174 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 2, JUNE 2003

A Framework for Computation-Memory Algorithmic
Optimization for Signal Processing

Gene CheungMember, IEEEand Steven McCanne

Abstract—The heterogeneity of today’s computing environment - algorithmic optimization is often hidden from the optimizer
means computation-intensive signal processing algorithms must and left unexploited. Contrasting with this approach is the
be optimized for performance in a machine dependent fashion. signal processing-centriapproach [5], [6], which optimally

In this paper, we present a dynamic memory model and associ-)
ated optimization framework that finds a machine-dependent, trades off distortion of compressed signals with computation of

near-optimal implementation of an algorithm by exploiting the @ particular compression algorithm by intelligently “tweaking”
computation-memory tradeoff. By optimal, we mean an imple- the algorithm. Such optimal tradeoffs are the first formal

mentation that has the fastest running time given the specification analyzes of signal processing algorithm tuning for machines
of the machine memory hierarchy. We discuss two instantiations with different computational budgets.

of the framework: fast IP address lookup, and fast nonuniform Similar to oth . | . tric studi K
scalar quantizer and unstructured vector quantizer encoding. imiiar to other signal processing-centric studies, our wor

Experiments show that both instantiations outperform techniques [10]-[12] focuses on algorithmic level optimization—in our

that ignore this computation-memory tradeoff. case, minimizing running time of algorithm—in a machine de-
Index Terms—Computation theory, memory management pendent fashion. Minimizing running time is important when,
packet switching, signal processing, vector quantization. for example, one wants to determine if a particular machine

is capable of satisfying a set of real-time constraints required
by a particular signal processing algorithm. However, unlike
previous works that minimize running time by minimizing
F THE computer evolution has matured to a stage whetlee number of computational units for a given performance
computers are ubiquitous and homogeneous, and improtleeshold, we search for the optimal computation-memory

ments are asymptotic, then implementation of an algorithtradeoff to minimize running time. More precisely, we set
needs only be painstakingly hand-coded once for optimap and solve the following optimization problem. Given an
performance. Unfortunately, computers continue to progressasggorithm, we first define a search space afnfigurations
an exponential rate, and computing environments are extremefdyere each configuration is a particular implementation of
diverse. Clearly, hand-coding an algorithm for every possibilee algorithm. Each configuration uses a different mixture of
platform is impractical. A fundamental question surfaces: hoeomputation and memory. At one extreme, a configuration can
to re-target an algorithm onto different machine platformsse only memory and no computation—using a lookup table,
optimally and automatically? In light of this problem, formala given input can be directly mapped to the corresponding
techniques on flexible software synthesis and code generatprcomputeautput. This is possible because each input value
[1]-[4] have been extensively studied. [1], [2] are examplds represented by a fixed number of bits in a digital computer,
of retargetable compilers that can generate efficient codad so the set of possible input to an algorithm is countably
given a description of the machine architecture. [3] proposésite. However, the set of input values is nevertheless very
a graph-based optimization technique to generate digitatge, and so given a machine has small and finite memory, this
signal processor (DSP) address code. [4] mixes models difect-map configuration is usually not practical.
computation—imperative programming language such as CAt the other extreme, a configuration can use only computa-
and signal processing specific model such as synchrondiss and no memory—for every input, the corresponding output
data flow (SDF), for optimal DSP compilation while offeringis computedn-the-fly with no lookup of pre-computed values.
intuitive user appeal. Storing nothing in memory means no computing effort can be

What is common among the abowempiler-centricap- amortized across inputs, and every output must be computed
proach, is that because the starting point of the optimizationfiem scratch. Given that the objective is to optimize execution
still a fairly generic language, machine-dependent high levgbeed of the algorithm, this configuration underutilizes memory

of a machine and often is suboptimal.

Manuscript received July 28, 2000; revised March 19, 2002. This work was Ntuitively, the optimal configuration of an algorithm for

completed while the authors were with the Department of Electrical Engineeriig given machine lies between these two extremes: one that

and Computer Sience, University of California, Berkeley. The associate effyjdes the processing so that the optimal subset is implemented
itor coordinating the review of this paper and approving it for publication was

. INTRODUCTION

Dr. Francky Cathoor. as memory retrievals of precomputed values (precompute), and
G. Cheung is with HP Laboratories Japan, Tokyo 168-0072 Japan (e-méie other is implemented as on-the-fly computations (compute).

gene-cs.cheung@hp.com). , . For each algorithm, deciding which is the optimal configuration
S. McCanne is with the Department of Electrical Engineering and Computgr . . L .

Sience, University of California, Berkeley, CA 94720 USA. epends on two pieces of information: 1) the particulars of
Digital Object Identifier 10.1109/TMM.2003.811625 the algorithm, which reveals ways in which the algorithm

1520-9210/03$17.00 © 2003 IEEE

CHEUNG AND MCCANNE: FRAMEWORK FOR COMPUTATION-MEMORY ALGORITHMIC OPTIMIZATION 175

Lagrange samples H (S)

{ N

T P kw olemp) = Q| B pe

: T(S)
si{[m T2 T /
1 _

Sz{[M2 ’

() (b)

Fig. 1. Proposed machine model and functions of optimization framework. (a) Dynamic memory model. (b) Memory access function T(S) and Lagiagge sampl
function H'(S).

can be implemented, and hence implicitly defines the seancéwer proposals vary in details, the basic philosophy of having
space of configurations; and, 2) the memory structure of thememory hierarchy remains the same, and we will focus on
to-be-implemented machine, which defines the feasibility ardis feature in developing our modelGiven a hierarchy of
cost of each configuration. The major contribution of this papenemory, the execution speed of a machine instruction that ac-
is to formalize and solve this optimization based on this infocesses memory depends on the level of memory referenced. The
mation. In particular, we develop an optimization frameworknachine model we adopt in Fig. 1(a), called Dynamic Memory
that when instantiated, finds a near-optimal implementatidiodel (DMM), reflects this characteristic. If the procesddr
for a given algorithm. Each instantiation of the frameworlooks and finds a datum residing in level 1 mem®dy, it in-
for a particular algorithm is called program The algorithms curs ahit time 17 —this includes the time needed to determine
we focus on in this paper are Iy Address Lookup—In the ifitis a hit/miss and the time for datum retrieval Bflooks and
current Internet architecture, packets of information called E&annot find the desired datumM, then it pays aniss penalty
packets are forwarded from source to destination via a netwdrk—this includes the time for loading this datum fravi, to
of routers. At each router, a packet's IP destination addresa\E; and the time for delivering datum frolvl; to P. If the in-
matched against the prefixes of a routing table—the packetsisuction does not involve memory access, then the execution
subsequently forwarded to the outgoing link corresponding tisne depends on the complexity of the instruction itself. For ex-
the longest matched prefix. Toward the goal of optimal netwodmple, we denote the cost of a logical comparitaip) as@Q.
performance, designing a fast address lookup implementatMie assume the sizes®; andM, areS; andco respectively.
is an important problem. Zcalar and Vector Quantizer En- To deduce deterministically the datum retrieval time at time
coding—Quantization is a lossy signal compression techniqualuring the execution of an algorithm, one will require knowl-
where a many-bit representation of a signal is mapped toedge of what data are residing where in the hierarchical mem-
few-bit representation. Quantizer encoding—the many-to-fewies att. This will require knowledge of both the processor’s
bit mapping—can be a time-consuming process, especially fraching policy (direct mapped, set associative or fully associa-
unstructured vector quantizer of high dimensions. Designingige [7]) and the data access history from time zerb to a gen-
fast encoder implementation is a popular research problem. eral signal processing setting where the input data is not known
The outline of the paper is as follows. In Sections Il and llkintil the algorithm is executed, choosing an optimal implemen-
we review the machine model and its associated optimizatitation a priori deterministically by tracking all this information
framework in [11] respectively. In Section IV, we discuss hows simply not possible. Instead, we take a probabilistic approach
an instantiation of the framework finds a near-optimal impleand approximate each memory access cost as follows.
mentation for IP address lookup. In Section V, we discuss how aSuppose the sizé,, of data structures used by an implemen-
different instantiation of the framework finds an efficient impletation of an algorithm (configuration) is S;. Then the access
mentation of scalar and vector quantizer encoders. We prestimie of a desired daturfi;(S), isT}, since all data structures can
results in Section VI. Finally, we conclude and discuss fututee loaded intdM;. If S > Sy, then we do not know whether
work in Section VII. the desired datum resides M; or M. In this case, we esti-
mate the access time as follows. At any given time, a fraction
((S1)/(9)((S = S1)/(S)) of the total number of data blocks
will be in M; (Ms). So assuming all pieces of data are equally

