
174 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 2, JUNE 2003

A Framework for Computation-Memory Algorithmic
Optimization for Signal Processing

Gene Cheung, Member, IEEE,and Steven McCanne

Abstract—The heterogeneity of today’s computing environment
means computation-intensive signal processing algorithms must
be optimized for performance in a machine dependent fashion.
In this paper, we present a dynamic memory model and associ-
ated optimization framework that finds a machine-dependent,
near-optimal implementation of an algorithm by exploiting the
computation-memory tradeoff. By optimal, we mean an imple-
mentation that has the fastest running time given the specification
of the machine memory hierarchy. We discuss two instantiations
of the framework: fast IP address lookup, and fast nonuniform
scalar quantizer and unstructured vector quantizer encoding.
Experiments show that both instantiations outperform techniques
that ignore this computation-memory tradeoff.

Index Terms—Computation theory, memory management,
packet switching, signal processing, vector quantization.

I. INTRODUCTION

I F THE computer evolution has matured to a stage where
computers are ubiquitous and homogeneous, and improve-

ments are asymptotic, then implementation of an algorithm
needs only be painstakingly hand-coded once for optimal
performance. Unfortunately, computers continue to progress at
an exponential rate, and computing environments are extremely
diverse. Clearly, hand-coding an algorithm for every possible
platform is impractical. A fundamental question surfaces: how
to re-target an algorithm onto different machine platforms
optimally and automatically? In light of this problem, formal
techniques on flexible software synthesis and code generation
[1]–[4] have been extensively studied. [1], [2] are examples
of retargetable compilers that can generate efficient code
given a description of the machine architecture. [3] proposes
a graph-based optimization technique to generate digital
signal processor (DSP) address code. [4] mixes models of
computation—imperative programming language such as C
and signal processing specific model such as synchronous
data flow (SDF), for optimal DSP compilation while offering
intuitive user appeal.

What is common among the abovecompiler-centricap-
proach, is that because the starting point of the optimization is
still a fairly generic language, machine-dependent high level

Manuscript received July 28, 2000; revised March 19, 2002. This work was
completed while the authors were with the Department of Electrical Engineering
and Computer Sience, University of California, Berkeley. The associate ed-
itor coordinating the review of this paper and approving it for publication was
Dr. Francky Cathoor.

G. Cheung is with HP Laboratories Japan, Tokyo 168-0072 Japan (e-mail:
gene-cs.cheung@hp.com).

S. McCanne is with the Department of Electrical Engineering and Computer
Sience, University of California, Berkeley, CA 94720 USA.

Digital Object Identifier 10.1109/TMM.2003.811625

algorithmic optimization is often hidden from the optimizer
and left unexploited. Contrasting with this approach is the
signal processing-centricapproach [5], [6], which optimally
trades off distortion of compressed signals with computation of
a particular compression algorithm by intelligently “tweaking”
the algorithm. Such optimal tradeoffs are the first formal
analyzes of signal processing algorithm tuning for machines
with different computational budgets.

Similar to other signal processing-centric studies, our work
[10]–[12] focuses on algorithmic level optimization—in our
case, minimizing running time of algorithm—in a machine de-
pendent fashion. Minimizing running time is important when,
for example, one wants to determine if a particular machine
is capable of satisfying a set of real-time constraints required
by a particular signal processing algorithm. However, unlike
previous works that minimize running time by minimizing
the number of computational units for a given performance
threshold, we search for the optimal computation-memory
tradeoff to minimize running time. More precisely, we set
up and solve the following optimization problem. Given an
algorithm, we first define a search space ofconfigurations,
where each configuration is a particular implementation of
the algorithm. Each configuration uses a different mixture of
computation and memory. At one extreme, a configuration can
use only memory and no computation—using a lookup table,
a given input can be directly mapped to the corresponding
precomputedoutput. This is possible because each input value
is represented by a fixed number of bits in a digital computer,
and so the set of possible input to an algorithm is countably
finite. However, the set of input values is nevertheless very
large, and so given a machine has small and finite memory, this
direct-map configuration is usually not practical.

At the other extreme, a configuration can use only computa-
tion and no memory—for every input, the corresponding output
is computedon-the-fly with no lookup of pre-computed values.
Storing nothing in memory means no computing effort can be
amortized across inputs, and every output must be computed
from scratch. Given that the objective is to optimize execution
speed of the algorithm, this configuration underutilizes memory
of a machine and often is suboptimal.

Intuitively, the optimal configuration of an algorithm for
a given machine lies between these two extremes: one that
divides the processing so that the optimal subset is implemented
as memory retrievals of precomputed values (precompute), and
the other is implemented as on-the-fly computations (compute).
For each algorithm, deciding which is the optimal configuration
depends on two pieces of information: 1) the particulars of
the algorithm, which reveals ways in which the algorithm

1520-9210/03$17.00 © 2003 IEEE

CHEUNG AND MCCANNE: FRAMEWORK FOR COMPUTATION-MEMORY ALGORITHMIC OPTIMIZATION 175

(a) (b)

Fig. 1. Proposed machine model and functions of optimization framework. (a) Dynamic memory model. (b) Memory access function T(S) and Lagrange sampling
function H’(S).

can be implemented, and hence implicitly defines the search
space of configurations; and, 2) the memory structure of the
to-be-implemented machine, which defines the feasibility and
cost of each configuration. The major contribution of this paper
is to formalize and solve this optimization based on this infor-
mation. In particular, we develop an optimization framework
that when instantiated, finds a near-optimal implementation
for a given algorithm. Each instantiation of the framework
for a particular algorithm is called aprogram. The algorithms
we focus on in this paper are 1)IP Address Lookup—In the
current Internet architecture, packets of information called IP
packets are forwarded from source to destination via a network
of routers. At each router, a packet’s IP destination address is
matched against the prefixes of a routing table—the packet is
subsequently forwarded to the outgoing link corresponding to
the longest matched prefix. Toward the goal of optimal network
performance, designing a fast address lookup implementation
is an important problem. 2)Scalar and Vector Quantizer En-
coding—Quantization is a lossy signal compression technique
where a many-bit representation of a signal is mapped to a
few-bit representation. Quantizer encoding—the many-to-few
bit mapping—can be a time-consuming process, especially for
unstructured vector quantizer of high dimensions. Designing a
fast encoder implementation is a popular research problem.

