations are collected and transmitted to server for infeit ~ iNg System that does not require real-time encoding, ykt sti
stream switching. In particular, server employs MQ streani€aps the benefit of bitrate reduction with low probabilify o
only if: i) viewer's tracked gaze location falls inside thigh-  Visual quality degradation. We first pre-encode two bitstne
saliency regions, and ii) the probability that a viewersga representing the same video contaiptriori. The first stream,
point will soon move outside high-saliency regions, coneput  calledHQ stream is encoded in HQ for entire video frames.
using tracked gaze data and updated saliency values, is beld he second stream, calledixed quality (MQ) streapis en-

e. Experiments showed that video streaming rate can be réoded in two different qualities: spatial regions wehlient
duced by up tal4%, and subjective quality is noticeably bet- objects(contiguous areas with per-pixel saliency values, pre-

ter than a competing scheme at the same rate where the enti@mputed using a visual saliency model like [4], above a cho-
video is encoded using equal quantization. sen threshold) are encoded in HQ, while other regions are

i ) ) encoded in LQ. In addition, to be discussed further in Sec-
Index Terms— Region-of-Interest encoding, Vvideo yjon 3 2, pistributed Source Coding (DSC) frames [5] are pe-
streaming, visual saliency riodically inserted into both streams to facilitate switihbe-
tween the streams. Assume first that the server will switch
from MQ to HQ stream at the next DSC frame boundary if
High-definition video is already a part of people’s every-viewer's gaze location falls outside the high-saliencyioeg
day life, from television to casual video captured in mobile(and vice versa). Using a Hidden Markov Model (HMM) [3]
phones. Similarly, streaming content for both live source$o model a viewer's temporal gaze movement, MQ is pre-
such as Skype and stored sources such as Netflix are mcreaa-lspaﬁaI regions outside ROI cannot be encoded using oveslse quan-

ir!gly moving towards high'dEﬁnition and C(_)nsumeq on largetization parameter (QP), so that the resulting codingaatsf draw unneces-
displays to keep up with user’s expectation. This need t®ary visual attention. We discuss selection of QPs in Se@tb.

1. INTRODUCTION




encoded to minimize the expected streaming rate, while-keepf bottom-up visual attention. This model offers good per-
ing the probability of a viewer observing a LQ region to belowformance with reasonable computational cost. An existing
an application-specifie. implementation of the model is also available online.

To achieve timely response to gaze movement, we employ In our previous work [3], we have designed a HMM to
a runtime gaze tracker at client with an eye-gaze predictiopredict viewer's future gaze locations based on recent col-
algorithm at the server. While it is not possible to guarante lected gaze data for real-time ROIl-based video coding &
that gaze prediction is always correct, prediction fadusee  streaming over networks with non-negligible delay. While
generally less noticeable. This is because predictionrissl  using a similar HMM, our current work addresses a differ-
usually take place during gaze redirection (cabadcadeén  ent problem: how real-time video encoding can be avoided
the literature), where it is known that human’s ability tape altogether while still reaping the benefit of reduced rate in
ceive details is decreased [6]. The probability of obseyvin gaze-driven video streaming.
LQ regions due to switching delay associated with periodic
insertion of DSC frames is hence contained in real-time as 3. SYSTEM DESCRIPTION

follows. The server updates the observation probabildies \ye first overview our proposed gaze-driven video streaming
saliency objects at DSC frame boundatigiven the real-time system. We then describe the dual-stream frame structure

tracked gaze points, in order to recursively update prdbabi ;o for stream-switching, and discuss how saliency abject
ties of gaze evolution into future frames. The server ch®0se, ¢ identified using visual saliency maps.