Modern processors use hierarchical memorles [7] to enhancf'bther details of memory architecture are also important to algorithm perfor-
performance, where small, fast memories are located near itfsce. However, here we focus on extracting common features across different

CPU and |arger slower memories are situated further aw&\gmory architecture in constructing a mathematical model, so that implemen-
' ions of algorithms can be optimized for different machines. Looking solely

: . . tati
Memo_ry deS|gn rema'ns an aCt'_Ve area of research [8]7 [9] _éﬁhe hierarchical structure seems like a logical first step. We will discuss the
it continues to have a significant impact on performance. Whitesign of more accurate mathematical memory models in the last section.

[I. DYNAMIC MEMORY MODEL (DMM)

176 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 2, JUNE 2003

probable, we can estimate memory access €08t of a data ditionally denote the set of values whered’(S) is well de-
memory retrieval as fined in (4) asV. Solving H'(S*) seems easier, since we have
- eliminated the problems of mutual dependency and nonlinearity.
T if S <95 ..
TS(S) = (i) T+ (5_51) T, otherwise (1) However, we do not know™ a priori, and so we need to search
s/t s /72 ' through all definable values o in H'(S) for 5*:

See the bottom curve of Fig.1 (b) for an illustrationZdfs). In . . .

some applications, the input stochastic model toﬁtzge ;Igorithm et {HT(R“))U)} = vsev {H(S)}- ®)

is input-to-input independent; in such case, each memory acgraphically, for each definablé, we solve (4) and obtain a
cess can only be est!mated us.ing (1)..In other applications, ”§§mple point orf’(S). S* is the minimum point on sampling
IPaddress lookup discussed in Section 1V, the input modelfi$hction 7'(S). See the top curve of Fig.1(b) for an illustration
Markovian; in such case, each repeated memory access todhg’(s). We are now faced with three new difficulties: 1) it is
same datum yield access c@st More details on the relation- nclear how to determine whicki value is definable=S € V,
_sh|p be_tween input models and the memory model are dlscus§§:go|\,ing (4) for allS € V can be expensive, and 3) solving (4)
in Sections IV and V. given S itself is still hard since it is a constrained problem.

[ll. OPTIMIZATION FRAMEWORK (DMMOPT) B. Lagrangian Approach for DMM

Using DMM, we can formally define the optimization Focusing only on the third difficulty—solving (4) gives,
problem of finding an optimal configuration for an algorithmwe take the conventional approach of solving its corresponding
as follows. LetZ denotes the set of configurations in the seardkagrangian instead:
space. Each configuratidne £ uses a set of data structure in i LI D+ \R(1 6
its implementation. Given the set of data structure, we assume Illélg{ 7(s)(1) + AR()} ')

the data memory siz&(!) of a configuration/ can be easily The two problems, (4) and (6), are related: it can be shown [13]
determined. See Section IV and V for details of h&{() is that if there exists a Lagrange multipligrsuch that the optimal
determined giver for practical applications. solution to (6),l?, satisfiesR(I°) = S, thenl? is also optimal

We evaluate the execution cost of a configuraticass fol- o (4). Note that if this is the case, théne V by definition.
lows. First, the data memory siZ€(!) translates to a memory | general, solving the corresponding unconstrained problem
access cost'(R(l)) using (1). Knowing the access cost, we cayp) is easier than the original constrained one (4). The problem
evaluate the execution cost bfH (r())(l). The optimization s that for a given values, there may not exist a multipliex

problem is such that the optimal solution to the Lagrangian {6)has the
) propertyR(I°) = S. In this case, we cannot even be surg i§
min { Hr(ray (1)} - @) definable.

Solving (2) is difficult in general (for the VLC decoding. In such a case, we propose the following procedure called the

X iterative projection methothat converges to a definable value
problem, see [11] for a formal proof of NP-hardness). Th anda multiplier \ such thatR(i) = S:

reason is twofold. 1) while the cost of a memory access is not) R

known till the entire configuration is constructed, the optimal Itérative Projection Method:

construction of a configuration depends on the cost of memory 1) Initialize S.

access—a chicken-and-egg problem, and 2) because the cost 2) lteratively solve (6), adjusting each time, such that

evaluation depends on nonlinear functi@S), the problem R(l°) is as close taS as possible while keeping

is nonlinear. Instead of solving (2) directly, we dissect it into R(l°) > S.

easier pieces. 3) If R(I°) = S, done. Else, lef := R(I°) (constraint
shiff), goto step 2.

A. Problem Transformation See Fig. 2(a) for an illustration. Becauggl°) is inversely

Suppose we know a priori that the total data structure sizeRfoPOrtional toA, a simple strategy of adjustingin step 2 is to
the optimal configuratio* is S*. To find I*, we only need to Use binary search on the real line. Alternatively, a more efficient

search the subset gfwith total sizeS*. (2) is then the same as:Strategy, called singular value search, can be employed. We will

discuss this strategy next.
min {Hrray()} = H'(S) 3)

where we defind?’(S) as:

C. Singular Value Search
Recallin step 2 of the Iterative Projection Method, we need to

minez { Hrs)(1) } adjust the multiplier value and solve (6) iteratively, ui{ll®)—
H'(S)= { st.R()=S if {{lel|R()=SY#0 S is minimized whileR(1°) > S. Consider the example in
undefined 0.W. Fig. 2(b). The Lagrangian cost of every configurati@msearch

_ (4) spacel, H(l) + AR(l), is represented as a linear function of
and Hr(s)(l) is the cost ,oﬂ when the memory access cost isnytiplier \ in the top graph. The bottom graph plots the slope of
fixed atT(5). We call H'(S) the sampling functionWe ad- the optimal Lagrangian cost function givanor simply R(1°).