The outline of the paper is as follows. In Sections II and III,
we review the machine model and its associated optimization
framework in [11] respectively. In Section IV, we discuss how
an instantiation of the framework finds a near-optimal imple-
mentation for IP address lookup. In Section V, we discuss how a
different instantiation of the framework finds an efficient imple-
mentation of scalar and vector quantizer encoders. We present
results in Section VI. Finally, we conclude and discuss future
work in Section VII.

II. DYNAMIC MEMORY MODEL (DMM)

Modern processors use hierarchical memories [7] to enhance
performance, where small, fast memories are located near the
CPU and larger, slower memories are situated further away.
Memory design remains an active area of research [8], [9] as
it continues to have a significant impact on performance. While

newer proposals vary in details, the basic philosophy of having
a memory hierarchy remains the same, and we will focus on
this feature in developing our model.1 Given a hierarchy of
memory, the execution speed of a machine instruction that ac-
cesses memory depends on the level of memory referenced. The
machine model we adopt in Fig. 1(a), called Dynamic Memory
Model (DMM), reflects this characteristic. If the processor
looks and finds a datum residing in level 1 memory , it in-
curs ahit time —this includes the time needed to determine
if it is a hit/miss and the time for datum retrieval. If looks and
cannot find the desired datum in , then it pays amiss penalty

—this includes the time for loading this datum from to
and the time for delivering datum from to . If the in-

struction does not involve memory access, then the execution
time depends on the complexity of the instruction itself. For ex-
ample, we denote the cost of a logical comparison as .
We assume the sizes of and are and respectively.

To deduce deterministically the datum retrieval time at time
during the execution of an algorithm, one will require knowl-

edge of what data are residing where in the hierarchical mem-
ories at . This will require knowledge of both the processor’s
caching policy (direct mapped, set associative or fully associa-
tive [7]) and the data access history from time zero to. In a gen-
eral signal processing setting where the input data is not known
until the algorithm is executed, choosing an optimal implemen-
tation a priori deterministically by tracking all this information
is simply not possible. Instead, we take a probabilistic approach
and approximate each memory access cost as follows.

Suppose the size,, of data structures used by an implemen-
tation of an algorithm (configuration) is . Then the access
time of a desired datum, , is , since all data structures can
be loaded into . If , then we do not know whether
the desired datum resides in or . In this case, we esti-
mate the access time as follows. At any given time, a fraction

of the total number of data blocks
will be in . So assuming all pieces of data are equally

1Other details of memory architecture are also important to algorithm perfor-
mance. However, here we focus on extracting common features across different
memory architecture in constructing a mathematical model, so that implemen-
tations of algorithms can be optimized for different machines. Looking solely
at the hierarchical structure seems like a logical first step. We will discuss the
design of more accurate mathematical memory models in the last section.

176 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 2, JUNE 2003

probable, we can estimate memory access cost of a data
memory retrieval as

if
otherwise. (1)

See the bottom curve of Fig.1 (b) for an illustration of . In
some applications, the input stochastic model to the algorithm
is input-to-input independent; in such case, each memory ac-
cess can only be estimated using (1). In other applications, like
IP address lookup discussed in Section IV, the input model is
Markovian; in such case, each repeated memory access to the
same datum yield access cost. More details on the relation-
ship between input models and the memory model are discussed
in Sections IV and V.

III. OPTIMIZATION FRAMEWORK (DMMOPT)

Using DMM, we can formally define the optimization
problem of finding an optimal configuration for an algorithm
as follows. Let denotes the set of configurations in the search
space. Each configuration uses a set of data structure in
its implementation. Given the set of data structure, we assume
the data memory size of a configuration can be easily
determined. See Section IV and V for details of how is
determined given for practical applications.2

We evaluate the execution cost of a configurationas fol-
lows. First, the data memory size translates to a memory
access cost using (1). Knowing the access cost, we can
evaluate the execution cost of, . The optimization
problem is

(2)

Solving (2) is difficult in general (for the VLC decoding
problem, see [11] for a formal proof of NP-hardness). The
reason is twofold. 1) while the cost of a memory access is not
known till the entire configuration is constructed, the optimal
construction of a configuration depends on the cost of memory
access—a chicken-and-egg problem, and 2) because the cost
evaluation depends on nonlinear function , the problem
is nonlinear. Instead of solving (2) directly, we dissect it into
easier pieces.

A. Problem Transformation

Suppose we know a priori that the total data structure size of
the optimal configuration is . To find , we only need to
search the subset ofwith total size . (2) is then the same as:

(3)

where we define as:

s.t. if
undefined o.w.

(4)
and is the cost of when the memory access cost is
fixed at . We call the sampling function. We ad-

2Small, trivial examples available in these sections may facilitate under-
standing better than just formal definitions.

ditionally denote the set of values where is well de-
fined in (4) as . Solving seems easier, since we have
eliminated the problems of mutual dependency and nonlinearity.
However, we do not know a priori, and so we need to search
through all definable values of in for :

(5)

Graphically, for each definable, we solve (4) and obtain a
sample point on . is the minimum point on sampling
function . See the top curve of Fig.1(b) for an illustration
of . We are now faced with three new difficulties: 1) it is
unclear how to determine which value is definable— ,
2) solving (4) for all can be expensive, and 3) solving (4)
given itself is still hard since it is a constrained problem.

