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Abstract

In interactive multiview video streaming (IMVS), a client receives and observes one of many available viewpoints

of the same scene, and periodically requests from server view-switches to neighboring views, as the video is played

back in time uninterruptedly. One key technical challenge is to design a frame coding structure that facilitates

periodic view-switching, and achieves an optimal tradeoffbetween storage cost and expected transmission rate. In this

paper, we first propose three significant improvements over existing IMVS system, and then study the corresponding

frame structure optimization. First, using depth-image-based rendering, the new IMVS system enables free viewpoint

switching, i.e., by encoding and transmitting both texture and depth maps ofcaptured views, a client can select and

synthesize any virtual view from an almost continuum of viewpoints between the left-most and right-most captured

views. Second, IMVS system adopts a more realistic Markovian view-switching model with memory that more

accurately captures user behaviors than previous memoryless models. View-switching model is used in predicting

client’s future view-switching patterns. Third, assumingthat the round-trip-time (RTT) delay during server-client

communication is non-negligible, during an IMVS session, IMVS system additionally transmits redundant frames RTT

into future playback, so that zero-delay view-switching can be achieved. Given these improvements, we formalize a

new join optimization of the frame coding structure, transmission schedule, and quantization parameters of the texture

and depth maps of multiple camera views. We propose an iterative algorithm to achieve fast and near-optimal solutions.

The convergence of the algorithm is also demonstrated. Experimental results show that the proposed optimized rate

allocation method requires38% less transmission rate than the fixed rate allocation scheme. In addition, with the

same storage, the transmission rate of the optimized frame structure can be up to55% lower than that of I-frame-only

structure, and27% lower than that of the structure without distributed sourcecoding (DSC) frames.

Index Terms

multiview video, video streaming, media interaction, viewsynthesis

I. I NTRODUCTION

Multiview video are videos of the same scene captured time-synchronously by multiple closely spaced cameras

from different observation viewpoints. If a viewer can naturally and interactively select one out of many available

captured views for observation on a 2D display as the video isplayed back, viewer can experience a perception
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Fig. 1. Example of MVC frame structure, where circles and rectangles denote I- and P-frames, respectively. Each frameFt,v is marked by

its time instantt and viewv. The frames in the shaded box represent the ones decoder can access during one navigation.

of depth viamotion parallax; e.g., shifting of a viewer’s head can trigger rendering of the correspondingly shifted

observed view of the scene [1], [2]. Several prototypes of such multiview video systems [1], [3] have demonstrated

an improved viewing experience via this view-switching media interaction.

Much of previous research on multiview video focuses mainlyon multiview video coding (MVC) [4],i.e., how

to efficiently compressall captured videos in a rate-distortion optimal manner, by exploiting the inherent correlation

among nearby frames across time and view. However, MVC framestructures are not suitable forinteractive multiview

video streaming(IMVS) [5], [6], [7], where a client periodically selects and requests the aforementioned view-

switches from a remote server, and the server in response transmits the requested single-view video for uninterrupted

playback at the client. This is because typical MVC frame structures are not designed to provide sufficient decoding

flexibility to support this periodic view-switching interaction; hence multiple frames usually need to be transmitted

in order for a desired frame to be correctly decoded, resulting in large bandwidth consumption. As an illustration,

Fig. 1 shows one MVC frame structure proposed in [4], where I-frames are periodically inserted every∆′ frames

to permit some level of random access. In order to facilitateview-switches every∆ frames, the structure in Fig. 1

can be generated with∆′ set to∆. However, for a small desired view-switching period∆, this leads to high

transmission costs due to frequent I-frame insertion. Alternatively, one can first select a compression-efficient frame

structure with∆′ � ∆, and then send to client all the frames required to enable decoding of frames in a single

requested view after a view-switch. For instance, lettingFt,v denote a frame at time instantt and viewv, in order

to switch from frameF2,1 to frameF3,2, given the frames available at decoder buffer in the shaded region in

Fig. 1, server would send framesF0,2, F2,2, F3,2 andF4,2 to client, but only frameF3,2 is displayed. Besides a

large resulting transmission rate spike during the view-switch, this also incurs an unwanted overhead in decoding

complexity.

Recently, frame structure optimizations [5], [6], [7] for IMVS have been studied. The goal is to design frame

structures at encoding time that facilitate periodic view-switching during an IMVS streaming session, and optimally

trade off expected IMVS transmission rate and storage required to store the structure. Optimized IMVS frame

structures have shown significant reduction in expected transmission rate over naı̈ve frame structures of comparable
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sizes. However, the underlying IMVS system that deploys these structures is still simplistic and has several

shortcomings. First, the available views for a client to select were limited by the few camera-captured views pre-

encoded at server, thus a view-switch could appear abrupt and unnatural to a viewer. Second, when devising view-

switching model to predict client’s future view-switchingpatterns, previous IMVS system assumes a memoryless

model that is statistically independent in time. However, it has been shown [8] that viewers exhibit temporal

dependencies when switching views. Third, previous IMVS system assumes server-client communication takes place

over idealized zero-delay network. In a realistic packet-switched network such as the Internet with non-negligible

round trip time (RTT) delay, server’s responding upon receipt of each client’s requested view will mean each client’s

requested view-switch will suffer at least one RTT delay, hampering interactivity of the viewing experience.

In this paper, we first propose three significant improvements over existing IMVS system, and then study

the corresponding frame structure optimization. First, leveraging on the recent advances in depth-image-based

rendering (DIBR) [9] that enable synthesis of a virtual intermediate view between two captured views using depth

information, new IMVS system encodesboth the texture and depth maps of captured views into avideo-plus-depth

coding format [10], each at the respective optimized quantization parameter (QP). To enable free-viewpoint view-

switching [11], [12],i.e., synthesizing virtual views from an almost continuum of viewpoints between the left-most

and right-most captured views, the server transmits texture and depth maps oftwo nearest captured views to the

client. This represents a major improvement in interactiveviewing experience over previous IMVS systems that are

limited to streaming and rendering of captured views only.

Second, given free viewpoint selection is available to clients, new IMVS system adopts a more realistic Markovian

view-switching model with memory that more accurately captures user behaviors than previous memoryless models.

Third, assuming that the round-trip-time (RTT) delay during server-client communication is non-negligible, during

an IMVS session, IMVS system additionally transmits redundant frames RTT into future playback. Doing so means

client can enjoy zero-delay view-switching during an IMVS streaming session.

Given these improvements in the new IMVS system, we formalize the joint optimization of the frame encoding

structure, transmission schedule, and QPs of the texture and depth maps, and propose an iterative algorithm to

achieve fast and near-optimal solutions. Convergence of the proposed algorithm is also demonstrated. Note that

though the DIBR tool [9], [10] and view-switching model withmemory [3] have both been studied as individual

pieces in the literature, this paper is the first attempt to incorporate them into IMVS coding structure optimization.

As we shall see in the rest of the paper, it is a non-trivial extension of the previous IMVS work [5], [6], [7] to

take into consideration three practical components in IMVSsystem. Experimental results show that our proposed

rate allocation method reduces transmission rate over fixedtexture/depth rate allocation methods by up to38%. In

addition, for the same storage, transmission rate of the frame structure generated by our proposed algorithm can

be up to55% lower than that of I-frame-only structures, and27% lower than that of the structure without DSC

frames.

The outline of the paper is as follows. We first overview related work in Sec. II. We then discuss the IMVS

system, source model of encoding multiview video, our generalized media interaction model with memory for
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view-switching and network delay model in Sec. III. In Sec. IV, we formulate the problem of finding the optimal

frame structure, transmission schedule and QPs for encoding texture and depth maps in a network-delay-cognizant

manner. In Sec. V, we develop an iterative optimization algorithm to efficiently find a solution for the proposed

IMVS problem. Simulation results and conclusion are given in Sec. VI and Sec. VII, respectively.

II. RELATED WORK

We divide our discussion on related work into three sections. We first articulate the difference between interactive

and non-interactive media streaming. We then discuss related work in multiview video streaming. Finally, we

differentiate our contributions in this paper relative to our earlier work on IMVS.

A. Interactive and Non-Interactive Media Streaming

The communication paradigm for IMVS is one where the server continuously and reactively sends appropriate

media data in response to a client’s periodic requests for data subsets; we call this paradigminteractive media

streaming. This is in contrast tonon-interactive media streamingscenarios like terrestrial digital TV broadcast,

where the entire media set is delivered server-to-client before a client interacts with the received data set (e.g.,

switching TV channel). Interactive media streaming has theadvantage of reduced bandwidth utilization since only

the requested media subset is transmitted. It is used for a wide range of media modalities, such as interactive

light field [13], interactive image browsing [14], flexible video playback [15]. For multiview video, MVC [4], [16]

discussed in the Introduction where multiple captured views are compressed efficiently together into a single stream

would be suitable for non-interactive media streaming. In contrast, special frame structures need to be designed for

the periodic view-switching nature of IMVS [7]. This is the focus of previous IMVS work and this paper as well.

B. Interactive Multiview Video Streaming

For interactive streaming of stored multiview videos, the two-layer approach proposed in [3], [17] can be one

solution, where coarse and fine quality layers of several views are grouped and pre-encoded. During actual streaming,

a subset of views of low quality plus two views of high quality, carefully selected based on user’s behavioral

prediction, would then be sent to the client. All transmitted views were subsequently decoded, and the highest

quality views that matched the user’s at-the-moment desired views were displayed. While the intended IMVS

application is the same, our approach is different in that wefocus on the optimal tradeoff among transmission

rate, storage and view synthesis distortion using combinations of redundant P-frames and DSC frames in our frame

structure.