2Small, trivial examples available in these sections may facilitate undé}!ouce as) increases, the Optlmal configuration changes from
standing better than just formal definitions. l; to 1, to I3, and the corresponding(i°) changes fron#; to

CHEUNG AND MCCANNE: FRAMEWORK FOR COMPUTATION-MEMORY ALGORITHMIC OPTIMIZATION 177

H() + AR(D)
R(1°) -/

f 2
R |o) C3 3
R(l 0) sin‘gular v:lue CZ
RO} X 1‘-.‘ // 7\‘ ’7\(7\‘
iy P X RO M A
s,] ! :
N o —
= 1 i
578, ¢ =5 2z A ; !
8=R1 V/constralntshiﬂ N 92 --------- r_—s
S S R SRRITIIo, i
o % A

() (b)

Fig. 2. Lagrangian approach. (a) Singular value search and iterative projection method. (b) Lagrangian cost and size versus multiplier

65 to 0. Also note that, is never an optimal configuration for of neighboring sample points from a local minimum point. The
any multiplier value. proof is sketched out in Appendix.

At special multiplier values, calledingular valuesin [13] Theorem 1.1 (Lagrangian Sampling Error The-
and labeled\,), in Fig. 2(b), there are two (or more) con-orem): Let [* be a locally optimal solution to (2) such
figurations that are simultaneously optimal. For example,at thatS* = R(I*) € [S',5?], and H'(S'), H'(S?) are the
I, andl, are both optimal. Using similar argument as [13], on&vo neighboring Lagrangian sample points &fi(S). When
can show that by solving (®nly at singular values, we can dis-S is initialized to.S; in step 1 of iterative projection method,
cover all solutions to (6) for all multiplier values. Moreover, awve can find an optimal solution to (6);, such that one of
the particular singular value where the slopes of the two optintéie Bounding Conditions is satisfied: 1)(R(I”) > $?) and
solutions span the constraifif we can conclude that these twd(A > 0).2) (R(1%) < S*)and(A < 0).3)(S* < R(IP) < $?)
are the solutions wittR(.) closest taS from above and below, and(= 0). The cost of the locally optimal solutidh is lower
among all Lagrangian solutions. In the example\atl, andl; bounded by”, i.e.: H'(S*) = Hyp(s+)(I*) > Hpsy(1P).
are simultaneously optimal, and given they are the closest La- o
grangian solutions from above and beldwis the solution we = OPtimization Framework for BMM—DMMOPT
are looking for. Having developed the above concepts, the optimization

Given we have an optimal solutidf to (6) for a particular framework associated with DMM called DMMOPT—one
multiplier value \g, it turns out finding neighboring singular that guides us in constructingprogramthat finds a near-op-
values to\g is easy (to be shown in the two instantiations). Sindémal implementation to (2) with a posteriori error bound—is
R(I°())) is inversely proportional ta, we can iteratively step straightforward. In a nutshell, we construct a program by
through neighboring singular values in the directionSafintil instantiating the following procedure for each algorithm:
the ending condition—singular value where the two simultane- Given parameters of the machine model (DMM) and
ously optimal solutions hav&(.) spanning the constraist—is the search space of configuratiofi®f the algorithm, con-
met. This is callegingular value searchin Fig. 2(b), we first struct H'(S) by obtaining Lagrangian sampling points.
initialize multiplier value to), and solve (6). We then step to Each Lagrangian sampling point is obtained with the
singular value\;, then Az, upon which we have reached the iterative projection method. Among the sampling points,
ending condition. we pick the smallest point as our operating point.

The global error bound is the difference between the best per-
formance sample point and the best performance local bound of
all pairs of neighboring sample points.

How the Lagrangian (6) is solved depends on the search space

Instead of searching for ali € V in (4), by finding solu- _ : . . - .
tions to (6) using the iterative projection method, we are act f configurationL of the algorithm being optimized. We will

ally only sampling a small number of points d#(S), since egin with the IP address lookup algorithm in the next section.
the method converges to a subset of points no matter Wit
initialized to. We call this phenomendragrangian sampling
since each sample point is a solution to the Lagrangian (6). ByThe IP address lookup problem is the problem of efficiently
sampling, however, we may not be able to find the optimal stinding the longest prefix in a routing table of a network router
lution H'(S*); we use the following theorem to bound the errothat matches the destination address of the IP packet. The entry

D. Lagrangian Sampling

IV. IP ADDRESSLoOKUP (VLC DECODING)

178 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 2, JUNE 2003

prefix action

0 c
000 a
001 b
10 d
11 e

Fig. 3. Markov model for address prefixes. }D\
0 1

corresponding to the longest matched prefix determines 1
output interface through which to forward the packet toward i
ultimate destination.

The existing art in this problem domain is quite extensiv
[14]-[18]. However, none of the previous works exploit thi
memory hierarchy of the underlying processor as a form
optimization. We will do exactly that in this section by using
the machine model DMM and optimization framework DM-
MOPT discussed in Section Il and Il respectively. We first Fig. 4. Representation of a prefix set.
discuss our proposed Markov model that models the correlation

between prefixes of consecutive IP packets. We then discysgeix 0 is first expanded to prefix 01, since address with prefix
the transformation _that transforms the longest prefix mat¢l means it has a longest prefix of 0 in the prefix set. We will
problem to the variable-length code (VLC) decode problemssme such a conversion is first employed as a pre-processing
We then discuss solution to the VLC decode probtem. stage for IP address lookup to convert prefixes to prefix-free
VLCs. In the next section, we will discuss how the VLC decode

problem is formally defined.
During a typical TCP connection, a burst of packets are sent

back-to-back along the same route to the same destination. ThisProblem Formulation
results in a sequence of packets with the same destination Iiven a set of prefix-free VLCs, the problem is then to find a

address, meaning the same Ionggst prefix requires Consec%yﬁﬁgurationl that is fast for the particular processor’'s memory
lookups at the_: router. To model this depepdency, we have C?ﬁérarchy, modeled by DMM. We choose the search space of
structed the simple Markov model shown in Fig. 3. Each prefB‘onﬁgurationsC to be configurations that use a mixture of two

in a routing table is represented by a state—state 1, 2, 3 in (hec gecoding operators—lookup table and programmed logic.