B. Lagrangian Approach for DMM

Focusing only on the third difficulty—solving (4) given,
we take the conventional approach of solving its corresponding
Lagrangian instead:

(6)

The two problems, (4) and (6), are related: it can be shown [13]
that if there exists a Lagrange multiplier, such that the optimal
solution to (6), , satisfies , then is also optimal
to (4). Note that if this is the case, then by definition.

In general, solving the corresponding unconstrained problem
(6) is easier than the original constrained one (4). The problem
is that for a given value , there may not exist a multiplier
such that the optimal solution to the Lagrangian (6),, has the
property . In this case, we cannot even be sure ifis
definable.

In such a case, we propose the following procedure called the
iterative projection methodthat converges to a definable value

anda multiplier such that :

Iterative Projection Method :

1) Initialize .
2) Iteratively solve (6), adjustingeach time, such that

is as close to as possible while keeping
.

3) If , done. Else, let (constraint
shift), goto step 2.

See Fig. 2(a) for an illustration. Because is inversely
proportional to , a simple strategy of adjustingin step 2 is to
use binary search on the real line. Alternatively, a more efficient
strategy, called singular value search, can be employed. We will
discuss this strategy next.

C. Singular Value Search

Recall in step 2 of the Iterative Projection Method, we need to
adjust the multiplier value and solve (6) iteratively, until

is minimized while . Consider the example in
Fig. 2(b). The Lagrangian cost of every configurationin search
space , , is represented as a linear function of
multiplier in the top graph. The bottom graph plots the slope of
the optimal Lagrangian cost function given, or simply .
Notice as increases, the optimal configuration changes from

to to , and the corresponding changes from to

CHEUNG AND MCCANNE: FRAMEWORK FOR COMPUTATION-MEMORY ALGORITHMIC OPTIMIZATION 177

(a) (b)

Fig. 2. Lagrangian approach. (a) Singular value search and iterative projection method. (b) Lagrangian cost and size versus multiplier

to 0. Also note that is never an optimal configuration for
any multiplier value.

At special multiplier values, calledsingular valuesin [13]
and labeled , in Fig. 2(b), there are two (or more) con-
figurations that are simultaneously optimal. For example, at,

and are both optimal. Using similar argument as [13], one
can show that by solving (6)onlyat singular values, we can dis-
cover all solutions to (6) for all multiplier values. Moreover, at
the particular singular value where the slopes of the two optimal
solutions span the constraint, we can conclude that these two
are the solutions with closest to from above and below,
among all Lagrangian solutions. In the example, at, and
are simultaneously optimal, and given they are the closest La-
grangian solutions from above and below,is the solution we
are looking for.

Given we have an optimal solution to (6) for a particular
multiplier value , it turns out finding neighboring singular
values to is easy (to be shown in the two instantiations). Since

is inversely proportional to , we can iteratively step
through neighboring singular values in the direction ofuntil
the ending condition—singular value where the two simultane-
ously optimal solutions have spanning the constraint—is
met. This is calledsingular value search. In Fig. 2(b), we first
initialize multiplier value to and solve (6). We then step to
singular value , then , upon which we have reached the
ending condition.

D. Lagrangian Sampling

Instead of searching for all in (4), by finding solu-
tions to (6) using the iterative projection method, we are actu-
ally only sampling a small number of points on , since
the method converges to a subset of points no matter whatis
initialized to. We call this phenomenonLagrangian sampling,
since each sample point is a solution to the Lagrangian (6). By
sampling, however, we may not be able to find the optimal so-
lution ; we use the following theorem to bound the error

of neighboring sample points from a local minimum point. The
proof is sketched out in Appendix.

Theorem III.1 (Lagrangian Sampling Error The-
orem): Let be a locally optimal solution to (2) such
that , and , are the
two neighboring Lagrangian sample points on . When

is initialized to in step 1 of iterative projection method,
we can find an optimal solution to (6), , such that one of
the Bounding Conditions is satisfied: 1) and

. 2) and . 3)
and . The cost of the locally optimal solution is lower
bounded by , i.e.: .

E. Optimization Framework for DMM—DMMOPT

Having developed the above concepts, the optimization
framework associated with DMM called DMMOPT—one
that guides us in constructing aprogram that finds a near-op-
timal implementation to (2) with a posteriori error bound—is
straightforward. In a nutshell, we construct a program by
instantiating the following procedure for each algorithm:

Given parameters of the machine model (DMM) and
the search space of configurationsof the algorithm, con-
struct by obtaining Lagrangian sampling points.
Each Lagrangian sampling point is obtained with the
iterative projection method. Among the sampling points,
we pick the smallest point as our operating point.

The global error bound is the difference between the best per-
formance sample point and the best performance local bound of
all pairs of neighboring sample points.

How the Lagrangian (6) is solved depends on the search space
of configuration of the algorithm being optimized. We will
begin with the IP address lookup algorithm in the next section.

IV. IP ADDRESSLOOKUP (VLC DECODING)

The IP address lookup problem is the problem of efficiently
finding the longest prefix in a routing table of a network router
that matches the destination address of the IP packet. The entry

178 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 2, JUNE 2003

Fig. 3. Markov model for address prefixes.

corresponding to the longest matched prefix determines the
output interface through which to forward the packet toward its
ultimate destination.