the MQ stream only if: i) viewer’s latest tracked gaze locati
falls inside the high-saliency regions, and ii) the probgbi  3.1. Streaming System Overview
that a viewer's gaze moves and observes low-saliency regiofyy proposed store-and-playback video streaming system
before the next DSC boundary, calculated using updated O*émploys two pre-encoded video streams with the same con-
ject observation probabilities, is belaw tent in different qualities: HQ stream has all spatial regio
Leveraging available software components for gaze trackancoded in HQ, while MQ stream only has visually salient
ing [7] and video encoding and streaming [8], we have builtegions encoded in HQ. DSC frames are inserted periodi-
an operational video streaming system prototype thataslle cajly everyT frames to facilitate stream-switching depend-
gaze data at 30Hz using a web camera and correspondinglyy on real-time tracked gaze locations. The system essen-
makes intelligent stream-switching decisions during terin  tjally switches to HQ stream when a viewer's gaze travels out
rupted video streaming. Experiments show that video streamjde visually salient regions, and switches back to MQ strea
ing rate can be decreased by upitt¥; using our proposed \yhen the server is confident that the viewer’s gaze will remai
system, and through an extensive subjective test thatiewol jn visually salient regions in the foreseeable future.
20 human participants, we conclude with statistical confi- |, theory, it is possible to s& small enough so thakero
dence that the quality of our system is noticeably bettartha \;isal degradation is observed. This is because when human
competing scheme at the same streaming rate where the entyjgze shifts from one object of interest to another—a move-
video is encoded using equal quantization. ~ ment calledsaccade—the observer cannot perceive visual de-
The outline of the paper is as follows. We first overviewtajis yntil his vision has settled on the new object [6]. Heifc
related work in Section 2. We then discuss our system modef js small enough that the server can switch from MQ stream
in Section 3. We discuss how system parameters can be oy HQ stream before saccade has completed, the observer will
timized and how optimal stream-switching decision can bealways perceive HQ. Doing so would require a very sriall
made in Section 4 and 5. Finally, experimental results angjgwever, which is not practical given the non-negligiblev
conclusions are provided in Section 6 and 7, respectively. head of encoding stream-switching DSC frames. Hence, we
> RELATED WORK take the alternative approach of limiting the probabilitpb-

the last decades [4, 9], with numerous computational models

proposed to identify spatial locations that attract thegame. s ouaiiy

Most models compute a saliency map that values each pi-l <~~

according to its visual saliency. Our goal here is not to pro- A

tion of gaze location to estimate viewer’s temporal eye rove

ments in future frames. In this paper, we compute saliency B . o .
maps using methodology in [4] based on a plausible moddtig. 1. Proposed frame structure in gaze-driven video streaming
system. |-, P-, and DSC frames are denoted as circles, suare

serving LQ regions to be below an application-specific-
Research in visual attention modeling has been very active istead.
@
. 4 . Mixed Quality E
pose new models of visual saliency maps, but to use saller-l— m
. . . - . . LN S
maps of video frames as per-pixel prior probability distrib I o L] .
2A saliency map for a video frame can be interpreted as prétyadis- diamonds, respectively. DSC frames are inserted eVerames.

tribution function (PDF) of a viewer's per-pixel visual atition.




3.2. Dual-quality Frame Structure the same object. If no such object exists in previous map
We now describe the frame structure used to facilitate perithen we declare objeot ; ; to be a new object appearing for
odic switching between two pre-encoded bitstreams, shown ithe first time in mag + 1. As an example, in Fig. 2, we see
Fig. 1. HQ stream is encoded in HQ for entire video framesthat a block in object in framet + 1 has found a matching

MQ stream is encoded in two quality: spatial regions withblock in objectl in framet.

per-pixel visual saliency values above a saliency threshol

(ROI) are encoded in HQ, while the other regions are encodegl 5 QP Selection for MQ Encoding

in LQ. Frames in each stream are encoded in IPPP strugs, . .
ture, with DSC frames [5] periodically inserted with period (bbwously, the coarser the QP used for encoding of spa-

T frames to enable stream-switching at DSC frame bounolt-Ial regions outside saliency objects (non-salient regjiptne

. orsspcicly.each DSC e o s 720 € SUEAmIg e Hoveven,fron st emon
n € ZT andg € {HQ,MQ}, is encoded with two predictor 9 Y ' 9