figure. In addition, there is an initial state 0. Starting at state . pit lookup table—using up” data memory—entails data
0, we enter statéwith probability ¢;. This represents a packet e qjeval in memory, hence the execution cost depends on the

with longest prefix has arrived at the router. With probabiljty total size of data in memory. We assume programmed logic re-
we return to the same state, representing the case when the Hﬁﬁres no data memory and has execution €st

packet also has longest prefix\With probabilityl — p, we re- 1o jmpart intuition, we first consider two examples of VLC
turn to initial state 0, and a new prefix is selected. The expectgdyqqing configurations. To decode the set of prefixes in Fig. 4,
number of packets persisting in the same st&@ /(1 —p). g configurations are constructed in Fig. 5: 1) a programmed
logic is followed by either a 2-bit table lookup or another pro-
grammed logic; 2) a two-bit table lookup is followed condi-
Prefix set found at a rOUting table differs from Variable-lengthona”y by a programmed |Ogic_ Graphica”y, we denote a pro-
code (VLC) in signal processing such as Huffman code in oggammed logic at a node with dark branch arrows and a lookup
major respect: prefixes in routing table are not prefix-free. i3ple by shading the node.
other words, a prefix entry can be a prefix of another prefix entry To determine the average decoding time of these configura-
(see Fig. 4(a) for an example). If we represent the prefix set@sns, we find the size of data structures in memdify) for
a binary tree, as shown in Fig. 4(b), then there may exist pregoth configurations to be 4 (one 2-bit lookup table). We can now

fixes that are internal nodes and not leaves of the tree. Instg@gte the execution time of the first configuration denoted as
of operating on this tree to find the longest prefix, which reH 4 (11), as follows:

quires backtracking, we perforleaf pushing18] to convert it
to prefix-freebinary tree, shown in Fig. 4(c). In the example,HT(4)(l1) (gt tar) [Q L) + <1 ﬁp) @+ T1)}

3The same optimization can be used to optimize VLC decoding, such as

0 1
o]

b) binary trie c) leaf—pushed binary tree

A. Markov Model for Packet Prefixes

B. Transformation to VLC

Huffman decoding, in signal processing. p
“The expected number {8 — p) + 2p(1 —p) +3p*(1 —p) +...= ((1 - * (02 +4.) {262 - <1 - p) 2Q}
p)/(p) =7 ' = ((1)/(1—p)). =(qa+ @+) Q +T) + (qa+ ¢.)2Q") (7)

SBy representing the prefix set as a binary tree, we are implicitly restricting
ourselves to decoding algorithms that decode sequentially from left to right, ; ;
This is reasonable since all prefixes are left-aligned. Further, by allowing bits\%hereT - T_(4) + ((p)/(l __P))Tl) ar_‘dQ = ((1)/(1 _P))Q- N
be decoded in any order causes the optimization problem to be NP-hard [1{Ve can rewrite the execution cost in terms of the probability

CHEUNG AND MCCANNE: FRAMEWORK FOR COMPUTATION-MEMORY ALGORITHMIC OPTIMIZATION 179

[allole]f c]
() (b)

Fig. 5. Examples of prefix decoding using 1-bit logic and table lookup. (a) Prefix decoding configuration 1 and (b) prefix decoding configuration 2.

flow of the internal nodes. For example, probability flow of nodehoices for all possible table height plus the recursive cost of the

Jjisw; = qq + q» + g.. We can now writeHT<4)(ll) as: children nodes will be the cost of the function at nede
_ / Reall /
HT(4)(ll) =wQ +U)JT + w,Q (8) f(z) = min{ w;Q + Z f(J)

Similarly, the execution cost of the second configuratigmyill JE€kL
be Hy4)(l2) = wil” + w;Q". . h -

We are now ready to formalize the optimal VLC decoding Juin | wiT(8) +A2" + Z f@))
problem, called VLC-OPT, as follows. - JELn.i

Optimal VLC Decode Problem: VLC-OPT whereH; is the height of binary tree rooted at nadandLy, ; is

Given: i) Parameters of DMMS, T1, T5; ii) A set of the set of nodes at heightof tree rooted at node We note that
VLCs and their associated probabilities. What is an optimal there are overlapping subproblems when solvitg using (9).
configuration so that the average decoding time is mini- For example, it is a children node of andt is a children node
mized? Mathematically, we writeninic . { Hrry) (1)}, of s, thenf(¢) will be used in the calculation of(r) as well as
where £ is the set of configurations using lookup table the calculation off (s). To avoid solving the same subproblem
and programmed logic that decodes the given prefix setmore than once, we use a dynamic programming t&tlgof
correctly. sizer x 1 to store the calculated valugéi) fori = 1...r. Each
A proofin [11] shows that this problem is NP-hard. So instedéme the functionf (i) is called, it first checks if the entry[i]

of solving VLC-OPT optimally, we will use DMMOPT to solve has beenfilled. Ifit has, thef(i) simply returns the valuéTi].

it approximately but in polynomial time. Otherwise, it calculates the value using (9) and stores it in the
table. After solving the Lagrangian problem using (9), we have
D. Program Development a configuration, denoted by, that minimizes the Lagrangian

. L problem for a particular multiplier valus.
Following DMMOPT guidelines to construct a program that 1) Singular Value Search for VLC Decodingss stated in

solves VLC-OPT, we first instantiate the Lagrangian (6) fQfie 2 of the iterative projection method, we need to intelli-

this particular problem. To simplify the discussion, we will asgeny search for multiplier values and solve (6) over and over
sume the search space of configuratidhs the set that uses

’ i > again—this isingular value searclof which the general notion
only table lookups and 1-bit programmed logic as decodifghq discussed in Section I1I-C. To instantiate for VLC-OPT, we

operators. _ , first observe from (9) that by construction, the optimal configu-
To solve (6) for a particular value of, we first represent the o+ has Lagrangian cost of form

set of VLCs in question as a binary tree, where nodes are num-

bered in post-order with roet We definef (i) as a function that fi) = Z weT(S) + Z ohe) 4 Z w,Q (10)
returns the minimum Lagrangian coély (s (1) + AR(1), for all rexX e yevy
configurations that correctly decode the set of VLCs rooted a

nodei w%ereX is the set of nodes performing table lookup operations,
To solve f(i), we perform the following case analysis. A[andY is the set of nodes performing logic operations. Rewriting

nodei, we have two choices: i) perform a logic operation 4pe equation yields a simpler representation—a linear function
nodei with costuw;(): ii) perform ah-bit table lookup operation © A With slopef; and y-intercep;:

at nodei with costw; T(S) + A2". The minimum of these two F(3) =G + 0:) (11)
G=> wT(S)+ > w,Q (12)

zeX yeYy
6See [11] for a thorough discussion when the search space inclubés 0; = Z 2h= (13)

programmed logic and hash functions. z€X

180 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 2, JUNE 2003

0 T T2 T3 M
p(x) ’ 00 I 01 IlOI 11

A

logic—~_ _(sx<1,?

» . {(1) :ﬁ lookup table
. Grewd 0 e 7
00 | 01 | 10 | 11 o 00-=10
| | | =00 =01 v
T T Ts @

.

=10 =11
(@ (b)
Fig. 6. (a) Nonuniform SQ and (b) hybrid encoding implementation.