The most similar work to our IMVS work is [8], which developedthree separate frame structures to support

three types of interactivity: view switching, frozen moment and view sweeping. While the authors recognized

the importance of a “proper tradeoff among flexibility (interactivity), latency and bandwidth cost”, no explicit

optimization was performed to find the best tradeoffs of these quantities in one structure.
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Fig. 2. Two extreme examples of frame structure to enable view-switching for two views (white and grey) for∆ = 1. I-, P- and M-frames

are represented by circles, rectangles and diamonds, respectively. (a) P-frames only at switching points; (b) M-frames only at switching points.

C. Previous Work in IMVS

The problem of frame structure optimization for IMVS has been recently studied, where the goal is to design

frame structures at encoding time that facilitate periodicview-switching during an IMVS session, while trading off

expected transmission rate and storage required to store the structure. The encoding must be performedwithout

knowing the exact view trajectory a client will take at stream time [5], [6], [7]. To see intuitively the tradeoff involved,

consider the following two extreme examples. For simplicity we let∆ = 1, but restrict allowable switches to only

neighboring views on a 1D camera array setup; i.e, only clients observing viewsk’s, j − 1 ≤ k ≤ j + 1, at time

i − 1 can switch to viewj at time i. To encode frameFi,j , since temporal playback is not interrupted, at timei

one of the previous framesFi−1,k ’s (for at most three different viewsk) will be available at the decoder. Thus,

one way to support view-switching is to differentially encode one P-framePi,j for each possible decoded frame

Fi−1,k in the decoder buffer. We call this approachredundant P-frames—redundant in that an original pictureF o
i,j

is represented by multiple coded versionsPi,j ’s. An example structure to allow view-switching between two views

is shown in Fig. 2(a) where only P-framesPi,j ’s are encoded at view-switching points, each using a predictor

Fi−1,k of previous instant. As shown in Fig. 2(a), this approach will increase the number of decoding paths at each

switching instant by a factor of two, resulting in a tree structure of sizeO(2N ) if there areN switching instants

between two I-frames. So although this approach would lead to a structure with minimum transmission cost (only

bandwidth-efficient P-frames are used), the size of the coding structure is impractically large.

At the other extreme, one can construct asingle coded version of the original pictureF o
i,j for all possible

decoder states,i.e., a frame (we callmerge frameor M-frame) that can be correctly decodedno matterwhich

Fi−1,k is in the decoder buffer; see Fig. 2(b) for an example. Obviously, an independently coded I-frame would

fit the M-frame reconstruction constraint, but more generally, one can conceive other implementations of M-frame

that exploit correlation between the set of possible predictorsFi−1,k ’s and the targetF o
i,j for coding gain. Example
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Fig. 3. System overview of the proposed IMVS system.

implementations of M-frames include SP-frames in H.264 [18] and different DSC techniques [19], [20]1. In general,

different implementations of M-frames induce different tradeoffs between storage cost and transmission rate [7].

However, any implementation of M-frame must necessarily have larger transmission rate than a P-frame, since by

definition, an M-frame must be encoded under the uncertaintyof which one frame in the set of possible predictors

Fi−1,k ’s would be available at decoder buffer at stream time. Hence, a structure that uses M-frames exclusively at

all view-switching points has high transmission rate but small storage cost (since each original picture is represented

by a single coded version).

In our earlier IMVS work, we had posed the IMVS problem as a combinatorial optimization in [21], proved

its NP-hardness, and provided two heuristics-based algorithms to find good frame structures for IMVS. A more

thorough and analytical treatment of the same problem was given in [5], using only I- and P-frames in the structure.

We have also developed two novel DSC implementations to serve as M-frames for IMVS in [20]. Preliminary results

of using I-, P- and DSC frames in an IMVS optimized structure is presented in [6]; [7] is a generalization of [6]

where the optimization is posed as a search for the best combination of I-, P- and generalized M-frames.

Different from our most recent work in [7] where the number ofviews available for clients’ selections is limited

to the set of captured views, in this paper, we focus on codingstructure optimization for a new IMVS system

that transmits texture and depth maps of captured views, thereby providing free viewpoint synthesis at decoder. For

transmission over communication networks with non-negligible round-trip time (RTT) delay, IMVS system transmits

frames of possibly selected viewpoints RTT into future playback, so that clients can experience zero-delay view-

switching. Given the new IMVS system, our goal is to optimizemultiview video frame structure, transmission

schedule and QP to encode texture and depth maps for transmission at stream time.

III. SYSTEM AND MEDIA INTERACTION MODEL

To facilitate understanding of our contributions in this paper, we first overview the system model for IMVS. We

then describe the source model for coded multiview videos, and DIBR used for synthesizing virtual views using

1In the context of DSC, “predictor” frames are used as side information for decoding.
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coded texture and depth maps of neighboring views. We then discuss a general view-switching model of finite

memory that captures user’s behavior in selecting (possibly virtual) views. Finally, we discuss our network model

that considers the RTT delays between streaming server and clients.

A. System Model for IMVS

The system model we consider for IMVS is shown in Fig. 3, wherea multiview video sourcecaptures time-

synchronized videos of a 3D scene fromK evenly spaced, horizontally shifted cameras in a 1D array. Avideo

serversequentially grabs captured texture and depth maps from themultiview video source2, and encodes the texture

and depth maps separately into the same optimized frame structureT of I-, P- and M-frames, at their respective

optimized QPs. In other words, the same permutation of I-, P-and M-frames used to encode texture maps at one

QP, will be used also to encode depth maps using a different QPseparately. The video server stores a single data

structureT , using which the server can provide IMVS service for multiple clients. An alternative approach of live

encoding a unique view traversal of frames for each client’sinteractively chosen navigation path is computationally

prohibitive if the number of clients is large.

A client can request a view-switch every∆ frames, where the requested view can be a captured view or an

intermediate virtual view between two captured views. The availability of a large number of virtual views—an

almost continuum of views between left-most and right-mostcaptured views—enables finer grain view-switches

compared to previous IMVS systems [5], [6], [21], where the available views were limited by the number of capturing

cameras, and each view-switch was an abrupt jump from one camera view to another. To facilitate synthesis of a

virtual view at the client side, the server always transmitsboth texture and depth maps of the closest left and right

captured views. The client then interpolates the requestedvirtual view using received texture and depth maps via

DIBR (to be explained in Sec. III-C). Further, we assume I-frames are inserted every∆′ frames,∆� ∆′, for all

K captured views for some pre-defined level of random access.

Since the same optimized frame structure is used to encode both texture and depth maps of multiview video source,

for ease of discussion, we will use the termpicture to denote both texture and depth maps of the corresponding

captured image, and the termframe to denote the specific coded version of texture and depth mapsof an image.

Further, given view-switch period3 ∆, we useF o
i,j andFi,j to denote a picture and a frame of viewj at view-switch

instant i∆, i.e., the time at which a client selects heri-th view-switch location.

B. Multiview Video Source Model

As done in [7], in this paper, a picture can be coded as an intra-coded I-frame with no predictor, a differentially

coded P-frame with a single predictor, or a conceptual M-frame with multiple predictors known at encoding time.

2Depth maps can be estimated from texture maps using stereo-matching algorithms [22], or captured directly using time-of-flight cameras [23].

3In more general case of∆ > 1, a pictureF o
i,j represents∆ consecutive pictures of viewj from time i∆ to time (i + 1)∆ − 1, and a

frameFi,j represents∆ consecutive actual frames of viewj, including a carefully chosen I-, P- or M-frame determined by our optimization

algorithm followed by∆− 1 consecutive P-frames predicted from the same view.
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Fig. 4. Examples of (a) redundant P-frames and (b) M-frame.

I-frame is used for random access. For view-switching, either redundant P-frames or M-frames are used. Redundant

P-frames mean one differentially coded P-frame is constructed for each potential predictor (last frame in a decoding

path from which a view-switch is possible). M-frame, on the other hand, has a single frame representation for

multiple potential predictors; reconstruction property of M-frame guarantees that the exact same frame can be

correctly decoded no matter which one of a set of predictor frames known at encoding time is actually available at the

decoder’s buffer at stream time. Redundant P-frames offer the lowest transmission rate possible while increasing the

storage required as the number of decoding paths multipliesover time. An M-frame has a single frame representation

and hence smaller storage, but at a higher transmission ratethan P-frame.

Fig. 4 shows an example tradeoff between transmission rate and storage for redundant P-frames and M-frame

from three different predictors. The redundant P-frames inFig. 4(a) need three different coded versions of picture

F o
i,2, one for each of three different predictorsFi−1,1, Fi−1,2 andFi−1,3, whereas in Fig. 4(b) only one M-frame

is needed to get the same coded version no matter which of the three predictors is available at the decoder.