The existing art in this problem domain is quite extensive
[14]–[18]. However, none of the previous works exploit the
memory hierarchy of the underlying processor as a formal
optimization. We will do exactly that in this section by using
the machine model DMM and optimization framework DM-
MOPT discussed in Section II and III respectively. We first
discuss our proposed Markov model that models the correlation
between prefixes of consecutive IP packets. We then discuss
the transformation that transforms the longest prefix match
problem to the variable-length code (VLC) decode problem.
We then discuss solution to the VLC decode problem.3

A. Markov Model for Packet Prefixes

During a typical TCP connection, a burst of packets are sent
back-to-back along the same route to the same destination. This
results in a sequence of packets with the same destination IP
address, meaning the same longest prefix requires consecutive
lookups at the router. To model this dependency, we have con-
structed the simple Markov model shown in Fig. 3. Each prefix
in a routing table is represented by a state—state 1, 2, 3 in the
figure. In addition, there is an initial state 0. Starting at state
0, we enter statewith probability . This represents a packet
with longest prefix has arrived at the router. With probability,
we return to the same state, representing the case when the next
packet also has longest prefix. With probability , we re-
turn to initial state 0, and a new prefix is selected. The expected
number of packets persisting in the same state4 is .

B. Transformation to VLC

Prefix set found at a routing table differs from variable-length
code (VLC) in signal processing such as Huffman code in one
major respect: prefixes in routing table are not prefix-free. In
other words, a prefix entry can be a prefix of another prefix entry
(see Fig. 4(a) for an example). If we represent the prefix set as
a binary tree,5 as shown in Fig. 4(b), then there may exist pre-
fixes that are internal nodes and not leaves of the tree. Instead
of operating on this tree to find the longest prefix, which re-
quires backtracking, we performleaf pushing[18] to convert it
to prefix-freebinary tree, shown in Fig. 4(c). In the example,

3The same optimization can be used to optimize VLC decoding, such as
Huffman decoding, in signal processing.

4The expected number is(1� p) + 2p(1� p)+ 3p (1� p) + . . .= ((1�
p)=(p)) ip = ((1)=(1� p)).

5By representing the prefix set as a binary tree, we are implicitly restricting
ourselves to decoding algorithms that decode sequentially from left to right.
This is reasonable since all prefixes are left-aligned. Further, by allowing bits to
be decoded in any order causes the optimization problem to be NP-hard [11].

(a)

Fig. 4. Representation of a prefix set.

prefix 0 is first expanded to prefix 01, since address with prefix
01 means it has a longest prefix of 0 in the prefix set. We will
assume such a conversion is first employed as a pre-processing
stage for IP address lookup to convert prefixes to prefix-free
VLCs. In the next section, we will discuss how the VLC decode
problem is formally defined.

C. Problem Formulation

Given a set of prefix-free VLCs, the problem is then to find a
configuration that is fast for the particular processor’s memory
hierarchy, modeled by DMM. We choose the search space of
configurations to be configurations that use a mixture of two
VLC decoding operators—lookup table and programmed logic.
A -bit lookup table—using up data memory—entails data
retrieval in memory, hence the execution cost depends on the
total size of data in memory. We assume programmed logic re-
quires no data memory and has execution cost.

To impart intuition, we first consider two examples of VLC
decoding configurations. To decode the set of prefixes in Fig. 4,
two configurations are constructed in Fig. 5: 1) a programmed
logic is followed by either a 2-bit table lookup or another pro-
grammed logic; 2) a two-bit table lookup is followed condi-
tionally by a programmed logic. Graphically, we denote a pro-
grammed logic at a node with dark branch arrows and a lookup
table by shading the node.

To determine the average decoding time of these configura-
tions, we find the size of data structures in memory for
both configurations to be 4 (one 2-bit lookup table). We can now
write the execution time of the first configuration, denoted as

, as follows:

(7)

where , and .
We can rewrite the execution cost in terms of the probability

CHEUNG AND MCCANNE: FRAMEWORK FOR COMPUTATION-MEMORY ALGORITHMIC OPTIMIZATION 179

(a) (b)

Fig. 5. Examples of prefix decoding using 1-bit logic and table lookup. (a) Prefix decoding configuration 1 and (b) prefix decoding configuration 2.

flow of the internal nodes. For example, probability flow of node
is . We can now write as:

(8)

Similarly, the execution cost of the second configuration,will
be .

We are now ready to formalize the optimal VLC decoding
problem, called VLC-OPT, as follows.

Optimal VLC Decode Problem: VLC-OPT
Given: i) Parameters of DMM: , , ; ii) A set of

VLCs and their associated probabilities. What is an optimal
configuration so that the average decoding time is mini-
mized? Mathematically, we write: ,
where is the set of configurations using lookup table
and programmed logic that decodes the given prefix set
correctly.

A proof in [11] shows that this problem is NP-hard. So instead
of solving VLC-OPT optimally, we will use DMMOPT to solve
it approximately but in polynomial time.

D. Program Development

Following DMMOPT guidelines to construct a program that
solves VLC-OPT, we first instantiate the Lagrangian (6) for
this particular problem. To simplify the discussion, we will as-
sume the search space of configurationsis the set that uses
only table lookups and 1-bit programmed logic as decoding
operators.6

To solve (6) for a particular value of, we first represent the
set of VLCs in question as a binary tree, where nodes are num-
bered in post-order with root. We define as a function that
returns the minimum Lagrangian cost, , for all
configurations that correctly decode the set of VLCs rooted at
node .

To solve , we perform the following case analysis. At
node , we have two choices: i) perform a logic operation at
node with cost ; ii) perform a -bit table lookup operation
at node with cost . The minimum of these two

6See [11] for a thorough discussion when the search space includesn-bit
programmed logic and hash functions.

choices for all possible table height plus the recursive cost of the
children nodes will be the cost of the function at node:

(9)

where is the height of binary tree rooted at node, and is
the set of nodes at heightof tree rooted at node. We note that
there are overlapping subproblems when solving using (9).
For example, if is a children node of and is a children node
of , then will be used in the calculation of as well as
the calculation of . To avoid solving the same subproblem
more than once, we use a dynamic programming tableof
size to store the calculated values for . Each
time the function is called, it first checks if the entry
has been filled. If it has, then simply returns the value .
Otherwise, it calculates the value using (9) and stores it in the
table. After solving the Lagrangian problem using (9), we have
a configuration, denoted by, that minimizes the Lagrangian
problem for a particular multiplier value.