To find singular values, we first defing(i) as a function A. Scalar Quantizer Encoding
that returns the next potential larger singular value, callegt
mented singular valye*, for the tree rooted at node This We begin with the nonuniform SQ encoding problem. We first
value can be derived from one of two cases. First, it is the valléfine the search space of configuratighshen define the op-
at which a new configuration that uses a new operator at noé8ization problem formally (SQE-OPT). Instead of discussing
i (for example, a logic operation at nodénstead of a table the development of the entire program using DMMOPT, as we
lookup), in combination with the subconfigurations of the childid for VLC-OPT, we focus only on solving the Lagrangian (6)
dren nodes, becomes optimal &sncreases. Second, it is thegiven . The other half of the puzzle, singular value search used
value at which one of the descendant nodes of natfeanges in step 2 of the iterative projection method, can be found in [12].
its optimal subconfiguration, affecting the optimality calcula- 1) Problem Formulation:Very often a representation of a
tion for nodei. ¢(i) returns the smaller of these two values, agignal in a computer needs to be compressed for space-limited
expressed in the following pseudo-code: storage or for bandwidth-limited transmission. One compres-
sion technique that can perform this many-to-few bits mapping
1. temp = I([C, 0], [wiQ + EjeL“ CJ?ZjeLl 051 of signal is the nonuniformV/-to-N bit SQ, where a scalar

if temp > X\, then g(i) := temp quantity of M bits is mapped to one arv partjtions. Fig. 6(a)
//check config. w/ logic at node i shqws an gxample of _al/[-to-z bit nonumform SQ. TheT
else g(i) := o0 optimal design of nonuniform SQs—the selection of partition
2. temp := minj<p<m, boundary sel’ = {1,..., 7~ _;} that minimizes distortion
(G, 6], [wT(S) + Yyen,. G2t + of reconstruction signals—is well-studied [20]. The resulting
ZjeLh . 9D} ' N-plt quantlzer |s. c.omm.only called th&oyd—Max Quanuzgr
it~ temp >\ & temp < g(i), then g(i) := temp Finding an efficient implementation for thé/-to-/N-bit
//check config. w/ lookup table at node i SQ encoder can involve a tradeoff between computation and
3. temp := minjer, , 9(j) memory. Two simple encoding implementations illustrate the
if temp >\ & temp < g(i), then g(i) := temp extremes of computation and memory tradeoffs. The first one
//check the potential s.v.s of minimizes computations by performing a singlé-bit table
children nodes lookup, where the resulting table entry contains the corre-

spondingN -bit partition index. This requires a memory store
where functionZ([C1, 6], [z, f2]) takes in the slope§'s and of size2 . An alternative implementation minimizes memory
) »V1b ’) . . i 1 “, "
y-intercepts’’s of two lines, and returns the intersection pointiS29€ by asking a sequence of logic statemelsts “< 7;*
until the correct partition has been identified. This corresponds

If they are parallel lines, it returns. : L . .
4(i) can be tabulated as (9) is being solved. The stopnd to a binary decision tree of height> N. A natural question
’ is: what is the optimal hybrid scheme, using a combination of

y-intercept(; of node: are calculated using (11) after the op) S :
lookup tables and logic, that minimizes the average encoding

timal configuration is found for tree rooted gtand they are ° L . .
then stored in dynamic programming tabild and(]], similar Egeé(g)n example of a hybrid implementation is shown in

to table F'[| used in solving (9). By callin to solve (6
[]u ! ving (9). By Ingf(r) ve (6) Having described the search spageve formally define the

theng(r) to find the augmented multipliex* repeatedly, we " '“*"'3 e . L

will terminate with the solution required in step 2 of the iterac—’pF'm'zat'On problem Qf finding the optimal hybrid implemen-
tive projection method. IR(1°) = S, H(1°) is a sample point tation for theM -to-N bit SQ encoder, denoted as SQE-OPT, as
on H'(S). If not, we perform constraint shift (step 3) and repea(?”owsz

the procedure. Optimal SQ encode problem: SQE-OPT

Given search spacg, what is the fastest configuration
[€ £ of a M-to-N bit SQ encoder, given input distri-

We now focus on the second instantiation of DMMOPT: butionp(x), partition boundary sdt = {7, ..., 7o~ _1},
scalar and vector quantizer encoding. and parameters of DMM?

V. SCALAR AND VECTORQUANTIZER

CHEUNG AND MCCANNE: FRAMEWORK FOR COMPUTATION-MEMORY ALGORITHMIC OPTIMIZATION 181

[Tog(b-a)] h=3

AN KSAAKSAANA
T,-a T,-a
@ (b)

Fig. 7. Tree pruning example.

2) Program DevelopmentWe discuss instantiation 3) Tree Pruning: While we can solve (6) givek with call to
of (6) for SQE-OPT in this section. We begin with thef(0,2*) using recursive calls (14)—(16), the running time is ex-
definition of the cost function that we are minimizing;ponential—the call hag recursive calls when &/-bit table
let f(a,b) be the minimum Lagrangian encoding coslookup operation is tested faf;(0,2%). This means a single
(6)—minjc, Hr(s)(l) + AR(I)—given inputz € [a,b). The rexecution of (16) has running tim@ (2" M). However, we
optimal initial operation for this input range can potentially bean alter the program to reduce its complexity by pruning off
a logic or table lookup, resulting in cogi(a,b) or fi(a,b), some of the recursive calls in (16). When performinghabit
respectively: table lookup for a given rande, b), there will ben recursive
calls according to (16) correspondingrtdranches of a binary
f(a,b) = min {fi(a,b), fi(a,b)} (14) tree—the leaves of the tree are the possible values ofa.
Fig. 7(a) shows a binary tree representation of numbers in range
For the logic case, we can choose among;allues that are [q, b)—from most significant bit to least significant bit—where
in range §, b) to check against input. The result of the check [log,(b —)] = 4. It also highlights the branches that corre-
is a partition of the original interval intf:, 7;) and[7;,b). Let sponds to each; € [a, b). We call themr-branches
p(a, b) denote the probability that € [a, b), and@ denote the If we perform a 3-bit table lookup on the same rarige),
cost of a logic operation. We can wrifg(a, b) as as shown in Fig. 7(b), we see that unless inpfllows one of
the twor-branches, we know immediately which partition the
fila,b) = p(a,b)Q + min [f(a,7)+ f(7:,b)]. (15) input falls into. If inputz follows one of the twor-branches,
Ti&(eh) then further operations are needed to determine the correct par-
For the table lookup case, there is an initial lookup cost §fions. We can generalize the above observation and say that the
p(a,b)T(S). To minimize table sizey — a is used as the index Only recursive calls needed in (16) are theseranches. So if
into the lookup table. Hence the index used i-hit table We prune off the nom—branches during execution of (16), the
lookup operation is thé, left-most bits ofz — a. The largest complexity of (16) isO(2" M); it is now polynomial in size of
valuez — a can take on, gives € [a,b),isb— a — 1. Hence, theinput.
the number of bits needed to describe- a, or the maximum
height of a lookup table, iflog, (b — a)]. For each table height
h, the table operation divides the rarigeb) into smaller ranges Instead of developing a new optimization, we leverage on the
of width m = 2['es2(t—a)1=h agch. The number of these smalleprogram we developed for SQE-OPT and use it to speed up a
rangespn, is determined by the largest number that theost pre-processing step of an established VQ encoding technique,
significant bits ofz — a can take on. The associated penaltgalledequal-aveagenearest neighbor seardENNS). We first
AR(1) in (6) is therefore\n. The following equations formalize describe how ENNS works, then discuss how the program de-
this (see (16), shown at the bottom of the page).The base cegped for SQE-OPT can be used to improve ENNS.
of the recursion is when there is mpin range ¢, b), meaning 1) Equal-Aveage Nearest Neighbor SearchENNS [21]