An M-frame can be implemented using one of many available coding techniques such as SP-frames in H.264 [18]

and DSC frames [19], [20]. In this paper, we implement an M-frame using DSC [20], due to its demonstrably

superior coding performance over SP-frames. We overview the encoding of a DSC frame as follows. First, motion

information from each of the predictor frames is encoded. Then, transform coefficients of the motion residuals

in Discrete Cosine Transform (DCT) domain from each prediction are compared. Because most significant bits

(MSB) of the transform coefficients are likely to be the same for all residuals, only the least significant bit (LSB)

bit-planes that are different among the residuals require encoding. In particular, given the target is the I-frame, the

LSB difference between each residual and the target is interpreted as channel noise, and channel coding (such as

low-density parity check codes (LDPC) used in [19], [20]) ofsufficient strength is employed so that the largest noise

in all residuals can be removed. By encoding multiple motioninformation and LDPC codes for LSB bit-planes, the

exact same frame can be recovered no matter which predictor frame is available at decoder’s buffer. By exploiting

correlation between predictor frames and the target, DSC frame has much smaller size than the independently coded

I-frame.
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C. Depth-image-based Rendering

Depth-image-based rendering (DIBR) is the process of synthesizing novel intermediate virtual views of a 3D

scene from the texture and depth maps of neighboring anchor viewpoints. DIBR-based view synthesis can be

implemented as follows. First, the original texture pixelsof one anchor view are projected into the 3D space, using

the associated depth map. Then, those 3D points are re-projected into the image plane of the virtual view. This

concatenation of 2D-to-3D projection and 3D-to-2D projection is usually called3D warping[24]. Since the number

of disoccluded pixels in a virtual view synthesized using texture and depth map from one single viewpoint is large,

texture and depth maps of two adjacent views are often used for DIBR [12]. If two texture pixels from left and

right anchor viewpoints map to the same virtual view pixel, pixel blending is performed, where the weights for

the left and right corresponding pixels are inversely proportional to the distance from the virtual viewpoint to the

left and right anchor viewpoints. It is possible that no texture pixels from either the left or right anchor viewpoints

map to a particular virtual view pixel due to occlusion. In this case, the missing pixels are usually filled by image

inpainting methods from neighboring projected pixels [22]. In general, large distance between the left and right

anchor views could increase the number of disoccluded pixels in the virtual view, leading to worse DIBR-based

view synthesis quality [12].

Note that though the DIBR view synthesis tool adopted in the paper interpolates an intermediate image using

only texture and depth maps of two neighboring coded views, it is also possible to use texture and depth maps of

other time instants and other views to impose time and view consistency in view generation as done in [25]. Our

proposed coding structure optimization can easily be adapted to a more advanced view synthesis tool, however, and

hence our use of a simple DIBR tool is sufficient to illustrateour core contribution of coding structure optimization.

D. Probabilistic View-switching Model

Without loss of generality, we first denoteK evenly spaced captured views by1, . . . ,K. Between every pair of

adjacent captured viewsi and i + 1, we in addition define a set ofK ′ evenly spaced virtual view positions that

can also be requested by clients,i.e., i + j
K′+1 , j ∈ {1, . . . ,K ′}, separated byview spacingd = 1/(K ′ + 1).

The total number of views available for client’s selection is hence expanded toK ′(K − 1) +K. Fig. 5 shows an

example of multiview sequence whereK = 4 andK ′ = 1 (d = 0.5). Note that all available discreteview-switch

positions(virtual and captured) available for client’s selection are multiples ofd. In the sequel, we will say that a

view-switch positionv = kd, k ∈ Z+, 1/d ≤ k ≤ K/d, hasview coordinatek, wherek is view-switch positionv

expressed in multiples of view spacingd.

We design a view-switch model to allow a client to periodically request a view-switch every∆ frames from

view-switch positionv to another view-switch positionv′, where the difference|v′ − v| is no larger thanLd,

L ∈ Z+, where the pre-definedView difference boundL limits the speed of view transition.

To optimize multiview video frame structure at encoding time without knowledge of clients’ eventual chosen

view trajectories at stream time, we propose the following probabilistic model to capture the view-switching trend

of a typical client. Suppose a client is watching view coordinatek at view-switch instanti∆, after watching view

August 13, 2012 DRAFT



IEEE TRANSACTIONS ON MULTIMEDIA, FEBRUARY 2012 9

t = 0 t = 1 t = 2 t = 3

h = 5

h = 4

h = 6

h = 3

h = 7
Initial 

chunk

view-switch 

position 1

view-switch 

position 1.5

view-switch 

position 2

view-switch 

position 2.5

view-switch 

position 3

view-switch 

position 3.5

view-switch 

position 4

h = 2

h = 8

Fig. 5. Example of progressive view-switch forK = 4 captured views (rectangles) withK ′ = 1 intermediate view (circles) between two

captured views (d = 0.5), view difference boundL = 1, initial view v0 = 2.5, view-switching period∆ = 1 andRTT = ∆− ε. View-switch

positions in the shadeless box and shaded boxes with different patterns represent the ones covered by the initial chunk and structure slices at

time 2 and3 respectively. Each double-end arrow delimits the range of possible view-switches covered by one structure slice afterreceiving a

view-switch coordinate feedbackh from client.

coordinatek′ at instant(i − 1)∆. The probability4 that she will select view coordinatel at instant(i + 1)∆ is

Ωk′,k(l), l ∈ {max(1/d, k − L), . . . ,min(K/d, k + L)}:

Ωk′,k(l) =











































Φ(l − (2k − k′)), max(1/d, k − L) < l

< min(K/d, k + L)
∞
∑

n=l

Φ(n− (2k − k′)), l = min(K/d, k + L)

l
∑

n=−∞
Φ(n− (2k − k′)), l = max(1/d, k − L)

(1)

whereΦ(n) is a symmetricview-switching probability functioncentered at zero; see Fig. 6(a) for an example. In

words, (1) states that the probabilityΩk′,k(l) that a client selects view coordinatel depends on both the current

view coordinatek and previous selected coordinatek′; the probability is the highest at positionk+(k− k′) where

the client continues in view-switch directionk−k′. If l is a boundary coordinate,1 or K, or at the view difference

boundk ± L, then the probabilityΩk′,k(l) needs to sum over probabilities in view-switching probability function

Φ(n− (2k− k′)) that fall outside the feasible views as well, as shown in Fig.6(b), where the right-most boundary

view is requested givenK = 3 andK ′ = 1, i.e., l = 3/d.

E. Network Delay Model

Round trip time (RTT) delay is the time required for a packet to travel from a client to the server and back. In

our IMVS scenario, RTT delay represents the minimum server-client interaction delay experienced by a client from

the time she sends a view-switch request, to the time the effected video due to the request is received. Here, we

assume there are different RTTs between the video server anddifferent clients, though RTT of each server-client

4Given all available view-switch positions (captured and virtual) for client’s selection are integer multiples of viewspacingd, we can define

the view-switch probability functionΩk′,k(l) in discrete domain, wherek′, k and l are all view coordinates.
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Fig. 6. Example of view-switch probability function forK = 3 captured views withK ′ = 1 intermediate view between two neighboring

captured views (d = 0.5). (a) originalΦ(n); (b) shifted functionΦ(n− 6).

pair remains constant (each of server-to-client and client-to-server transmission takes exactly half of RTT) once

video streaming starts. In addition, we assume all RTTs do not exceed an upper-boundRTTmax. There is much

work in the literature in estimating RTT in typical packet-switched networks [26], [27], but is outside the scope of

this paper. We will simply assume the probability density function (PDF) of RTT,ψ(x), is knowna priori at video

encoding time.

IV. PROBLEM FORMULATION

Having described the functionalities of the new IMVS systemand models in Sec. III, we now formulate the

IMVS problem as an optimization problem: given pre-defined storage and distortion constraints, design an optimal

frame structure and associated transmission schedule, andselect optimal QPs for texture and depth map coding, that

minimize the expected server transmission rate, while providing clients with zero-delay view-switching interactivity

in IMVS. In Sec. IV-A, we first develop a network-delay-cognizant transmission protocol for transmitting frames in

a coding structure for IMVS, so that each client can enjoy zero-delay view-switching given her unique server-client

RTT. We then provide definitions of optimization variables,search space, constraints and objective in Sec. IV-B.

Finally, we formally define the IMVS optimization problem inSec. IV-C.

A. Network-delay-cognizant Transmission Protocol

Previous IMVS works [5], [6], [7] do not properly address theproblem of network delay; hence a view-switch

request from a client will suffer at least one RTT delay in addition to the system’s inherent∆-frame view-switch

interval5. In this section, we develop a transmission protocol for network-delay-cognizant view-switching, so that

a client can play back the video in time and perceive noadditional view-switching delay (beyond the system’s

∆-frame view-switch interval), even when RTT is non-negligible. The key idea is to send additional data to cover

all possible view-switch positions to be requested by a client one RTT into the future beyond the requested view.

5View-switch interval∆ for IMVS systems can be set very small (on the order of every3 to 5 frames), and hence an additional RTT delay

on the Internet of up to hundreds of milliseconds can be detrimental to the interactive multiview video experience.
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Fig. 7. Timing diagram during server-client communication.

TABLE I

SUMMARY OF NOTATIONS FOR IMVS PROBLEM FORMULATION

Notations Description

K, K ′ number of captured views, number of virtual views between two neighboring captured views.

L, vo view difference bound, starting view-switch position.

RTT , δ RTT delay, number of view-switches that a structure slice covers into future after receiving a client feedback.

T , Q = [Qt, Qd]
T frame structure, QPs for encoding texture and depth map.

B(T ,Q), C(T ,Q), D(Q) storage cost, transmission cost, distortion cost of a framestructureT and QPsQ.

F o
i,j , Fi,j original picture, coded frame of view-switch instanti∆ and viewj.

Ii,j , Pi,j , Mi,j I-frame, P-frame, M-frame of view-switch instanti∆ and viewj.

Ξi(δ), c(Ξi(δ)) the set of frames, the center view coordinate for decoding atview-switch instanti∆.

p(Ξi(δ)), q(Fi,j , δ) transmission probability of a sliceΞi(δ), a frameFi,j , given δ.

ψ(x), Ψ(δ) probability density function ofRTT , probability mass function ofδ.

tδ(T , G(δ),Q) transmission rate of a frame structureT and QPsQ, given scheduleG(δ).

Dc
j (Qt), Ds

k
(Q) average distortion of frames of captured viewj, virtual view k, given QPsQ.