1) Singular Value Search for VLC Decoding:As stated in
step 2 of the iterative projection method, we need to intelli-
gently search for multiplier values and solve (6) over and over
again—this issingular value search, of which the general notion
was discussed in Section III-C. To instantiate for VLC-OPT, we
first observe from (9) that by construction, the optimal configu-
ration has Lagrangian cost of form

(10)

where is the set of nodes performing table lookup operations,
and is the set of nodes performing logic operations. Rewriting
the equation yields a simpler representation—a linear function
of with slope and y-intercept :

(11)

(12)

(13)

180 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 2, JUNE 2003

(a) (b)

Fig. 6. (a) Nonuniform SQ and (b) hybrid encoding implementation.

To find singular values, we first define as a function
that returns the next potential larger singular value, calledaug-
mented singular value, , for the tree rooted at node. This
value can be derived from one of two cases. First, it is the value
at which a new configuration that uses a new operator at node

(for example, a logic operation at nodeinstead of a table
lookup), in combination with the subconfigurations of the chil-
dren nodes, becomes optimal asincreases. Second, it is the
value at which one of the descendant nodes of nodechanges
its optimal subconfiguration, affecting the optimality calcula-
tion for node . returns the smaller of these two values, as
expressed in the following pseudo-code:

1.
if , then

else
2.

if & , then

3.
if & , then

where function takes in the slopes’s and
y-intercepts ’s of two lines, and returns the intersection point.
If they are parallel lines, it returns .

can be tabulated as (9) is being solved. The slopeand
y-intercept of node are calculated using (11) after the op-
timal configuration is found for tree rooted at, and they are
then stored in dynamic programming table and , similar
to table used in solving (9). By calling to solve (6)
then to find the augmented multiplier repeatedly, we
will terminate with the solution required in step 2 of the itera-
tive projection method. If , is a sample point
on . If not, we perform constraint shift (step 3) and repeat
the procedure.

V. SCALAR AND VECTORQUANTIZER

We now focus on the second instantiation of DMMOPT:
scalar and vector quantizer encoding.

A. Scalar Quantizer Encoding

We begin with the nonuniform SQ encoding problem. We first
define the search space of configurations, then define the op-
timization problem formally (SQE-OPT). Instead of discussing
the development of the entire program using DMMOPT, as we
did for VLC-OPT, we focus only on solving the Lagrangian (6)
given . The other half of the puzzle, singular value search used
in step 2 of the iterative projection method, can be found in [12].

1) Problem Formulation:Very often a representation of a
signal in a computer needs to be compressed for space-limited
storage or for bandwidth-limited transmission. One compres-
sion technique that can perform this many-to-few bits mapping
of signal is the nonuniform -to- bit SQ, where a scalar
quantity of bits is mapped to one of partitions. Fig. 6(a)
shows an example of a -to-2 bit nonuniform SQ. The
optimal design of nonuniform SQs—the selection of partition
boundary set that minimizes distortion
of reconstruction signals—is well-studied [20]. The resulting

-bit quantizer is commonly called theLloyd-Max Quantizer.
Finding an efficient implementation for the -to- -bit

SQ encoder can involve a tradeoff between computation and
memory. Two simple encoding implementations illustrate the
extremes of computation and memory tradeoffs. The first one
minimizes computations by performing a single-bit table
lookup, where the resulting table entry contains the corre-
sponding -bit partition index. This requires a memory store
of size . An alternative implementation minimizes memory
usage by asking a sequence of logic statements “Is ?”
until the correct partition has been identified. This corresponds
to a binary decision tree of height . A natural question
is: what is the optimal hybrid scheme, using a combination of
lookup tables and logic, that minimizes the average encoding
time? An example of a hybrid implementation is shown in
Fig. 6(b).

Having described the search space, we formally define the
optimization problem of finding the optimal hybrid implemen-
tation for the -to- bit SQ encoder, denoted as SQE-OPT, as
follows:

Optimal SQ encode problem: SQE-OPT

Given search space, what is the fastest configuration
of a -to- bit SQ encoder, given input distri-

bution , partition boundary set ,
and parameters of DMM?

CHEUNG AND MCCANNE: FRAMEWORK FOR COMPUTATION-MEMORY ALGORITHMIC OPTIMIZATION 181

(a) (b)

Fig. 7. Tree pruning example.

2) Program Development:We discuss instantiation
of (6) for SQE-OPT in this section. We begin with the
definition of the cost function that we are minimizing:
let be the minimum Lagrangian encoding cost
(6)— —given input . The
optimal initial operation for this input range can potentially be
a logic or table lookup, resulting in cost or ,
respectively:

(14)

For the logic case, we can choose among allvalues that are
in range (,) to check against input. The result of the check
is a partition of the original interval into and . Let

denote the probability that , and denote the
cost of a logic operation. We can write as

(15)

For the table lookup case, there is an initial lookup cost of
. To minimize table size, is used as the index

into the lookup table. Hence the index used in a-bit table
lookup operation is the left-most bits of . The largest
value can take on, given , is . Hence,
the number of bits needed to describe , or the maximum
height of a lookup table, is . For each table height

, the table operation divides the range into smaller ranges
of width each. The number of these smaller
ranges, , is determined by the largest number that themost
significant bits of can take on. The associated penalty

in (6) is therefore . The following equations formalize
this (see (16), shown at the bottom of the page).The base case
of the recursion is when there is noin range (,), meaning
the input can only be in one partition:

if (17)

The value of then yields , the optimal solution to (6)
given .