P-frames of previous instantl” — 1 from the two streams ‘T‘g artifgcts_ could pot_entially draw unnecessary visuerat
PHQ and PMQ | The reconstruction property of DSE: tion, vv_h|ch is not deswgble. To_ av0|_d this, we select the QPs
fr:';:rpn_e1 guaranggé th&t’?,. can be correctly decoded any for sallent. and non-sall_ent regions in MQ stream as fO.IIOW.S'
oneof the predictor fra?nTes is available at decoder buffer aQP forsahe.ncy objects in MQ stream qnd all qu‘ual regions|

. i : . o - %Q stream is first selected based on visual quality requoed f
side information. Thus, a client can switch froRJ'? | in

MO ¢ the given streaming application. Then, QP for the non-stlie
HQ stream orP,~ , in MQ stream toW,- in ¢ stream at  gpagia| regions in MQ stream is selected to be the coarsest

DSC boundary: T possible, such that the difference between the visualrsajie
3.3. Identification of Saliency Object maps of frames in HQ stream and of frames in MQ stream, as

We now describe how ROI is determined in MQ stream formeasured by Kullback-Leibler (KL) divergence, remains no
pre-encoding in HQ. First, per-pixel visual saliency map fo larger than a pre-defined threshald This ensures that the
each video frame is computed using methodology in [4]y|sual salient objects in the original frames are still thesin
Saliency values of a spatial region roughly correspondéo thsalient regions, even after unequal quantization.
amount of visual attention the region is likely to attractrfr
viewers. Having computed visual saliency maps, we first 4, DUAL-STREAM CODING OPTIMIZATION
normalize each one, so that the sum of saliency values i\r)v q ; | imizations: 1 h
each map equals tb Then, spatially connected pixels with ¢ are now ready .to ormu ate our opt|m|z_§1t|ons. ) fow
saliency value larger than a saliency thresholtte grouped MQ stream is optimized during coding, and ii) how optimal
together as aaliency object See Fig. 2 for examples of stream-switching decision can be made at stream time with
saliency objects in video frames. Saliency objects are ent-he benefit of real-time collected gaze data.
coded in HQ, as described earlier.

Frame ¢ Frame t41 4.1. Hidden Markov Model for Gaze Movement

e — — We first briefly discuss a simplified version of a previously

T 7 proposed HMM [3] for viewer’s temporal gaze movement
Sal.Obj1 Sal.Obj1 during a video streaming session. The simplified HMM has

two latent states: fixation, and saccade. Statixation)
o - » models the case when eye gaze is fixated at an object. State
sal.0bj Sal.Obj2 .
- ' 54063 S (saccadgmodels the case where gaze rapidly moves from

one fixation point to another. An HMM is Markovian in that
Fig. 2. Saliency objects in video frames, and how corresponthe determination of state variahlg, ., at timen + 1 (F or

dence among them are found using motion estimation. S) depends solely on the value &f, of previous timen. In
] ) particular, givenX,, = i, the probability ofX,,,; = j is rep-
3.4. Temporal Correspondence of Saliency Objects resented bytate transition probabilityy;; of switching from

Having identified saliency objects in each frame, we can essiate; to j. We assume that the speed at which a viewer's gaze
tablish correspondence among saliency objects in conseClgyes from one object of interest to another is slower than th
tive frames using motion estimation (ME), commonly used inggmpjing rate of the gaze data (hence he must enter saccade
video coding standards like H.263 [10]. In details, for eachyiate first before entering in fixation state again for observ

n x n target blockin a saliency object; 1 ; inframet + 1, tion of the new object). Our previous empirical results [3]
we find the most similapredictor blockin framet, i.e., the  ghowed this is approximately true.

block in framet with corresponding RGB pixel values most
similar to target block in frameé + 1. If a sufficiently large
fraction of target blocks af; 1 ; in framet+ 1 map to blocks
of the same objeat; ;- in framet, then we declare they are

Assuming stationar gaze movement statistics in a short
video sequencey; ;'s can be estimated using either collected
eye gaze traces of test subjects [3], or off-line analysthef
video frames’ saliency maps [11]. See [3] and [11] for detalil