Following the illustration in Fig. 7, we first discuss timingevents during server-client communication in IMVS

system assuming constant transmission delay (as discussedin Sec. III-E). The server first transmits aninitial chunk

of coded multiview data to the client, arriving at the client1
2RTT time later. Upon receipt of the initial chuck at

time 0, the client starts playback, and makes her first view-switch∆-frame time later. Her first view-switch decision

(feedback) is transmitted immediately after the view-switch, and arrives at server at time12RTT +∆. Responding

to the client’s first feedback, server immediately sends astructure slice, arriving at the client12RTT time later,

or RTT time after the client transmitted her feedback. More generally then, the client sends feedbacks in interval

of ∆-frame time, and in response, server sends a structure slicecorresponding to each received feedback every

∆-frame time. We assume there are no packet losses during packet transmission.

Notice that from the time the client starts playback to the time the first structure slice is received from server,

∆+RTT time has elapsed. Therefore, before the arrival of the first structure slice, the number of view-switches,

δ, that the initial chunk must enable is

δ =

⌊

∆+RTT

∆

⌋

(2)

For simplicity, we assume that IMVS session starts from a known initial positionvo with view coordinateko, i.e.,
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vo = kod andko ∈ Z+, 1/d ≤ ko ≤ K/d. Given each subsequent view-switch can maximally alter view coordinate

by±L, initial chunk must contain data enabling view-switches toview coordinatesVi = {k | max(1/d, ko− iL) ≤

k ≤ min(K/d, ko + iL), k ∈ Z+} at view-switch instants(i∆)’s, where0 ≤ i ≤ δ.

Because subsequent structure slices arrive every∆-frame time, each structure slice only needs to enable one

more view-switch for the client to continue video playback in time and enjoy zero-delay view-switching. Notice

that because each structure slice arrives at the clientRTT time after the client sent her view-switch feedback,

the view-switch enabled by the structure slice corresponding to the client’s feedback sent at instantt = i∆ is the

first view-switchafter time t + RTT , i.e., view-switch at instant(i + δ)∆. In other words, given client’s view

coordinate selectionh at instanti∆, thespanof view-switch coordinatesVi+δ that a structure slice must cover for

the view-switches at instant(i+ δ)∆, is Vi+δ = {k | max(1/d, h− δL) ≤ k ≤ min(K/d, h+ δL), k ∈ Z+}.

This protocol—transmitting multiple views for the sake of client’s selection of a single view in the future—is in

stark contrast with the protocol in [5], [6], [7], where onlyone single view is transmitted corresponding to each

client’s request. Fig. 5 illustrates a view-switching example for K = 4, K ′ = 1, L = 1, vo = 2.5, ∆ = 1 and

RTT = ∆− ε for small ε > 0. The initial chunk contains only enough multiview data to enableδ = 1 view-switch,

spanning view-switch coordinatesV1 = {4, 5, 6}. If the client first selects view-switch coordinateh = 4 at time1,

then the first structure slice must span view-switch coordinatesV1+δ = {3, 4, 5}. Instead, if the client first selects

view-switch coordinateh = 6, then the corresponding slice must span view-switch coordinatesV1+δ = {5, 6, 7}.

B. Definitions for IMVS Optimization

Before formally defining the IMVS optimization problem, we first define optimization variables (frame structure,

associated transmission schedules and QPs), and storage, transmission and distortion costs corresponding to a set

of variables. See Table I for a summary of notations.

1) Redundant Frame Structure:One can construct aredundant frame structureT , comprised of I-, P- and

M-frames, denoted asIi,j ’s, Pi,j ’s andMi,j ’s respectively, to represent the captured multiview videoframes at

view-switch instanti∆’s and viewj’s for IMVS. Each frame not located at view-switch instants (not shown in our

graphical model) is a P-frame predicted from a frame of the same view and previous time instant. Note that while

we already discussed one concrete DSC implementation of M-frame in Sec. III-B, our abstraction and subsequent

optimization can apply more generally to any implementation of M-frame. Fig. 8 shows one example frame structure

for multiview sequence in Fig. 5.

A frame structureT forms adirected acyclic graph(DAG) starting with an I-frame if initial view-switch position

is a captured view, or an I-frame and a P-frame predicted fromthe I-frame if initial view-switch position is a

virtual view, as starting nodes. In Fig. 8, I-framesI0,2 and P-frameP0,3 are two starting nodes of structureT for

synthesizing virtual view2.5. T is “redundant” in the sense that an original pictureF o
i,j can be represented by more

than one frameFi,j . In Fig. 8, original pictureF o
3,4 is represented by two P-frames,P (1)

3,4 andP (2)
3,4 , each encoded

using a different predictor,P2,4 andP3,3, respectively. Depending on which predictor is available at decoder during

stream time, different coded framesFi,j ’s can be transmitted to enable correct decoding and (slightly different)
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Fig. 8. Example frame structure forK = 4 captured views withK ′ = 1 intermediate view (small circles) between two neighboringcaptured

views (view spacingd = 0.5), view difference boundL = 1, initial view v0 = 2.5, view-switching period∆ = 1 andRTT = ∆− ε. I-, P-

and DSC-frames are represented by large circles, rectangles and diamonds, respectively.

reconstruction of original pictureF o
i,j . This is done to lower transmission rate by exploiting correlation between

the requested picture and frames in the decoder buffer, and to avoid coding drift [5].

2) Structure Slice:As discussed in Sec. IV-A, depending on the view-switch coordinateh selected by client

at view-switch instant(i − δ)∆, a set of frames of different captured viewpoints will be transmitted for possible

decoding at view-switch instanti∆. Given δ, we definestructure sliceΞi(δ), with center coordinatec(Ξi(δ)),

as a set of frames to enable selection of view-switch coordinates in span{k | max(1/d, c(Ξi(δ)) − δL) ≤ k ≤

min(K/d, c(Ξi(δ)) + δL), k ∈ Z+} at view-switch instanti∆. Center coordinatec(Ξi(δ)) is the client’s selected

view coordinateh at view-switch instant(i− δ)∆.

Consider the example in Fig. 8, where initial chunk containsframesI0,2, P0,3, P1,2 andP1,3 to cover view-

switches to positions2, 2.5 and 3 at time 1. If the client selects view-switch coordinateh = 4 (view 2) at time

1, then the corresponding structure slice transmitted isΞ
(1)
2 (1) = {P2,1, P2,2, P2,3} with c(Ξ

(1)
2 (1)) = 4, to cover

possible view-switches to positions1.5, 2 and2.5 at time 2. Instead, if client remains in coordinateh = 5 (view

2.5) at time1, then the structure sliceΞ(2)
2 (1) = {P2,2, P2,3} will be sent to decoder withc(Ξ(2)

2 (1)) = 5, for the

possible switches to positions2, 2.5 and3 at time2. Notice that different slices can contain the same frames, and

can also contain different number of frames.

3) Transmission Schedule:Which sliceΞi(δ) of structureT is transmitted for view-switch instanti∆ depends

on sliceΞi−1(δ) transmitted previously (for differential coding), and client’s selected view-switch coordinateh at

view-switch instant(i − δ)∆. We can formalize the association amongΞi−1(δ), h andΞi(δ) via a transmission

scheduleG(δ). More precisely,G(δ) dictates which structure sliceΞi(δ) will be transmitted for client’s selection

at view-switch instanti∆, given previous transmitted sliceΞi−1(δ) and client’s selected view-switch coordinateh

at view-switch instant(i − δ)∆:

G(δ) : (Ξi−1(δ), h) ⇒ Ξi(δ), max(1/d, c(Ξi−1(δ))− L) ≤ h

≤ min(K/d, c(Ξi−1(δ)) + L)
(3)
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where center coordinate ofΞi(δ) is c(Ξi(δ)) = h. In what follows, we denote a scheduled transmission from slice

Ξi−1(δ) to sliceΞi(δ), with client’s selected view-switch coordinateh at instant(i−δ)∆, as(Ξi−1(δ), h)
G(δ)
⇒ Ξi(δ).

Note that for a given structureT and sliceΞi−1(δ) available for decoding at view-switch instant(i − 1)∆, if

client selects view coordinateh at view-switch instant(i− δ)∆, there may exist different decodable slicesΞi(δ)’s,

and hence different transmission schedulesG(δ)’s, that enable all reachable view-switch coordinatesVi at instant

i∆. Our optimization will hence consider not just optimal structure T , but also optimal scheduleG(δ) for the

chosen structureT .

4) Feasible Structure Space:Based on the above discussion, we can define afeasible frame structureT given

δ as one where every reachable view-switch coordinate, as constrained by the view-switching model (Sec. III-D),

can be requested by a client every∆-frame interval and be executed with zero-delay usingT . Mathematically, we

say thatT is feasible givenδ if there exists at least onefeasible scheduleG(δ), such that each sequence of client’s

permissible selection of view-switch coordinates,h1, h2, . . ., will lead to a corresponding scheduled transmission

of decodable slicesΞi+δ(δ),Ξi+1+δ(δ), . . ., such that center coordinate and view span of each sliceΞi+δ(δ) are

c(Ξi+δ(δ)) = hi andVi+δ = {k | max(1/d, hi − δL) ≤ k ≤ min(K/d, hi + δL), k ∈ Z+}, respectively. Center

coordinates and view spans of slices defined above ensure allreachable view-switch coordinates can be selected

by client at instants(i + δ)∆, (i+ 1 + δ)∆, etc.

More generally, RTT between server and client can take on different values resulting in differentδ’s. In what

follows, we definefeasible spaceΘ as the set of all feasible frame structuresT ’s, where a feasible structureT is

one where there exists at least one feasible scheduleG(δ) for each possibleδ.