3) Tree Pruning: While we can solve (6) givenwith call to
using recursive calls (14)–(16), the running time is ex-

ponential—the call has recursive calls when a -bit table
lookup operation is tested for . This means a single
rexecution of (16) has running time . However, we
can alter the program to reduce its complexity by pruning off
some of the recursive calls in (16). When performing an-bit
table lookup for a given range , there will be recursive
calls according to (16) corresponding tobranches of a binary
tree—the leaves of the tree are the possible values of .
Fig. 7(a) shows a binary tree representation of numbers in range

—from most significant bit to least significant bit—where
. It also highlights the branches that corre-

sponds to each . We call them -branches.
If we perform a 3-bit table lookup on the same range ,

as shown in Fig. 7(b), we see that unless inputfollows one of
the two -branches, we know immediately which partition the
input falls into. If input follows one of the two -branches,
then further operations are needed to determine the correct par-
titions. We can generalize the above observation and say that the
only recursive calls needed in (16) are these-branches. So if
we prune off the non--branches during execution of (16), the
complexity of (16) is ; it is now polynomial in size of
the input.

B. Vector Quantizer

Instead of developing a new optimization, we leverage on the
program we developed for SQE-OPT and use it to speed up a
pre-processing step of an established VQ encoding technique,
calledequal-averagenearest neighbor search(ENNS). We first
describe how ENNS works, then discuss how the program de-
veloped for SQE-OPT can be used to improve ENNS.

1) Equal-Average Nearest Neighbor Search:ENNS [21]
has been shown to lower unstructured VQ encoder’s com-
plexity in the average case for image data. The key observation
is that there are strong correlations among input vector’s
individual components for image data. As a result, the majority
of the input vectors are distributed along the central line

. ENNS proposes that we first presort

(16)

182 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 2, JUNE 2003

(a) (b)

Fig. 8. (a) Equal-average VQ encoding and (b) hybrid encoding implementation.

the codevectors according to their means, then during actual
algorithm execution to find the nearest neighbor to input vector

, we can successively eliminate potential nearest neighbors
by using this bound:

(18)

where is the distance between input vector and
potential nearest neighbor, is the number of dimensions,
and and are mean of and respectively.

An example is shown in Fig. 8(a), where input vectoris
matched against codevectors in two-dimensional
space. We first test codevector and compute . We
can then eliminate any vector whose mean is such that

. Geometrically, we eliminate all
codevectors that lie outside the strip that encloses the circle in
Fig. 8(a). In this example, we eliminate , , and .

For ENNS to be most effective, the initial candidate code-
vector should have mean closest to the input vector. To this
end, ENNS uses a binary decision tree to first find this closest-
input-mean codevector. To speed up this initial search, we use
the program for SQE-OPT to find a near-optimal implementa-
tion that finds this closest-input-mean codevector.

In order to use the program for SQE-OPT to generate a near-
optimal implementation that finds the closest-input-mean code-
vector, we need to supply the inputs of the program: parameters
of DMM, partition boundary set, and input distribution. Parame-
ters of DMM is the same as the SQ case. The partition boundary
set is found by partitioning the space of input mean into bins so
that if the input mean falls into a bin, then the closest-input-mean
codevector is the codevector associated with the bin. The input
distribution is the probability distribution of the input mean.

VI. RESULTS

A. IP Address Lookup

In this section, we demonstrate the efficacy of the generated
configuration for IP address lookup using the program described
in Section IV. We obtained a routing table with 2638 prefixes
from the Palo Alto Internet Exchange (PAIX) from [19] on June
19, 1998. We were unable to obtain the statistics of these pre-
fixes, so we modeled the workload with two prefix probability
distributions for our simulation: 1)Equal, where all prefixes
are equally probable; and 2)Scaled, where an -bit prefix is
twice as likely as an -bit prefix (so longer prefixes are
less likely than shorter ones). We additionally assumed the re-
curring probability in the Markov model is 0.67, resulting

Fig. 9. Sampling functionsH (S) for 2 different Search SpacesL.

Fig. 10. Results for equal probability prefixes.

Fig. 11. Results for scaled probability prefixes.

in three consecutive packets on average with the same longest
matched prefix before another prefix is randomly selected again.
The measurements were taken on a Pentium II 266 MHz, with
L1 cache 16 kBytes and L2 cache 512 kBytes. To match this
environment, we estimate the machine model parameters to be

, where the unit is number of processor
clock cycles.

To find a near-optimal configuration, we first constructed the
Lagrangian sampled function and found the minimum
sample point empirically. We constructed two such functions,
each has a search spacereflecting different collection of de-
coding operators available. For the first function, we used only
one decoding operator—table lookup up to any height. This is
the top curve in Fig. 9. Following the definition of in (4),
the cost unit on the-axis is time/clock cycles. For the second
function, includes an additional decoding operator—optimal
sequential programmed logic of up to height 4. The first function

CHEUNG AND MCCANNE: FRAMEWORK FOR COMPUTATION-MEMORY ALGORITHMIC OPTIMIZATION 183

(a) (b)

Fig. 12. Parameters and sampling functions for SQ experiment. (a) DMM parameters and (b) T(S) and H’(S).

is above the second one for all; this agrees with our intuition
since of the second function includesof the first one.

To test the synthesized configurations, we compared the per-
formance of our configurations against two other algorithms:
1) a lookup table design algorithm known ascontrolled prefix
expansionpresented in [18] which minimizes worst case instead
of average case, and 2) a similar optimization procedure we de-
veloped in 1999 that used a simpler static memory model [10].
Using the PAIX prefix routing table and the two probability dis-
tributions as previously discussed, we simulated a workload of
10 million IP addresses using the Markov model discussed in
Section IV-A. For each algorithm, we repeated the simulation
40 times to find the average decoding speed.