4.2. Saccade & Non-salient Observation Probabilities If framet + 1 hask saliency objects, then we haket 2
Using the HMM, we can derive theon-salient observation consistency equations for consecutive franaad¢ + 1. To-
probability e;: the probability that a viewer will observe spa- gether with the two total probability equations for two frasn
tial regions different from the designated saliency olgjgést we have a total ok + 4 equations. However, we only have
framet during normal video playbacl,’s are crucial in de- 4 unknowns:s;, e;, s;+1 ande;. Hence in general, we have
riving the failure probability p: the probability that a viewer more equations than unknowhand equations are not linear
will observe LQ spatial regions using our dual-stream syste in unknown variables. To resolve this in a computationally
Let p; ; be thesaliency object probabilitpf a viewer ob-  efficient manner, we first identify the objeat,; ; with the
serving a saliency objeet ;, in framet. p; ; can be computed largest saliency object probabilipy.,1,;, and solve fors; in
simply as the sum of the per-pixel normalized saliency value(2) assuming:;, 1 is 0. Given (1).e; can then be computed.
within the saliency area. Let; be thesaccade probability Finally, having computed; ande;, s;;1 can then be com-
that a viewer is switching from one object of interest to an-puted using (3).
other (in saccade state) in frames;, ande; are unknown for
each frame. To find these unknowns, we first derive two sets,
of equations in consecutive frames.

4.3. Dual-Stream Coding Optimization

We now describe how MQ stream coding is optimized. As-
suming server switches from MQ to HQ stream when a
4.2.1. Total Probability Equations viewer’s gaze travels outside high-saliency regions (do€ v
versa), the objective is to minimize expected streaming rat
while keeping the failure probability below an application-
specific value.. There are two degrees of freedom in the op-
timization: i) saliency threshold used to define saliency ob-
jects in each frame(as described in Section 3.3), and i) DSC

First, we know that for each framg the sum of saliency
object probabilitieg, ;'s, saccade probability;, and non-
salient observation probability equals to one due to the total
probability theorem:

Zpt it side =1 (1) frame insertion period’.
i 4.3.1. Objective Function for MQ Stream Optimization
(1) obviously holds true for probabilities in any frame. Given computed saccade and non-salient observation prob-
abilities for each frame as discussed in Section 4.2, the ex-
4.2.2. Consistency Equations pected streaming rafeé can be written simply. Let| be the

We can write consistency equations for consecutive framesize of frameF! of quality ¢ and instant. R is the sum of
given the constructed HMM with estimated ;'s. Assume sizes ofN(T') segments, where each segmentf 7" frames
first that there are no new saliency objects in framel;i.e., (starts with a DSC frame) is HQ if viewer's gaze is outside
each objecb,, 1 ; in framet 4 1 has a corresponding object high-salient regions with probabilit, + e,,7, and MQ oth-
ot» in framet. By the HMM, probabilityp,; ; is the the sum  erwise:
of: i) saliency object probability, ;, that a viewer watched

. . . ’ - N(T) T-1 T-1
objecto; ;+ in framet multiplied by probabilityarr thatthe g _ S Gnr +ent) STIFS bl + (1= sur — enr) S 1Y, (7))
viewer stays in the same objest, ; ; in framet + 1, and ii) n=1 k=0 k=0
saccade probability; that a viewer was in transition in frame
t and switches to objeet.; ; in framet + 1:

4
where each framEtMQ(r) in MQ stream depends on saliency
thresholdr. Larger means designated saliency objects are
smaller, hence fewer pixels require HQ encoding and the re-
Pi+1,i ) (2) sulting frameF"?(7) is smaller.

Zj Py e 4.3.2. Failure Probability Constraint

Note that in (2), there is a scaling factor in the second/V& now compute failure probability. Failure happens if a
term, indicating that only a proportional fraction of theesa Viewer is observing a saliency objegtr; at the DSC frame
cade transition probabilitysy s, will enter objecto,.; ;. "1 With probabilityp,r ;, butdrifts to a low-salient regicaf-
(2) holds true for all saliency object probabilities,; ;'s in ~ {€rgoing through at least one saccade state in an intermediate
framet + 1, as well as non-salient observation probabilityframe. See Fig. 3 for an illustration. Note thais not sim-
er41. For saccade probability,,;, we can write it as a sim- Ply the average of non-salient observation probabilitics,
ple sum of: i) saccade probability in framet multiplied by ~ Since here we are computipgissuming the viewer watches a
the probability that the viewer stays in saccade state, nd iS@liency objectin frameT’, while e,’s are computed uncon-