5) Structure Slice Probability and Frame Transmission Probability: To properly define transmission cost, we first

definestructure slice probabilityp(Ξi(δ)) as the probability that structure sliceΞi(δ) for decoding at instanti∆

is transmitted, given scheduleG(δ). Considering the structure slicesΞi(δ)’s in the initial chunk, where0 ≤ i ≤ δ,

are always sent to client, this probability could be computed recursively using view transition probabilityΩk′,k(l):

p(Ξi(δ)) =










1, 0 ≤ i ≤ δ
∑

Ξi−1(δ)∈G
p(Ξi−1(δ))

∑

c′

Ωc′,c(Ξi−1(δ))(c(Ξi(δ))), i > δ

(4)

whereG = {Ξi−1(δ) | (Ξi−1(δ), c(Ξi(δ)))
G(δ)
⇒ Ξi(δ)}. In words, (4) states thatp(Ξi(δ)) is the sum of probability

of each sliceΞi−1(δ) switching to sliceΞi(δ), scaled by the slice probability ofΞi−1(δ) itself, p(Ξi−1(δ)), given

scheduleG(δ) dictates slice transmission in frame structureT .

Further, we defineframe transmission probabilityq(Fi,j , δ) as the probability that a frameFi,j is transmitted

from server to client, which can be calculated using the defined structure slice probability (4):

q(Fi,j , δ) =
∑

Ξi(δ)|Fi,j∈Ξi(δ)

p(Ξi(δ)) (5)

In words, the transmission probability of a frameFi,j is the sum of probabilities of slicesΞi(δ)’s that includeFi,j .
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6) Storage Cost:For a given frame structureT and the associated QPs for texture and depth images,Qt and

Qd, we can define the correspondingstorage costby simply adding up the sizes of all the framesFi,j ’s in T , i.e.,

B(T ,Q) =
∑

Fi,j∈T
|Fi,j(Q)| =

∑

Fi,j∈T

(

|F t
i,j(Qt)|+ |F d

i,j(Qd)|
)

(6)

whereQ is the pair of QPs for texture and depth mapsQ = [Qt, Qd]
T , |Fi,j | is the size of frameFi,j which

depends on the specific QPsQ, F t
i,j andF d

i,j denote the texture and depth maps of frameFi,j , respectively.

7) Transmission Cost:Given a frame structureT and the associated QPsQ, we can define the corresponding

transmission cost. First, given the relationship betweenδ andRTT in (2), one can see that the same transmission

scheduleG(δ) for a given frame structureT can be applicable to a range ofRTT ’s, (δ − 1)∆ ≤ RTT < δ∆;

i.e., the same sliceΞi(δ) of structureT can be transmitted for view-switch instanti∆. Therefore, to facilitate the

definition of transmission cost, we map the PDF of RTT,ψ(x), into a discrete probability mass function (PMF) of

an integer numberδ of view-switch interval∆, Ψ(δ), by integratingψ(x) over the range[(δ − 1)∆, δ∆):

Ψ(δ) =

∫ δ∆

(δ−1)∆

ψ(x), 1 ≤ δ ≤ δmax (7)

Whereδmax = b(∆+RTTmax)/∆c. Then, given schedulesG(δ)’s for possibleδ’s, transmission costC(T , G(),Q)

of a frame structureT associated with QPsQ is defined as the expected transmission cost,i.e.,

C(T , G(),Q) =

δmax
∑

δ=1

Ψ(δ) tδ(T , G(δ),Q) (8)

whereG() denotes the set of schedulesG(δ)’s for all δ’s.

For a given scheduleG(δ), individual transmission costtδ(T , G(δ),Q) of structureT and QPsQ depends on

view transition probabilityΩk′,k(l), which can be calculated by adding up the sizes of all framesFi,j ’s in T , scaled

by the corresponding frame transmission probability (5):

tδ(T , G(δ),Q) =
∑

Fi,j∈T
q(Fi,j , δ) |Fi,j(Q)| (9)

8) Distortion Cost: Since clients can request captured or synthesized views forobservation, we definedistortion

costas the average distortion of all captured and synthesized views available in the system. For distortion of a picture

in a captured view, we use the Mean-Squared-Error (MSE) between the original and coded versions of the texture

maps of the picture. On the other hand, since no captured image is available for a virtual view, we synthesize

an image using the uncompressed textures and the depth images of neighboring captured views as reference to

calculate its MSE. We denoteΛ as the discrete set of available QPs for texture and depth coding.

Notice that the distortion of both captured views and virtual views are mainly influenced by the chosen QPs

Q, and independent of a particular frame structureT . For example, in Fig. 8, captured view4 at time 3 can be

reconstructed with roughly the same distortion using either a P-frameP (1)
3,4 or P (2)

3,4 . Let Dc
j(Qt) be the average

distortion of frames at all view-switch instants of captured view j given the texture QPQt, andDs
k(Q) be the

average distortion of synthesized frames at all view-switch instants of virtual viewk given the texture/depth QPs
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Q used for both neighboring captured views. Distortion costD(Q) is then given by

D(Q) =
1

(K − 1)K′ +K





K
∑

j=1

Dc
j (Qt) +

K−1
∑

j=1

K′

∑

k=1

Ds

j+ k
K′+1

(Q)



 (10)

From (6) and (10), it can be seen that coarse QPsQ result in smaller frame size of texture and depth coding,

|F t
i,j(Qt)| and|F d

i,j(Qd)|, and larger distortionD(Q). This means that given a storage constraint, a frame structure

can afford more redundant representations of one picture using redundant P-frames to lower transmission rate, at

the expense of sacrificed visual quality. Alternatively, finer QPsQ can lower the distortion, but the increased frame

size will lead to less redundancy (more M-frames) used in a frame structure, resulting in larger transmission rate.

C. Optimization Definition

We can now formally define our IMVS problem as a combinatorialoptimization problem as follows.

Problem Definition 4.1:Given a number of captured views, the IMVS optimization problem is to find a structure

T using a combination of I-, P- and M-frames, and associated schedulesG(δ)’s for possibleδ’s, as well as

texture/depth QPsQ, that minimize the transmission costC(T , G(),Q) while both a storage constraint̄B and a

distortion constraint̄D are observed. Mathematically, this optimization problem is given by:

min
T ∈Θ,G(),Q∈Λ

C(T , G(),Q)

s.t. B(T ,Q) ≤ B̄, D(Q) ≤ D̄
(11)

It is instructive to compare our new joint optimization formulation with that in [7]. On one hand, the objective of

both formulations is to minimize transmission rate subjectto a storage constraint. On the other hand, our formulation

is different from [7] in two respects. First, to enable IMVS with free viewpoint synthesis, our joint optimization

considers the optimal bit rate allocation between texture and depth maps since both types of maps need to be

transmitted for view synthesis at decoder, while [7] considers coding of texture maps only. Correspondingly, an

additional distortion constraint is considered in our formulation to identify the optimal texture/depth QPs. Second,

in our formulation, we consider structure optimization forvariable network delays. As we will see in Sec. V-B, it

turns out that different delays contribute to scheduled transmission of different coded frames. This is in contrast to

structure optimization in [7] where only one logical schedule exists for a given structure.

V. A LGORITHM DEVELOPMENT

In this section, we develop algorithms to select a good framestructure, associated transmission schedules, and

texture/depth QPs for the IMVS optimization problem in (11). We first propose an iterative procedure by alternately

optimizing structureT and associated schedule setG() only, then QPsQ only, while keeping the other set of

variables fixed. We then present a greedy algorithm to optimize a frame structureT and schedule setG() given

QPsQ. Finally, we present a low-complexity algorithm to update QPsQ for a given frame structureT and schedule

setG().
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Fig. 9. Relationship betweenR and1/QP of I-, P- and DSC-frames, for the texture and depth coding of sequence (a)Dog and (b)Pantomime.

A. Two Sub-Problems

To simplify the optimization, we divide the overall IMVS optimization problem into two simpler sub-problems,

optimizing one set of variables while keeping the other set fixed. We formalize the definitions of the two sub-

problems as follows.

Problem Definition 5.1:Given chosen texture/depth map QPsQ(k) at iterationk that satisfy distortion constraint

D̄, the IMVS optimization problem degenerates tosub-problem one: find structureT and associated schedule set

G() to minimize transmission costC(T , G(),Q(k)), subject to storage constraint̄B, i.e.,

min
T ∈Θ,G()

C(T , G(),Q(k))

s.t. B(T ,Q(k)) ≤ B̄
(12)

Notice that since the quality of view synthesis depends onlyon QPsQ(k) and not on the particular chosen structure

T , the distortion constraint can be ignored in this sub-problem.

Problem Definition 5.2:Given a fixed frame structureT (k) and associated schedule setG(k)() at iterationk, the

IMVS optimization problem degenerates tosub-problem two: find QPsQ for texture and depth coding, such that

the expected transmission costC(T (k), G(k)(),Q) is minimized while observing both the storage constraintB̄ and

the distortion constraint̄D:
min
Q∈Λ

C(T (k), G(k)(),Q)

s.t. B(T (k),Q) ≤ B̄, D(Q) ≤ D̄
(13)

Based on the two sub-problems, we can summarize the iterative procedure as:

1) Initialize a pair of texture/depth QPsQ(0) satisfying the distortion constraint̄D, and setk = 0.

2) Fix Q(k), and optimize structureT and associated schedule setG() to minimize the transmission rate in

sub-problem one (12). Fork > 0, stop if the pre-defined convergence criterion is satisfied.

3) Fix T (k) andG(k)(), and findQ that minimizes the transmission rate in sub-problem two (13).