B. Vector Quantizer

the inputz can only be in one partition: has been shown to lower unstructured VQ encoder’s com-
plexity in the average case for image data. The key observation
f(a,b) =0 if Ar € (a,b). (17) is that there are strong correlations among input vector's

individual components for image data. As a result, the majority
The value off (0, 2) then yieldg®, the optimal solution to (6) of the input vectors are distributed along the central line
given \. l = {x|z; = ... = z}. ENNS proposes that we first presort

.ft(a7 b) :p(a, b)T(S)+

An+ " f (at+m(i — 1), a+m(i)+ f (a+m(n—1),b)]
=1

m = ooy (b=a)]=h n= {;’ 4z 1J +1. (16)

min
1<h<[log,(b—a)]

m

182

o search area

central line
6 ® codevector
O input vector
[
4
3
[e)
1 5
2
(@)
Fig. 8.

the codevectors according to their means, then during actual
algorithm execution to find the nearest neighbor to input vector
x, we can successively eliminate potential nearest neighbors
by using this bound:

d(x,y) > VElmx — my] (18)

where d(x,y) is thel, distance between input vectar and
potential nearest neighbgr, £ is the number of dimensions,
andmy andm, are mean ok andy respectively.

An example is shown in Fig. 8(a), where input vectors
matched against codevectofs; ...ys} in two-dimensional
space. We first test codevectgg and computel(x,ys). We
can then eliminate any vectgr, whose meamny,, is such that
VEk|lmy — my,| > d(x,y5). Geometrically, we eliminate all
codevectors that lie outside the strip that encloses the circle in
Fig. 8(a). In this example, we eliminagg, y2, y3 andys.

For ENNS to be most effective, the initial candidate code-
vector should have mean closest to the input vector. To this
end, ENNS uses a binary decision tree to first find this closest-
input-mean codevector. To speed up this initial search, we use
the program for SQE-OPT to find a near-optimal implementa-
tion that finds this closest-input-mean codevector.

In order to use the program for SQE-OPT to generate a near-
optimal implementation that finds the closest-input-mean code-
vector, we need to supply the inputs of the program: parameters
of DMM, partition boundary set, and input distribution. Parame-

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 2, JUNE 2003

PN
1

1

(IR TINT
P
=E<<

(a) Equal-average VQ encoding and (b) hybrid encoding implementation.

Lookup Cost vs. Memory Usage

p Cost per Packet

Looku
N
S

—e— table, 4bit Seq
—+- table onl

L . L
20 30 40

L
50

60 70 80 920

Memory Usage S (kB)

Fig. 9. Sampling function&l’(.S) for 2 different Search Spacés

Srinivasan & Varghese [18]
Cheung & McCanne 99 [10]
Lookup Tables only
Tables + 4bit Seq. Logic

3.902 mil. lookups/s
4.546 mil. lookups/s
4.938 mil. lookups/s
5.000 mil. lookups/s

Fig. 10. Results for equal probability prefixes.

Srinivasan & Varghese [18]
Cheung & McCanne 99 [10]
Tables + 4bit Seq. Logic

3.961 mil. lookups/s
7.143 mil. lookups/s
7.273 mil. lookups/s

ters of DMM is the same as the SQ case. The partition boundary
setl" is found by partitioning the space of input mean into bins so

that if the input mean falls into a bin, then the closest-input-mean

codevector is the codevector associated with the bin. The injjiihree consecutive packets on average with the same longest
distribution is the probability distribution of the input mean. Matched prefix before another prefix is randomly selected again.
The measurements were taken on a Pentium Il 266 MHz, with

VI. RESULTS L1 cache 16 kBytes and L2 cache 512 kBytes. To match this
environment, we estimate the machine model parameters to be
A. IP Address Lookup (Ty, T, Q) = (2,4, 3), where the unit is number of processor
In this section, we demonstrate the efficacy of the generateldck cycles.
configuration for IP address lookup using the program describedTo find a near-optimal configuration, we first constructed the
in Section IV. We obtained a routing table with 2638 prefixesagrangian sampled functioH’(.S) and found the minimum
from the Palo Alto Internet Exchange (PAIX) from [19] on Junsample point empirically. We constructed two such functions,
19, 1998. We were unable to obtain the statistics of these peach has a search spateeflecting different collection of de-
fixes, so we modeled the workload with two prefix probabiliticoding operators available. For the first function, we used only
distributions for our simulation: 1Equal where all prefixes one decoding operator—table lookup up to any height. This is
are equally probable; and Hcaled where anh-bit prefix is the top curve in Fig. 9. Following the definition &f'(.S) in (4),
twice as likely as arh + 1-bit prefix (so longer prefixes are the cost unit on thg-axis is time/clock cycles. For the second
less likely than shorter ones). We additionally assumed the fanction, £ includes an additional decoding operator—optimal
curring probabilityp in the Markov model is 0.67, resulting sequential programmed logic of up to height 4. The first function

Fig. 11. Results for scaled probability prefixes.

CHEUNG AND MCCANNE: FRAMEWORK FOR COMPUTATION-MEMORY ALGORITHMIC OPTIMIZATION 183

Memory Usage vs. Cost for T(S) and H(S)
35 T T T T

Parameters | Values
Sh 16k 28 j\g_—
T 2 cycles .

Sg o 3
T, 4 cycles el
Q 3 cycles

p(z) Gaussian 1: N(8000,4002) "

Gaussian 2: N (8000, 16002)
05f T(s)

L L L L L L L
0 0.5 1 15 2 25 3 35 4
memory usage

(@) (b)
Fig. 12. Parameters and sampling functions for SQ experiment. (a) DMM parameters and (b) T(S) and H'(S).

is above the second one for &lj this agrees with our intuition p(x) M | N | algorithm speed
since£ of the second function include of the first one. Gaussian 1 1 15 | 2 | logic-only | 3.947 mil/s
. . . Gaussian 1 | 15 | 2 hybrid | 4.651 mil/s
To test the synthesged cpnflguratl_ons, we compared t.he per- Gaussian 1 | 15 | 4 | logic-only | 2.469 mil/s
formance of our configurations against two other algorithms: Gaussian 1 | 15 | 4 | hybrid | 4.545 mil/s
1) a lookup table design algorithm known eantrolled prefix Gaussian 2 | 15 | 2 | logic-only | 3.738 mil/s
: : : s : Gaussian 2 | 15 | 2 hybrid | 4.790 mil/s
expansiorpresented in [18] which minimizes worst case instead Gaussian 2 | 15 | 4 | logic-only | 2.484 mil/s
of average case, and 2) a simi_lar optimiz_ation procedure we de- Gaussian 2 | 15 | 4 | hybrid 4597 mil /s

veloped in 1999 that used a simpler static memory model [10].
Using the PAIX prefix routing table and the two probability dis- Fig. 13. Comparison of SQ encoders.