the probability that a viewer first enters into saccade state ditionally. . o .
framet + 1: Nevertheless, we can derive the probabilities that a viewer

is observing a saliency object, is in saccade, or is obsgrvin

DPi+1, = QFF Ptir + QSF St <

St+1 = @ss St + s Zpt,j + e (3) 3This is due to our assumption of stationarity of gaze stesigroughly
j true for short video sequence), resulting in fixed;’s for all frames.



t own_scene, at resolution 280 x 720. Both videos have 30
frames per second (fps) playback speed. For simplicity, DSC
frame insertion period was fixed @&t = 5, which from em-
P pirical evidence achieved a good tradeoff between stregmin
rate and the probability of observing LQ. HQ stream was en-
coded with quantization parameter (QP) set@twhile MQ
tream has low-saliency region encoded at a coarser (Jarger
P value @ P.) to be discussed later. A LQ stream was en-
coded at fixed QP with roughly the same bitrate as the com-

a low-saliency region, B, 1%, Snrix and E,r respec- Peting scheme. _
tively) similar to our consistency equations in Section.2.2 The experiments were conducted with a standard web

At the DSC framenT', we have initial condition:?, = 1, ~ camerarunning free eye-tracking software [7] in a quietmoo
S,r = E,r = 0. Probabilities of subsequent frameg + £,  With 20 subjects (12 males and 8 females, and of age between

k={1,...,T}, can be derived recursively: 21 and 40). All participants had normal or corrected to nor-
mal vision. A 24-inch Dell monitor with the native resolutio

Fig. 3. Example where viewer observes LQ spatial region a
framenT + 2.

Por  rrPorer 4 asrS ( Ptk ) 1920 x 1200 was used, with brightness and contrast set to 30%
nT+k+1 FFEnT4+k T ASFOnT+k ) i ) L.
2 Pyt +enTikg and 50%. The sequences were displayed in their original reso
5 _ ( enT4h+1 ) lution, whose actual height on the screen was 196 millinseter
nTHk+1 = QFFEprik +aspSarik . . . . . . .
2 PTy+1i + enT4rt Each subject sat at a station facing a monitor with a fixed dis-
Sprikt1 = ass Sarik +ars (Paryk + Enrik) () tances5cm, and was asked to hold his/her head motionless.

In each trial, a subject was shown two videos back-to-

pis then just the average &,r's for all k andn: back (with 3 seconds break in-between) at center of the

1 N(T) 1 I screen. Each video lasted for 10 seconds as recommended
=N > T > Enrik (6) byITU-RBT.500[12]. After these presentations, subjecswa
n=l = k=1 asked to indicate which of the two videos looks better (First

Second). Each subject was familiarized with the task before
4.3.3. Optimization Procedure the start of experiment with a short instruction. Two random
combinations of two from HQ, MQ and LQ, using 4 different
Q P, for low-saliency region of MQ stream and equal quan-
tization parameter for encoding of LQ stream, gave a total of
3 x 4 x 2 = 24 pairs. Then, a Two Alternative Forced Choice
method [13] was used to compare subjective video quality.

To minimize R while keepingp < ¢, we perform a greedy
search: starting with the smallest saliency thresholaind
DSC insertion period” possible, we iteratively attempt to in-
crease each one until the constrgink ¢ can no longer be
maintained.