Fig. 10 shows that our synthesized configuration of the
second function outperforms Srinivasan & Varghese by 28.2%,
and Cheung & McCanne 99 by 10.0%. Note again that the
configuration of the second function, “Tables 4 bit Seq.
Logic,” is faster than the configuration of the first function.

We conducted a second set of measurements using a workload
generated from the scaled probability distribution in Fig. 11.
The optimal configuration of the second function outperforms
Srinivasan & Varghese by 83.6%, and Cheung & McCanne 99
by 1.82%. We conjecture the reason for the dramatic improve-
ment over Srinivasan & Varghese to be the following: because
the statistics are very skewed—long prefixes are very unlikely,
and so improving the lookup speed of shorter ones drastically
improves the average decoding speed. As a result, the worst-case
optimal solution, which is largely concerned with longer pre-
fixes, is far from the average-case optimal solution.

B. Scalar Quantizer

To evaluate the performance of our program for SQ, we con-
ducted experiments to compare our generated configuration to
an implementation that use a binary decision tree to encode
SQ [20]. For our experiments, we use parameters in Fig. 12(a),
which are estimates of our test machine, a Pentium II 266 MHz
processor. It has a 16-kbyte L1 cache (50-50 split of the 32-kbyte
data-instruction cache). The two input distributions are ar-
bitrarily chosen Gaussian distributions.

Fig. 13. Comparison of SQ encoders.

Using the chosen parameters, we generated (bottom)
and for 15-to-4 bit scalar quantizer, with input distribu-
tion Gaussian 2 (top) in Fig. 12(b). As in Fig. 9, the cost unit
is time/clock cycle. The partition boundary setwas generated
using Lloyd’s algorithm.

To compare our hybrid table lookup-logic SQ encoder to a
binary decision tree SQ encoder, we generated a workload of
20 million input samples according to the input distribution and
encoded them 10 times with each algorithm to find an average
speed for each case. See Fig. 13 for experimental results.

For the Gaussian 1 input distribution 15-to-2 bit (15-to-4 bit)
SQ encoders, excluding I/O access time, we achieved a 17.84%
speed improvement (84.08%) over the logic-only encoder. For
the Gaussian 2 input distribution 15-to-2 bit (15-to-4 bit) SQ
encoders, we see a 28.14% improvement (85.06%) over the
logic-only encoder. As increases, the improvement of hybrid
encoders over logic-only encoders increases. This is expected,
since the height of the binary decision tree for logic-only en-
coders is larger when as increases.

C. Vector Quantizer

We performed experiments to show that ENNS has faster
encoding speed when the configuration found by the program
solving SQE-OPT is first used to find the codevector with the
closest mean to input vector. To generate various VQ code-
books for testing, we used 512512 gray scale images of ,

and as training data, and constructed code-
books of size 8, 16, 32, and 64 for dimension 4 using the gen-
eralized Lloyd algorithm [20]. We then compared the encoding

184 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 5, NO. 2, JUNE 2003

Fig. 14. Comparison of VQ encoders.

speed of ENNS using a binary decision tree and ENNS using
our generated configuration when encoding the Lena image.
See Fig. 14 for experimental results. Excluding I/O access time,
we achieved speed improvement of 9.83%, 5.67%, 6.65%, and
4.47% respectively for the four codebook sizes.

A few observations can be made. First, we observe that the
improvement for VQ is not as drastic as SQ. This is expected,
since we are speeding up only the initial search for closest code-
vector mean, and the VQ encoding algorithm needs to perform
other tasks like computing distortion between input vector and
potential candidate vectors. Second, we see that as the size of
the codebook increases, the percentage improvement decreases.
The reason is that ENNS is increasingly ineffective in ruling out
candidate codevectors as the codebook size grows. The bulk of
the computation then becomes the computations of distortion
between input vector and candidate vectors, and the speed im-
provement of initial search for closest codevector mean is di-
minished in the overall picture.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a dynamic memory model and
associated optimization framework that finds a near-optimal
implementation within a search space of implementations by
exploiting the computation-memory tradeoff of the underlying
machine. We discussed two applications of the framework: fast
IP address lookup, and fast nonuniform scalar quantizer and
unconstrained vector quantizer encoding. In the results section,
we have shown that there are noticeable improvements over
competing techniques in both applications.

There are two different directions for possible future work.
First, the memory model we constructed (DMM) is undeniably
simple—it does not take into consideration of details of a partic-
ular processor’s memory architecture, such as set associativity.
Admittedly, the memory model was constructed with an eye to
the basic input stochastic models of the two applications in the
paper—a complex memory model is useless if the input model
cannot take advantage of it. An interesting problem is how to
create a more accurate memory model that corresponds well
to a general class of input models, while keeping the resulting
optimization problem tractable. Second, the applications of the
framework we looked at lead naturally to obvious and easily
defined search spaces of configurations’s, leading to tractable
dynamic programming solutions. It would be interesting to look
at other computation-intensive algorithms, such as motion esti-
mation and packet classification, where defining the spaceand
finding the corresponding solution to the Lagrangian are much
more challenging.

(a) (b) (c)

Fig. 15. Three cases for local error bound theorem: (a) case I, (b) case II, and
(c) case III.

APPENDIX

We prove Theorem 3.1 in this section. We first show that we
can always find that satisfies during singular
value search for —the first half of the first bounding
condition.

1) Lemma 1: Given there are two Lagrangian sample points
at and with corresponding solution and , there exists
an optimal solution to (6) such that , during
singular value search for .

a) Proof 1: We prove the statement by contradiction: sup-
pose is the top step of and . That means
there exists some multiplier value , such that :

(19)

By assumption, is strictly smaller than . So
for some , . Let . For

sufficiently large, we have

(20)

So such that , is the optimal solution, which is
a contradiction.