tributions as previously discussed, we simulated a workload of

10 million IP addresses using the Markov model discussed in
Section IV-A. For each algorithm, we repeated the simulation Us'r/‘g the chosen pqrameters, We.gener.ﬁt(-}.ﬂ) (bot?om)
40 times to find the average decoding speed. and H'(.S) for 15-to-4 bit scalar quantizer, with input distribu-

Fig. 10 shows that our synthesized configuration of tr{{éopmif;‘;zi'sg ilgo_?%én lz:alr?tiﬁ(gg '23;? ?gv'vg’sth:nz?;telémt
second function outperforms Srinivasan & Varghese by 28288 1 ycle. parti u y 9

and Cheung & McCanne 99 by 10.0%. Note again that ﬂ!ijémg Lloyd's algonthm._ :
configuration of the second function, “Tables 4 bit Seq To compare our hybrid table lookup-logic SQ encoder to a
’ " bi

Logic,” is faster than the configuration of the first function. nary decision tree SQ encoder, we generated a workload of

We conducted a second set of measurements using aworklggdn“"on input Sa”.‘p'es agcording to thg input distribution and
generated from the scaled probability distribution in Fig. 1fnC°dEd them 10 times with each algorithm to find an average

The optimal configuration of the second function outperform‘cé;Deecj for each case. See Fig. 13 for experimental results.

Srinivasan & Varghese by 83.6%, and Cheung & McCanne gFor the Gaussian l input distributic_)n 15-t0-2 bi_t (15-to-4 bit)
by 1.82%. We conjecture the reason for the dramatic impro Q encoders, excluding I/O access time, we achieved a 17.84%
geed improvement (84.08%) over the logic-only encoder. For

ment over Srinivasan & Varghese to be the following: becau . . S ; .
L) : Gaussian 2 input distribution 15-to-2 bit (15-to-4 bit) SQ
the statistics are very skewed—long prefixes are very unlike ,e .
y gp y %coders, we see a 28.14% improvement (85.06%) over the

and so improving the lookup speed of shorter ones drasticafly - | der. AV | the | t of hvbrid
improves the average decoding speed. As aresult, the worst- gye-only encoder. Increases, the improvement of nybr
ncoders over logic-only encoders increases. This is expected,

: ; o : e
optimal solution, which is largely concerned with longer pre=,) . - .
fixes, is far from the average-case optimal solution. since the height of the binary decision tree for logic-only en-

coders is larger when &§ increases.

B. Scalar Quantizer C. Vector Quantizer

To evaluate the performance of our program for SQ, we con-We performed experiments to show that ENNS has faster
ducted experiments to compare our generated configuratiorettcoding speed when the configuration found by the program
an implementation that use a binary decision tree to encostidving SQE-OPT is first used to find the codevector with the
SQ [20]. For our experiments, we use parameters in Fig. 12(elpsest mean to input vector. To generate various VQ code-
which are estimates of our test machine, a Pentium |l 266 Midpoks for testing, we used 5%%12 gray scale images béna,
processor. It has a 16-kbyte L1 cache (50-50 split of the 32-kbyeboon andTiffany as training data, and constructed code-
data-instruction cache). The two input distributigiis) are ar- books of size 8, 16, 32, and 64 for dimension 4 using the gen-
bitrarily chosen Gaussian distributions. eralized Lloyd algorithm [20]. We then compared the encoding

184 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 2, JUNE 2003

codebook size | algorithm | encoding time 12
8 logic-only .280s/lena R(1°) ~ R(1°)
8 hybrid .255s/lena Vi | B
16 logic-only | .465s/lena —L o Zad Ji
16 hybrid .440s/lena 32_'-’ o ~
32 logic-only 465s/lena St (ST
32 hybrid .440s/lena M A
64 logic-only .935s/lena @ (b) ()
64 hybrid .805s/lena

Fig. 15. Three cases for local error bound theorem: (a) case I, (b) case Il, and

. . (c) case lIl.
Fig. 14. Comparison of VQ encoders.

)) o) APPENDIX
speed of ENNS using a binary decision tree and ENNS using

our generated configuration when encoding the Lena image Ve prove Theorem 3.1 in this section. We first show that we
See Fig. 14 for experimental results. Excluding I/0 access tinf@n always find ™ that satisfiesi(i”) > 5% during singular
we achieved speed improvement of 9.83%, 5.67%, 6.65%, afiue search foS = S'—the first half of the first bounding
4.47% respectively for the four codebook sizes. condition. _ _ _

A few observations can be made. First, we observe that thel)1 Lemrr21a 1: Given there are two L_agrangle;n sample points
improvement for VQ is not as drastic as SQ. This is expected,S~ and.s W|thlcor;espond|ng solutiort %”dl , thsre exists
since we are speeding up only the initial search for closest codé- optimal solution’™ to (6) S&*Ch thatR(l®) > S%, during
vector mean, and the VQ encoding algorithm needs to perfofigular value search faf = S°. o
other tasks like computing distortion between input vector and aT) [Proof 1. We prove the statemer;t by coZntrad|ct|on: sup-
potential candidate vectors. Second, we see that as the siz8Qe/" is the top step ofz(1°(A)) andR(I™) < S=. That means
the codebook increases, the percentage improvement decred88Ee exists some multiplier valug, such that/A < A%

The reason is that ENNS is increasingly ineffective in ruling out T T
candidate codevectors as the codebook size grows. The bulk SresH() + AR < Hpesny(l) + AR() Vi€ L. (19)
Lhe comp.utatlon then b%congdthe computatlor(;s r?f dlstoglgg assumption2(I”) is strictly smaller thars? = R(12). So

etween mpt:t.v.e.ctlor an :z;m [Iate vect%rs, and the speed fi-s e\t < 0 A+ R(IT) < AFR(I2). Let A~ = —*. For
provement of initial search for closest codevector mean is di+ ¢ riciently large, we have
minished in the overall picture.

HT(Sl)(lT) + /_R(IT) > HT(SI)(Z2) +)_R(l2). (20)
VII. CONCLUSION AND FUTURE WORK
. . 88 AX° such that’A < X, [7 is the optimal solution, which is

In this paper, we presented a dynamic memory model and. o o diction. O

associated optimization framework that finds a near-optimal We are now ready to prove Theorem III.1. With the help of

implementation within a search space of implementations %mma 1, we will prove the theorem by case analysis

exploi_ting the c_omputation-mem(_)ry 'Fradeofr of the underlying b) Proof: Let/! be the optimal solution corresponding to
machine. We discussed two applications of the framework: f S1). Leti? be the step oR(I°())) with R(12) closest t5?,

.) (
IP address lookup, and fast nonuniform scalar quantizer ag&ich thatR(I?) > S?—from Lemma 1, we know must exist.

unconstrained vector quantizer encoding. In the results sectiwé claim that at least one of the following three cases must be
we have shown that there are noticeable improvements oyer

. 2 1 >
competing techniques in both applications. Ue: 1)Case b part of step af*, and step at', occur atk > 0,

. 2 il
There are two different directions for possible future work?acs::slﬁ _“étsets%;g oiggrgzr;\mjtg F;f]l(tj gtce C;ra;ilt)\o;cfr!:’;t

First, the memory model we constructed (DMM) is undenlabIX > 0. From observing Fig. 15, this is true obviously. It is clear

simple—it doe:c, not take into cqn3|derat|on of details of a p.arpﬁigt for each case, there exists an optimal solufioto (6) such
ular processor's memory architecture, such as set associativit

Admittedlv. the memory model was constructed with an eve ‘(‘)Péit one of the bounding conditions is satisfied: for Case I, we
Y, y YE [8t1B = 12; for Case II, we let? = [1; for Case IIl, we let” to

the basic input stochastic models of the two applications in the the step ak = 0. We now prove that if one of the conditions

paper—a complex memory model is useless if the input mo é?satisfied, then the error bound holds.

cannot take advantage of it. An interesting problem is how 2 Yve first define two related optimization problems to (4) by
create a more accurate memory model that corresponds wel . .