4) Go to step 2 and setk ← k + 1.
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Fig. 10. Relationship between distortionD and quantization parameters(Qt, Qd) of sequence (a)Dog and (b)Pantomime.

As we can see above, the crux of the iterative procedure is to solve the two sub-problems separately. In the

following, we will propose a greedy frame structure and schedule optimization algorithm and a QP update algorithm,

both with low complexity, to separately address the two sub-problems.

B. Frame Structure & Schedule Optimization

We first present a frame structure and schedule optimizationalgorithm given fixed QPsQ(k). Though (12) differs

in some respects from the frame structure optimization problem in [21], a similar proof can be easily constructed

to show that sub-problem one is also NP-hard. Given the computational complexity of (12), we first convert the

storage-constrained problem (12) into the following unconstrained problem:

min
T ∈Θ,G()

J(T , G(),Q(k)) = C(T , G(),Q(k)) + λB(T ,Q(k))

=
∑

Fi,j∈T

(

∑

δ

Ψ(δ)q(Fi,j , δ) + λ

)

|Fi,j(Q
(k))|

(14)

where the Lagrangian multiplierλ is a fixed parameter that represents the tradeoff between transmission rate and

storage, andJ(T , G(),Q(k)) is the Lagrangian cost. To find the optimalλ that minimizes transmission cost while

observing storage constraint in (12), a bisection-search method is used over a predefined range[λmin, λmax].

To solve (14) efficiently for givenλ, we use a greedy approach to find near-optimal frame structure and associated

schedules. In a nutshell, we iteratively build one “structure layer” ti and “schedule layer”gi() one view-switch

instant at a time from front to back. Structure layerti is comprised of framesFi,j ’s of all captured viewsj’s at

instanti∆, and schedule layergi() consists of local schedulesgi(δ)’s for all possibleδ’s, each mapping a structure

slice Ξi−1(δ) in structure layerti−1 to a structure sliceΞi(δ) in ti, given client’s view-switching feedback at

instant(i− δ)∆. At each view-switch instanti∆, the key question is: given structureTi−1 and schedule setGi−1()

constructed up to instant(i−1)∆, how to optimally construct structure layerti and schedule layergi() to minimize

(14)?

To construct locally optimal structure layerti at view-switch instanti∆, we first initialize structure layert0i with

K M-frames, one for each ofK captured views. More precisely, for each M-frameMi,j of captured viewj, we
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assign all framesFi−1,k ’s in structure layerti−1 of instant(i − 1)∆ that can switch to viewj at instanti∆, as

predictors ofMi,j. Since an M-frame is not a redundant representation (one frame per captured picture), the initial

structure layer has minimum storage of all possible layers.

Corresponding to initial structure layert0i , we construct initial scheduleg0i (δ) givenδ as follows. We first designate

structure slicesΞi(δ)’s using created M-frames, where each sliceΞi(δ) of center coordinatec(Ξi(δ)) = h has enough

M-frames to enable view-switches to coordinatesVi = {k | max(1/d, h−δL) ≤ k ≤ min(K/d, h+δL), k ∈ Z+}.

Then, given client’s view coordinate selectionh at instant(i−δ)∆, an initial scheduleg0i (δ) will map any previously

designated structure sliceΞi−1(δ) in ti−1 with center coordinatec(Ξi−1(δ)) = h′, max(1/d, h − L) ≤ h′ ≤

min(K/d, h+ L), to the sameΞi(δ), i.e., (Ξi−1(δ), h)
g0
i (δ)⇒ Ξi(δ).

However, large M-frame sizes in initial structure layert0i lead to large transmission cost. To reduce transmission

cost, we incrementally add the most “beneficial” redundant P-frames one at a time—beneficial meaning one that

reduces the Lagrangian cost—thereby increasing storage. We terminate when no more beneficial redundant P-frames

can be added.

In details, we describe the algorithm as follows. First, as initial structure layert0i , we construct one M-frame

for each captured viewj at view-switch instanti∆. We then designate structure slicesΞi(δ)’s and determine the

corresponding schedulesg0i (δ)’s as described earlier, and compute the resulting local Lagrangian cost in (14). Given

the initial structure and schedule layers, we improveti andgi() by iteratively making local structure augmentations:

selecting one candidate from a set of structure augmentations at each iteration, which offers the largest decrease in

local Lagrangian cost. The possible augmentations are:

• Add new P-framePi,j to ti, predicted from existing frameFi,k of neighboring viewk of sameinstanti∆.

• Add a new P-framePi,j , predicted from an existing frameFi−1,k in ti−1 of the previousinstant(i− 1)∆.

• Select a different predictorFi,k of the sameinstanti∆ for an already constructed P-framePi,j in ti.

Notice that the last augmentation does not increase the number of representations of a given captured view, while

each of the first two increases the number of frame representations by one P-frame.

Using constructed structure layertli in the l-th iteration, we build up the corresponding schedulegli(δ) givenδ by

minimizing transmission rate. More specifically, given a client’s selected view coordinateh at view-switch instant

(i − δ)∆ and a structure sliceΞi−1(δ) in ti−1 with center coordinatec(Ξi−1(δ)) = h′, max(1/d, h− L) ≤ h′ ≤

min(K/d, h+L), we designate structure sliceΞi(δ) by finding the set of framesFi,j ’s in tli, which possesses the

smallest size of transmitted frames while enabling all reachable coordinatesVi = {k | max(1/d, h− δL) ≤ k ≤

min(K/d, h+ δL), k ∈ Z+} at view-switch instanti∆. This can be mathematically expressed as

gli(δ) : min
Ξi(δ)∈G′

∑

Fi,j∈Ξi(δ)

|Fi,j | (15)

whereG′ = {Ξi(δ) | (Ξi−1(δ), h)⇒ Ξi(δ)}.

Note that different from frame optimization methods in [7] where there is only one logical schedule for a given

structure due to the assumption of zero network delay, in theproposed greedy algorithm, we need to optimize
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multiple schedulesgi(δ)’s for different δ’s in the schedule layer given a structure layerti at instanti∆, each

corresponding to clients’ view-switch feedbacks at different instants((i − δ)∆)’s.

The above process repeats to find the most locally beneficial augmentation at each iteration, update the corre-

sponding schedules by (15) and compute the local Lagrangiancost in (14), until no more Lagrangian cost reduction

can be found. Note that after updating the local schedules ateach iteration, it is possible that some frames inti

are not used by any view-switch. In this case, those unused frames will be removed from the structure.

C. Optimal Quantization Parameters Update

We next present a low-complexity algorithm to optimally update QPsQ for given structureT (k) and schedule

setG(k)(), as defined by the second sub-problem (13). To find the optimalsolution of the constrained optimization

problem (13), the naı̈ve approach of exhaustively searching all candidatesQ’s that satisfy both storage constraint

B̄ and distortion constraint̄D is too expensive in practice. Instead, we develop a strategyto update QPs by first

studying rate-quantization (R-Q) and distortion-quantization (D-Q) characteristics of multiview videos.

1) R-Q Model Analysis:During the last decades, the relationship between rate and QP of video coding has been

extensively studied for applications such as rate control.Based on the experiments on a large number of multiview

video sequences, we adopt the modified linear R-D model for H.263 in [28], where the rateR of a coded frame

is modeled asR(QP ) = X/QP + L. HereX is a constant andL is an offset indicating the overhead bits.

Fig. 9 shows the relationship between coded bitsR and 1/QP of one I-, P- and M-frame, on the texture and

depth coding respectively of the sequencesDog andPantomime. As shown in Fig. 9,R is linearly correlated

with 1/QP no matter if the frame in question is coded using I-, P, or M-frame. As a consequence, the storage cost

B(T ,Q) in (6) of a given frame structureT can be written as a function of QPsQ as:

B(T ,Q) =
∑

Fi,j∈T

(

Xt
i,j

Qt

+ Lt
i,j +

Xd
i,j

Qd

+ Ld
i,j

)

=
X1

Qt

+
X2

Qd

+ L (16)

whereXt
i,j andLt

i,j , X
d
i,j andLd

i,j are the individual parameters of texture and depth components for frameFi,j ,

andX1 =
∑

Fi,j∈T

Xt
i,j , X2 =

∑

Fi,j∈T

Xd
i,j andL =

∑

Fi,j∈T

(Lt
i,j+L

d
i,j) are the corresponding parameters of the overall

structureT . In our experiments, instead of calculating the specific parameters for each frameFi,j , X1, X2 andL

of a given structureT can be directly estimated from a number of available R-Q points (no fewer than3) by the

least-square solution of the following linear problem:

A [X1, X2, L]
T = B (17)

where matrixA and column vectorB are composed of row vectors[1/Qt, 1/Qd, 1]’s and the storages of each

available R-Q point respectively.

2) D-Q Model Analysis:To the best of our knowledge, the relationship between view synthesis distortion and

texture/depth QPs has not been formally studied in the literature. However, in our experiments, we observed that

the distortion cost defined in (10) is roughly correlated with texture and depth QPs through a linear model,i.e.,

D(Q) = Y1Qt + Y2Qd + Z (18)
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Fig. 11. Region of valid QP candidates for the second sub-problem.

whereY1, Y2 andZ are constants. Fig. 10 shows the relationship between average distortionD and QPsQ of the

sequencesDog andPantomime, whereK = 4 andK ′ = 4.

3) Quantization Parameters Update:Based on the R-Q model (16) and D-Q model (18), given the storage and

distortion constraints̄B and D̄ in (13), the set of valid QPs(Qt, Qd)’s can be shown to be the shaded region in

Fig. 11. In Fig. 11,l1 and l2 are two boundaries of the valid region, which are determinedby the corresponding

constraintsB̄ and D̄ respectively, andQ1 = [Q1
t , Q

1
d]

T andQ2 = [Q2
t , Q

2
d]

T are two intersection points between

l1 and l2, with Q1
t < Q2

t andQ2
d < Q1

d.