5. REAL-TIME STREAM-SWITCHING 6.2. Experimental Results

OPTIMIZATION During video playback, the viewer’s gaze points were trdcke

During actual streaming, the viewer's eye gaze is trackald re and sent to server. The server then performed optimal stream
time by a normal web camera. The gaze data allow us tewitching decisions at DSC frame boundaries. Fig. 4 shows
make intelligent stream-switching decisions as followst A example traces of how the system switched between HQ and
the DSC frame boundary = nT, we know the viewer is MQ streams (red) as function of time. Also shown are bi-
observing a particular saliency objeetr; with certainty trates if HQ streams were used at all frames (blue). It is ob-
(if viewer's gaze point is outside saliency objects, we $ran served that the performance is correlated with the characte
mit HQ stream). Thus, using initial condition,r; = 1,

DPnT; = SnT = enr = 0,Vj # i, we can compute saliency ss*2° e :
objejct, saccade and non-salient observation probabifitie 5 - KO rameste e of ot )
future frames using recursive equations similar to (5).I-Fa 5,5 ' ;
ure probabilityp until the next DSC frame can be compute £
similar to (6). Server will hence switch to MQ stream only i
computed < e.

s frame size for PARK_JOY M 10Aframe size for TOWN_SCENE
9

4
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frame size/bit
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6. EXPERIMENTATION 2t e e wo B we b & i 150. 200 250 300

frame number frame number
6.1. Experimental Setup (a) trace fopar k_j oy (b) trace fort own_scene

To demonstrate the effectiveness of our proposed system, Wed. 4. Frame size versus frame number for two video se-
used twaB00-frame HD video test sequencesir k_j oy and ~ quences whe@ P, = 12.



QP, | KLdiv. MQ:HQ | MQ:LQ HQ:LQ of above 44% is realized without loss of visual quality trgat i
12 | 1.09E-08| 23:17 35:5 33:7 statistically significant.
(0.343) (2.1E-06) | (3.94E-05)
15 | 1.90E08| 1723 382 40:0 7. CONCLUSION
(0.343) | (1.25E-08)| (2.54E-10) By only encoding spatial regions containing viewer’s focal
20 2 36E-08 17:23 382 391 points of visual attention in high quality (HQ), ROI-based
(0.343) | (1.25E-08)| (1.87E-09) video streaming can reduce transmission rate without degra
25 | 3.08E-08] 1129 382 382 ing perceived video quality. Unlike previous ROI-based sys
(0.0044) | (1.25E-08)| (1.25E-08) tems that require real-time encoding, we present a system

that switches between two pre-encoded streams based en real
Table 1. Number of viewer who prefer the schemes HQ, MQtime tracked gaze data. Streams are pre-encoded to minimize
and LQ, with correspondingrvalue shown in parenthesis.  streaming rate while satisfying an application-specifialgy
o ] ] ) ) requirement. Stream-switching decision is optimized dase
istics of test sequencepar k_j oy contains higher motion o, tracked gaze data and real-time updated observation prob
thant own_scene. abilities. Experiments using our constructed real-timessn-

The subjective testing results are given in Table 1, wherghg system show that bitrate can be reduced by ug $ with

we indicate the number of responses showing preference f@gst subjects noticing very little visual degradation.
HQ, MQ and LQ at differen® P, values. We used the two-

sided chi-square test [14] to examine the statistical Signi
cance of the results. The null hypothesis is that there is nqy;
preference for either two of HQ, MQ and LQ. Under this hy-
pothesis, the expected number of votes is 20 for each method.
Thep-value [14] is also indicated in the table. In experimen- [2]
tal sciences, as a rule of thumb, the null hypothesis is resjec
whenp < 0.05. When this happens in Table 1, it means that
the two methods cannot be considered to have the same sulp)
jective quality, since one of them has obtained a statistica
significantly higher number of votes.

As seen in Table 1, the subjects showed a statistically sig-[4]
nificant preference for our proposed MQ method and HQ over
LQ, as thep-value is much smaller than 0.05 for all choices
of QP,. Furthermore, for a wide range ¢fP, between 12
and 20, the difference between our proposed method and Hd!
are statistically insignificant, with-value significantly above
0.05. While more subjects prefer HQ @tP, of 15 and 20,
it should be noted that an equal number prefer MQ over HQ
atQ P, of 12. This further indicates that such difference are
not statistically significant. Whe® P, is increased to 25,
the subjects show clear preference of HQ over MQ. The cor7]
responding KL divergence is 3.08E-08. It is a subject of fur-
ther study of whether KL divergenge= 3.0E-08 will ensure
similar visual quality across sequences.
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