We are now ready to prove Theorem III.1. With the help of
Lemma 1, we will prove the theorem by case analysis.

b) Proof: Let be the optimal solution corresponding to
. Let be the step on with closest to ,

such that —from Lemma 1, we know must exist.
We claim that at least one of the following three cases must be
true: 1)Case I: part of step at , and step at , occur at ,
2) Case II: step at and part of step at occur at , 3)
Case III: step at occurs at and step at occurs at

. From observing Fig. 15, this is true obviously. It is clear
that for each case, there exists an optimal solutionto (6) such
that one of the bounding conditions is satisfied: for Case I, we
let ; for Case II, we let ; for Case III, we let to
be the step at . We now prove that if one of the conditions
is satisfied, then the error bound holds.

We first define two related optimization problems to (4) by
constraint relaxations:

s.t. (21)

s.t. (22)

Let and be the optimal solutions to (21) and (22), respec-
tively. Since the search spaces for both problems are both super-
sets of (4), it is clear that and

. We now prove each of the three cases separately.

CHEUNG AND MCCANNE: FRAMEWORK FOR COMPUTATION-MEMORY ALGORITHMIC OPTIMIZATION 185

Case I: Given an optimal solution to (6) for , and
. By optimality:

(23)

(24)

If we let , given and , term
on left is nonnegative. Hence

(25)

(26)

where the second inequality of (25) is true because
implies by nondecreasing property

of , and, therefore .
Therefore, the error bound holds for Case I.
Case II: Given an optimal solution to (6) for , and

. Following the same optimality argument, we
again get (24). For , we can again argue the left term
is nonnegative, since the two products are strictly negative
and nonpositive respectively. Hence

(27)

(28)

Therefore, the error bound holds for Case II.
Case III: Given is an optimal solution to (6) for .
Following the optimality argument, we again get (24). Now
with , we get

(29)

This is also true for the locally optimal solution. Hence

(30)

Therefore, the bound holds for Case III. We have proven
all cases, and so the theorem is proven.

REFERENCES

[1] D. Engler and T. Proebsting, “DCG: an efficient, retargetable dynamic
code generator,” inASPLOS’94, 1994.

[2] D. Engler, “VCODE: a retargetable, extensible, very fast dynamic code
generation system,” inPLDI’96, 1996.

[3] C. Gebotys, “A minimum-cost circulation approach to DSP ad-
dress-code generation,”IEEE Trans. Computer-Aided Design, vol. 18,
pp. 726–741, June 1999.

[4] S. Bhattacharyya, R. Leupers, and P.Petter Marwedel, “Software syn-
thesis and code generation for signal processing systems,”IEEE Trans.
Circuits Syst. II, vol. 47, pp. 849–875, Sept. 2000.

[5] K. Lengwehasatit and A. Ortega, “Distortion/decoding time tradeoffs in
software DCT-based image coding,” inICASSP’97, 1997.

[6] V. Goyal and M. Vetterli, “Computation-distortion characteristics of
block transform coding,” inICIP’97, 1997, pp. 2729–2732.

[7] D. Patterson and J. Hennessy, Computer Organization and Design: The
Hardware/Software Interface, 1997.

[8] C. Gebotys, “Low energy memory component design for cost-sensitive
high performance embedded systems,” inProc. Custom Integrated Cir-
cuits Conference, 1996.

[9] M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas, “L1 data cache decom-
position for energy efficiency,” inISLPED’2001, 2001.

[10] G. Cheung and S. McCanne, “Optimal routing table design for IP ad-
dress lookups under memory constraints,” inInfocom 99, Mar. 1999.

[11] , “Dynamic memory model based framework for optimization of ip
address lookup algorithms,” inICNP’99, Nov. 1999.

[12] , “Dynamic Memory Model Based Optimization of Scalar
and Vector Quantizer Encoder,”, Berkeley CS Tech. Rep.
UCB/CSD-99-1085, Feb. 28, 2000.

[13] Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary set
of quantizers,”IEEE Trans. Acoust., Speech, Signal Processing, vol. 36,
pp. 1445–1453, Sept. 1988.

[14] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding
tables for fast routing lookups,” inSIGCOMM ’97, 1997, pp. 3–13.

[15] M. Waldvogel, G. Varghese, J. Turner, and B. Platter, “Scalable high
speed ip routing lookups,” inSIGCOMM’97, 1997.

[16] K.Keith Sklower, “A Tree-Based Routing Table for Berkeley UNIX,”
Tech. Rep., Univ. California, Berkeley.

[17] S. Nilsson and G. Karlsson, “Fast address lookup for internet routers,”
in Int. Conf. Broadband Communication, Apr. 1998.

[18] V. Srinivasan and G. Varghese, “Faster IP lookups using controlled
prefix expansion,” inACM Sigmetrics’98.

[19] http://www.merit.edu/ipma [Online]
[20] A. Gersho and R. Gray,Vector Quantization and Signal Compres-

sion. Norwell, MA: Kluwer, 1992.
[21] L. Guan and M. Kamel, “Equal-average hyperplane partition method for

vector quantization of image data,”Pattern Recognit. Lett., vol. 13, pp.
693–699, 1992.

[22] ftp://isdl.ee.washington.edu/pub/VQ/code/ [Online]

Gene Cheung (M’00) received the B.S. degree
in electrical engineering from Cornell University,
Ithaca, NY, in 1995, and the M.S. and Ph.D. degree
in electrical engineering and computer science from
the University of California, Berkeley, in 1998 and
2000, respectively.

Since August 2000, he has been a Member of
Technical Staff, Hewlett-Packard Laboratories
Japan, Tokyo. His research interests include signal
processing, computer networks and optimization.

Steven McCanne, photograph and biography not available at the time of
publication.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