We introduce the following lemma, which can lead to a closed-form solution to optimally update QPs in (13).

Lemma 5.1:Given a fixed structureT (k) and schedule setG(k)() at the k-th iteration of the algorithm, the

optimal QPsQ of sub-problem (13) is located at the boundary linel2, corresponding to the distortion constraint

D̄.

Proof: The proof is given in Appendix I.

The conclusion of Lemma 5.1 suggests that we can now limit thesearch range of optimal QPs for given structure

T (k) and schedule setG(k)() to a line on which the distortions of all QPs are identically equal to the distortion

constraintD̄. Further, it turns out that with the help of Lemma 5.1, we can even derive a closed-form solution to

update QPs of sub-problem two at each iteration, without anysearch process. More specifically, we first simplify

sub-problem two (13) to a single-constraint problem, stated formally as a theorem below.

Theorem 5.1:Given structureT (k) and schedule setG(k)(), the optimization of transmissionC(T (k), G(k)(),Q)

in terms ofQ, with storage constraint̄B and distortion constraint̄D, is mathematically equivalent to the following

univariate optimization problem:

min
Qt

A1/Qt + A2/(D̄ − Z − Y1Qt) + S

s.t. Q1
t ≤ Qt ≤ Q2

t

(19)
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TABLE II

PROCEDURES TO ITERATIVELY FIND OPTIMAL FRAME STRUCTURE, TRANSMISSION SCHEDULE AND QUANTIZATION PARAMETERS

1) Initialize texture/depth quantization parametersQ(0) satisfying the distortion constraint̄D. Setk = 0,

and specify values ofλmin, λmax, and a toleranceε as the convergence criterion.

2) Fix Q(k) for any k ≥ 0. Search the suitable trade-off parameterλ∗ over [λmin, λmax] for the given

storage constraint̄B. Generate optimal structureT (k) and schedule setG(k)() based on the greedy

structure and schedule generation algorithm, which achieves the following unconstrained minimum given

λ∗:
min

T (k)∈Θ,G(k)()
J(T (k), G(k)(),Q(k))

= C(T (k), G(k)(),Q(k)) + λ∗B(T (k),Q(k))

For k > 0, if C(T (k), G(k)(),Q(k)) > C(T (k−1), G(k−1)(),Q(k)), continue to use frame struc-

ture and schedule at the previous iteration,i.e., set T (k) = T (k−1), G(k)() = G(k−1)(). If
∥

∥(C(T (k), G(k)(),Q(k))− C(T (k−1), G(k−1)(),Q(k)))/C(T (k), G(k)(),Q(k))
∥

∥ ≤ ε, stop the iteration

and output(T (k), G(k)(),Q(k)) as optimal result. Otherwise, go to step 3 to continue the iteration.

3) Fix T (k) andG(k)(). Randomly selectl (l ≥ 3) quantization parameter pairsQi = [Qt,i, Qd,i]
T ,

i = 1, 2, . . . , l, calculate the transmission costCi and distortion costDi for the givenT (k) andG(k)().

Then, estimate parametersA1, A2, Y1, Y2 andZ by solving two linear problems as (17). UpdateQ(k)

to Q(k+1) based on (20) so thatQ(k+1) can achieve the following constrained minimum:

min
Q(k+1)∈Λ

C(T (k), G(k)(),Q(k+1))

s.t. B(T (k),Q(k+1)) ≤ B̄, D(Q(k+1)) ≤ D̄

4) Go to step 2,k ← k + 1.

where

A1 =
∑

δ

Ψ(δ)





∑

Fi,j∈T (k)

q(Fi,j , δ)X
t
i,j





A2 =





∑

δ

Ψ(δ)





∑

Fi,j∈T (k)

q(Fi,j , δ)X
d
i,j







Y2

S =
∑

δ

Ψ(δ)





∑

Fi,j∈T (k)

q(Fi,j , δ)(L
t
i,j + Ld

i,j)





Proof: By using Lemma 5.1 and taking R-Q model (16) and D-Q model (18)into (8), optimization sub-problem

(13) can be found to become (19).

Note that after applying Lemma 5.1, the denominator of the second component in (19) denotes that the corre-

sponding view synthesis distortion of the optimized QPs just satisfies the distortion constraintD̄, while the constraint

Q1
t ≤ Qt ≤ Q

2
t guarantees the storage constraintB̄ is satisfied.

Given the convexity of the target function in (19) over the range[Q1
t , Q

2
t ], we next evaluate the minimization by
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taking derivative of (19) with respect toQt
6. The optimal7 (Q∗

t , Q
∗
d) is then found to be

Q∗
t =















√
A1(D̄−Z)√

A1Y1+
√
A2Y1

, Q1
t ≤

√
A1(D̄−Z)√

A1Y1+
√
A2Y1

≤ Q2
t

Q1
t ,

√
A1(D̄−Z)√

A1Y1+
√

A2Y1
< Q1

t

Q2
t ,

√
A1(D̄−Z)√

A1Y1+
√

A2Y1
> Q2

t

Q∗
d = (D̄ − Z − Y1Q

∗
t )/Y2

(20)

Note that similar to (16), to reduce the computational complexity, instead of using the specific expression in (19), all

the necessary parametersA1, A2, Y1, Y2 andZ to calculate(Q∗
t , Q

∗
d) in (20) can be directly derived by solving the

linear problem (17) from multiple quantization parameters(Qt, Qd)’s for the fixedT (k) andG(k)(). The optimal

QPsQ in Step 3 of the proposed iterative optimization algorithm can be then updated using (20).

At the end of this section, for the completeness of description, we describe in Table II the complete procedures to

iteratively optimize frame structure, associated schedule and quantization parameters, based on the proposed greedy

frame structure and schedule generation algorithm in Sec. V-B and QP update algorithm in Sec. V-C.

We claim that the proposed iterative joint optimization of frame structure, transmission schedule and quantization

parameters in Table II is guaranteed to converge, which is stated formally as a theorem below.

Theorem 5.2:Based on the greedy frame structure and schedule generationand QP update algorithms, the

convergence of the proposed iterative optimization is guaranteed.

Proof: The proof is given in Appendix II.

VI. SIMULATION RESULTS

A. Simulation Setup

To gather multiview video data for our experiments, we encoded the first90 frames of sequencesDog, Pantomime

andChampaign [29] of 4 captured views (K = 4), at resolution1280 × 960 and 30 frames per second (fps).

Each sequence has different characteristic and camera setup, e.g., different distance between neighboring capturing

cameras, and capturing objects with various range of depth values. The MPEG depth estimation reference software

(DERS) 3.0 [25] is used to generate the depth maps. We set the number of synthesized views between neighboring

captured views to beK ′ = 4; hence there are(K − 1)K ′ + K = 16 views available for clients’ selection. To

synthesize the virtual views, the view synthesis referencesoftware (VSRS) 2.0 [22] is used for DIBR. Note that

different multiview video characteristics can affect the amount of geometric errors caused by depth map estimation,

which is reflected by the resulting view synthesis distortion of DIBR. To generate data for DSC implementation

of M-frames, we use the algorithm in [20], developed using H.263 tools (with half-pixel motion estimation). In

addition, the random access period∆′ and view-switch period∆ are set to be30 and3, respectively. The Lagrangian

multiplier λ is swept from0.01 to 40.96 to induce different tradeoffs between storage and transmission rate.

6Though we focus on the optimization of (19) in terms ofQt, the same process can be carried onQd as well, correspondingly, (19) is

formulated as function ofQd

7The QPs of a practical video codec are chosen from a discrete set of values, while the R-Q and D-Q models we developed in thispaper are

in continuous domain. Therefore, there is an inherent rounding error for the resulting optimal QPs,Q∗
t andQ∗

d
.
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Fig. 12. Convergency rate of the iterative procedure, wherethree sequences are encoded at320KBytes with distortionD = 23 for Dog,

D = 11 for Pantomime, andD = 36 for Champaign.

For view-switching interactive model, we set view difference boundL = K ′ + 1 = 5, which means the distance

between two consecutive view-switches cannot exceed that between two neighboring captured views. In addition,

we assume the view-switching probability function in the form Φ(n) = φ1 − φ2‖n‖, −5 ≤ n ≤ 5, whereφ2 =

(11φ1 − 1)/30 such that
∑

n

Φ(n) = 1. Note thatφ1 is the probability that client switches to the view coordinate

where she remains in the same view-switch direction as previous view-switch, andφ2 is the decreased probability

when she transitions to neighboring view coordinates in other view-switch directions. By changingφ1, we can

model the behaviors of video streaming clients with different view-switching habits.

For the PDF of RTT delay, we assume an uniform distribution with upper boundRTTmax = 5∆ (500ms) for

simplicity, i.e., ψ(x) = 1/(5∆), x ∈ (0, 5∆). Correspondingly, the PMFΨ(δ) of δ could be calculated from (7) as

Ψ(δ) = 0.2, 1 ≤ δ ≤ 5.