. : ; .constraint relaxations:
to a general class of input models, while keeping the resulting
optimization problem tractable. Second, the ap_pllcatlonS of t_he H/S(S*) — min {HT(S*)(I)} stR()<S* (21)
framework we looked at lead naturally to obvious and easily lec
defined search spaces of configuratidlis, leading to tractable HS(S™) = min {HrisH()} stR(l)>S*. (22
dynamic programming solutions. It would be interesting to look
at other computation-intensive algorithms, such as motion edtet /% and/% be the optimal solutions to (21) and (22), respec-
mation and packet classification, where defining the sgiamed tively. Since the search spaces for both problems are both super-
finding the corresponding solution to the Lagrangian are muskts of (4), it is clear thaliZ (S*) < H'(S*) and HS (S*) <

more challenging. H'(S*). We now prove each of the three cases separately.

CHEUNG AND MCCANNE: FRAMEWORK FOR COMPUTATION-MEMORY ALGORITHMIC OPTIMIZATION

Case t Given an optimal solutioi® to (6) for A > 0, and
R(I1B) > S2. By optimality:

Hrps1)(1P) + AR(1P) < Hps1)(1) + AR(I) VI € L (23)

A[R(IP) = R(1)] < Hp(s1)(I) — Hresny(1P). (24)

If we let! = [%, given)\ > 0 andR(I%) < S* < S?,term
on left is nonnegative. Hence a

HT(Sl)(lB) < Hresyy (1) < Hpgse (1%) (25)

< Hps+(I") = H'(S7) (26)

where the second inequality of (25) is true becasise<

S* implies T(S*) < T(S*) by nondecreasing property
of T'(S), and, thereforédr(s1)(I) < Hpes+(l) VI € L.
Therefore, the error bound holds for Case I.

Case II: Given an optimal solutiof? to (6) for A < 0, and
R(IB) < S*. Following the same optimality argument, we

again get (24). Far= %, we can again argue the left term [

(4]

(5]
(6]
(7]
(8]

(9]
(10]
(11]

[12]

[13]

14]

is nonnegative, since the two products are strictly negatives

and nonpositive respectively. Hence

Hrs) (1) <Hresr) (12) < Hrse (12)
<Hyps+ (") = H'(S7).

(27)
(28)
Therefore, the error bound holds for Case II.

Case llI: Given!? is an optimal solution to (6) fok = 0.

Following the optimality argument, we again get (24). Now
with A = 0, we get
HT(Sl)(lB) < HT(Sl)(l) VieL. (29)

This is also true for the locally optimal solutiéh. Hence

Hagsny (%) < Hygsn () < Hygso () = H'(S7). (30)

Therefore, the bound holds for Case Ill. We have provd
all cases, and so the theorem is provenl

REFERENCES

[1] D. Engler and T. Proebsting, “DCG: an efficient, retargetable dynam
code generator,” iIMSPLOS'941994.

[2] D. Engler, “VCODE: a retargetable, extensible, very fast dynamic code
generation system,” iRLDI'96, 1996.

[3] C. Gebotys, “A minimum-cost circulation approach to DSP ad-
dress-code generationEEE Trans. Computer-Aided Desigvol. 18,
pp. 726-741, June 1999.

[16]
(17]
(18]

[19]
[20]

[21]

[22]

185

S. Bhattacharyya, R. Leupers, and P.Petter Marwedel, “Software syn-
thesis and code generation for signal processing systéEBE Trans.
Circuits Syst. I) vol. 47, pp. 849-875, Sept. 2000.

K. Lengwehasatit and A. Ortega, “Distortion/decoding time tradeoffs in
software DCT-based image coding,”li@BASSP’97 1997.

V. Goyal and M. Vetterli, “Computation-distortion characteristics of
block transform coding,” inCIP’97, 1997, pp. 2729-2732.

D. Patterson and J. Hennessy, Computer Organization and Design: The
Hardware/Software Interface, 1997.

C. Gebotys, “Low energy memory component design for cost-sensitive
high performance embedded systems,Pinc. Custom Integrated Cir-
cuits Conferencel996.

M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas, “L1 data cache decom-
position for energy efficiency,” inSLPED’2001 2001.

G. Cheung and S. McCanne, “Optimal routing table design for IP ad-
dress lookups under memory constraints,lrifocom 99 Mar. 1999.

——, “Dynamic memory model based framework for optimization of ip
address lookup algorithms,” I €CNP’99, Nov. 1999.

——, “Dynamic Memory Model Based Optimization of Scalar
and Vector Quantizer Encoder,”, Berkeley CS Tech. Rep.
UCB/CSD-99-1085, Feb. 28, 2000.

Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary set
of quantizers,IEEE Trans. Acoust., Speech, Signal Processing 36,

pp. 1445-1453, Sept. 1988.

M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding
tables for fast routing lookups,” iBIGCOMM '97 1997, pp. 3-13.

M. Waldvogel, G. Varghese, J. Turner, and B. Platter, “Scalable high
speed ip routing lookups,” iIBIGCOMM’97, 1997.

K.Keith Sklower, “A Tree-Based Routing Table for Berkeley UNIX,”
Tech. Rep., Univ. California, Berkeley.

S. Nilsson and G. Karlsson, “Fast address lookup for internet routers,”
in Int. Conf. Broadband CommunicatipApr. 1998.

V. Srinivasan and G. Varghese, “Faster IP lookups using controlled
prefix expansion,” irACM Sigmetrics’98

http://www.merit.edu/ipma [Online]

A. Gersho and R. Grayector Quantization and Signal Compres-
sion Norwell, MA: Kluwer, 1992.

L. Guan and M. Kamel, “Equal-average hyperplane partition method for
vector quantization of image dat&attern Recognit. Leftvol. 13, pp.
693-699, 1992.

ftp://isdl.ee.washington.edu/pub/VQ/code/ [Online]

Gene Cheung (M’'00) received the B.S. degree
in electrical engineering from Cornell University,
Ithaca, NY, in 1995, and the M.S. and Ph.D. degree
in electrical engineering and computer science from
the University of California, Berkeley, in 1998 and
2000, respectively.

Since August 2000, he has been a Member of
Technical Staff, Hewlett-Packard Laboratories
Japan, Tokyo. His research interests include signal
processing, computer networks and optimization.

Steven McCanne photograph and biography not available at the time of
publication.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