B. Simulation Results

1) Convergency Speed of Iterative Optimization:We first examine how fast the proposed iterative joint optimiza-

tion algorithm of frame structure, transmission schedule and QPs could converge. In Fig. 12, supposingφ1 = 0.2,

we plot the change of transmission rate at each step of the proposed iterative algorithm, where the storage constraint

is 320KBytes for all three sequences, the distortion constraint is set to be23, 11 and 36 for Dog, Pantomime

and Champaign respectively. In Fig. 12, the points with step indices2i − 1 and 2i represent the transmission

rates after Step 2 and Step 3 at thei-th loop of the iterative procedure, respectively. First, we can see that as

shown in the proof of Theorem 5.2 in Appendix II, the transmission rate is a non-increasing function at each step

of the iterative algorithm. Second, we can observe that whenapplied to different sequences, the proposed iterative

algorithm can coverage to the optimal solution very fast within 2 iterations, demonstrating the efficiency of the

proposed algorithm to real multiview video data.

2) Algorithm Performance Comparison with Different Distortion Constraints: We next study the change of

transmission rate resulting from our optimized structure,schedule and QPs when we vary storage and distortion

constraints. Whenφ1 is set to be0.2, we generated tradeoff points between storage and transmission rate for different

view synthesis distortion, shown in Fig. 13. First, for a given distortion, we see an inverse proportional relationship
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Fig. 13. Tradeoff between storage and transmission rate with different distortion constraints: (a)Dog; (b) Pantomime; (c) Champaign.
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Fig. 14. Tradeoff between storage and transmission rate using different coding configurations, for a given distortion constraint: (a)Dog with

D = 31; (b) Pantomime with D = 10; (c) Champaign with D = 36.

between transmission rate and storage, because larger storage budget means more frame structure redundancy,

resulting in more bandwidth-efficient P-frames used in a frame structure. Second, we observe that in general larger

distortion means a smaller transmission rate and storage. This is also expected, since better view synthesis quality

means smaller quantization distortion, leading to comparatively large frame sizes of encoded texture and depth

maps, which are expensive for both storage and transmissionbandwidth. In addition, for the same storage, the

transmission rate drops more slowly as the increase of distortion constraint.

3) Algorithm Performance Comparison Using Different Source Coding Models:Then, we analyze the effects of

different video source coding models on the performance of frame structures generated by our proposed algorithm.

In Fig. 14, we plot the tradeoff points between storage and transmission rate for our algorithm using I-, P- and

M-frames (IPM), using I- and P-frames (IP) and using only I-frames (I-only), whenφ1 is set to be0.2 and

distortion constraint is set to be31, 10 and 36 for Dog, Pantomime and Champaign respectively. First, we

observe thatI-only has a single tradeoff point, because placing I-frames at allswitching points results in no

flexibility to trade off between storage and transmission rate, therefore could not take advantage of extra storage if
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available to lower transmission rate.

Second, for the same storage,IPM offers lower transmission rate by up to51.7% for Dog, 22.8% for Pantomime

and 55.3% for Champaign, due to the optimal usage of redundant P- and DSC-frames. Theperformance im-

provement ofIPM over I-only for Pantomime is much smaller thanDog andChampaign. This is due to

the relatively small size of I-frames inPantomime, as a result of almost textureless background region in the

sequence, which introduces adequate spatial redundancy for efficient intra prediction.

Third, we observe that structures using M-frames can offer anoticeable improvement over those using I-frames,

with transmission rate saving up to27.5% for Dog, 11.3% for Pantomime and 23.9% for Champaign. The

improvement is larger at stringent storage constraint (high transmission rate), because DSC-frames are more often

used by the optimized frame structure to lower overall storage.

4) Algorithm Performance Comparison with Different RTT Delays: We then evaluate the impact of RTT delays

on the performance of frame structures optimized from the proposed algorithm. Given the corresponding storage and

distortion constraints, Fig. 15 depicts the change in expected transmission rate with the increase of RTT delay when

the same frame structure generated from the proposed algorithm is individually operated on server-client channels

with different RTT delays. More specifically, we first optimize the frame structure, schedule and QPs to lower

the expected transmission rate with respect to the PDF of RTT, ψ(x), subject to given storage and view synthesis

distortion constraints as discussed in Sec. V. We then compare the corresponding individual transmission rate (9)

when the resulting frame structure performs on different specific RTT delays. To induce different view-switching

probabilityΦ(n), φ1 is set to be0.2 and0.4 for two trials.

First, we see that transmission rate is a non-decreasing step function with the increase of RTT delay, and in

general, larger RTT delay results in more transmission bandwidth consumption. This is intuitive: given a frame

structureT , all RTT delaysRTT ’s, (δ−1)∆ ≤ RTT ≤ δ∆ will use the same transmission scheduleG(δ), leading

to the same coded frames delivered from video server for eachtransmission, while in overall larger RTT delay

means more view-switch positions to cover at each structureslice, resulting in larger transmission rate.

Second, we can observe that transmission rate cannot be further increased whenRTT ≥ 2∆. This can also be

easily explained: whenRTT ≥ 2∆, one client is able to reach all(K − 1)K ′ + K = 16 available view-switch

positions within one RTT no matter which view-switch position she choose one RTT before. Correspondingly, each

structure slice needs to cover allK = 4 captured views, resulting in a constant transmission rate.

Third, asφ1 is increased, the transmission rate of the optimized frame structure decrease. This is expected:

largerφ1 means higher probability that client remains at the same view-switch direction, which also increases the

probability that client stays at the same view after one view-switch; therefore, more P-frames predicted from the

previous frames of the same view are used in the structure, resulting in lower transmission rate. Moreover, the

frame structure has the same transmission rate whenRTT ≥ 2∆, independent onφ1, because of transmission of

all captured views at each slice structure.

5) Improvement of Texture/Depth QP Optimization:Finally, we verify the effectiveness of the proposed quan-

tization optimization algorithm for texture and depth map coding. Using the same distortion constraints for three
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Fig. 15. Transmission rate of a frame structure versus RTT delay: (a) Dog at 360KBytes; (b)Pantomime at 420KBytes; (c)Champaign

at 420KBytes.
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Fig. 16. Tradeoff between storage and transmission rate using different selection methods for texture and depth QPs, for a given distortion

constraint: (a)Dog with D = 31; (b) Pantomime with D = 10; (c) Champaign with D = 36.

sequences in Fig. 14, Fig. 16 compares the tradeoff points between storage and transmission rate generated by our

quantization optimization algorithm (QP Opt) with two anchor results. The first (Same QP) uses the same QP

to encode both texture and depth maps. The second (Fixed Depth Rate) is a constant rate allocation method

with a pre-defined depth rate equal to50% of texture rate. We observe thatQP Opt consistently outperforms the

other two methods for all test sequences, whileFixed Depth Rate is better thanSame QP for Pantomime

and Champaign, but worse forDog. For example, at a storage of300 KBytes QP Opt yields a transmission

rate reduction overSame QP about8%, 38% and 26%, and overFixed Depth Rate about19%, 32% and

7%, for Dog, Pantomime andChampaign respectively. It illustrates the importance of joint texture and depth

quantization optimization.

VII. C ONCLUSION

In this paper, we propose three major technological improvements to existing IMVS works. First, in addition

to camera-captured views, we make available additional virtual views between each pair of captured views for
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clients’ selection, by transmitting both texture and depthmaps of neighboring captured views and synthesizing

intermediate views at decoder using DIBR. Second, we construct a Markovian view-switching model that more

accurately captures viewers’ behaviors. Third, we optimize frame structures and schedule the transmission of frames

in a network-delay-cognizant manner, so that clients can enjoy zero-delay view-switching even over transmission

network with non-negligible RTT.

We formalize the joint optimization of the frame encoding structure, transmission schedule, and QPs of the texture

and depth maps, and propose an iterative algorithm to achieve fast and near-optimal solutions. Experimental results

show that our proposed rate allocation method can lower transmission rate by up to38% over naı̈ve schemes. In

addition, for the same storage, using our generated frame structures can lower transmission rate by up to55%

compared to I-frame-only structures, and up to27% compared to structures without M-frames.

APPENDIX I

PROOF OFLEMMA 5.1

As shown in Fig. 11, given storage and distortion constraints B̄ and D̄ in (13), both two boundary linesl1

and l2 of the valid QP region are monotonically decreasing functions. Therefore, for any pointQa = [Qa
t , Q

a
d]

T

in the valid region, we can always identify one unique pointQb = [Qb
t , Q

b
d]

T on l2 such thatQb
t = Qa

t and

Qb
d ≥ Qa

d. On the other hand, given a frame structureT (k) associated with schedule setG(k)() and a texture

quantization parameterQt, transmission cost functionC(T (k), G(k)(),Q) is strictly decreasing function in terms of

depth quantization parameterQd. So, we can haveC(T (k), G(k)(),Qa) ≥ C(T (k), G(k)(),Qb). This proves that

the optimal quantization solutionQ in (13) is located onl2.

APPENDIX II

PROOF OFTHEOREM 5.2

In Table II, given frame structureT (k−1), scheduleG(k−1)() and QPQ(k) at step 2 of thek-th iteration, we

compare the new result ofT (k) andG(k)() to that of T (k−1) andG(k−1)() such thatC(T (k), G(k)(),Q(k)) ≤

C(T (k−1), G(k−1)(),Q(k)). This means the transmission cost function is noincreasingat step 2. On the other hand,

given frame structureT (k), schedule setG(k)() and QPQ(k) of the k-th iteration, we searches at step 3 the

entire space of all possible QPs,Λ, for the best solutionQ(k+1) to lower transmission cost,i.e., Q(k) ∈ Λ. This

meansC(T (k), G(k)(),Q(k+1)) ≤ C(T (k), G(k)(),Q(k)). Hence, we prove that the transmission cost function is a

noincreasing function at each step of the proposed iterative optimization algorithm.

Since bothΘ andΛ are finite space, the noincreasing nature of the transmission cost function guarantees that

the proposed iterative algorithm is surely to converge.
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