Delay-Cognizant Interactive Streaming of

Multiview Video with Free Viewpoint Synthesis
Xiaoyu Xiu, Student Member, IEEE;ene CheungSenior Member, IEEEJie Liang,Member, IEEE

Abstract

In interactive multiview video streaming (IMVS), a cliergaeives and observes one of many available viewpoints
of the same scene, and periodically requests from serversigtches to neighboring views, as the video is played
back in time uninterruptedly. One key technical challengetd design a frame coding structure that facilitates
periodic view-switching, and achieves an optimal tradeeffiveen storage cost and expected transmission ratesin thi
paper, we first propose three significant improvements oxistileg IMVS system, and then study the corresponding
frame structure optimization. First, using depth-imagséda rendering, the new IMVS system enables free viewpoint
switching,i.e., by encoding and transmitting both texture and depth mamspftured views, a client can select and
synthesize any virtual view from an almost continuum of \pevmts between the left-most and right-most captured
views. Second, IMVS system adopts a more realistic Markowigew-switching model with memory that more
accurately captures user behaviors than previous menssrytedels. View-switching model is used in predicting
client’s future view-switching patterns. Third, assumitigat the round-trip-time (RTT) delay during server-client
communication is non-negligible, during an IMVS sessidy5 system additionally transmits redundant frames RTT
into future playback, so that zero-delay view-switching & achieved. Given these improvements, we formalize a
new join optimization of the frame coding structure, traission schedule, and quantization parameters of the &xtur
and depth maps of multiple camera views. We propose aniiter@gorithm to achieve fast and near-optimal solutions.
The convergence of the algorithm is also demonstrated. fErpatal results show that the proposed optimized rate
allocation method require38% less transmission rate than the fixed rate allocation schémaddition, with the
same storage, the transmission rate of the optimized frametsre can be up t85% lower than that of I-frame-only
structure, an@®7% lower than that of the structure without distributed soucoding (DSC) frames.

Index Terms

multiview video, video streaming, media interaction, visynthesis

I. INTRODUCTION

Multiview video are videos of the same scene captured tignetsronously by multiple closely spaced cameras
from different observation viewpoints. If a viewer can matly and interactively select one out of many available

captured views for observation on a 2D display as the vidguaged back, viewer can experience a perception
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view

Fig. 1. Example of MVC frame structure, where circles andamegles denote |- and P-frames, respectively. Each fraime is marked by
its time instantt and viewwv. The frames in the shaded box represent the ones decodecaessaluring one navigation.

of depth viamotion parallax e.g, shifting of a viewer’s head can trigger rendering of therespondingly shifted
observed view of the scene [1], [2]. Several prototypes ehsuultiview video systems [1], [3] have demonstrated
an improved viewing experience via this view-switching maeidteraction.

Much of previous research on multiview video focuses maanymultiview video coding (MVC) [4]j.e., how
to efficiently compresall captured videos in a rate-distortion optimal manner, byla@tipg the inherent correlation
among nearby frames across time and view. However, MVC fistnietures are not suitable fimteractive multiview
video streamingIMVS) [5], [6], [7], where a client periodically selects drrequests the aforementioned view-
switches from a remote server, and the server in responsentits the requested single-view video for uninterrupted
playback at the client. This is because typical MVC framaditires are not designed to provide sufficient decoding
flexibility to support this periodic view-switching intestion; hence multiple frames usually need to be transmitted
in order for a desired frame to be correctly decoded, regyiti large bandwidth consumption. As an illustration,
Fig. 1 shows one MVC frame structure proposed in [4], whefimires are periodically inserted evedyf frames
to permit some level of random access. In order to facilitégev-switches eveny\ frames, the structure in Fig. 1
can be generated withh’ set to A. However, for a small desired view-switching peridd this leads to high
transmission costs due to frequent I-frame insertion.rAligvely, one can first select a compression-efficient #am
structure withA’ > A, and then send to client all the frames required to enabledieg of frames in a single
requested view after a view-switch. For instance, lettiag denote a frame at time instahtand vieww, in order
to switch from frameF: ; to frame F3 5, given the frames available at decoder buffer in the shadgibm in
Fig. 1, server would send framés, o, F» o, F3 o and Fy 5 to client, but only frameF; » is displayed. Besides a
large resulting transmission rate spike during the viewtedw this also incurs an unwanted overhead in decoding
complexity.

Recently, frame structure optimizations [5], [6], [7] faViVS have been studied. The goal is to design frame
structures at encoding time that facilitate periodic viemitching during an IMVS streaming session, and optimally
trade off expected IMVS transmission rate and storage reduio store the structure. Optimized IMVS frame

structures have shown significant reduction in expectatsimgssion rate over naive frame structures of comparable
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sizes. However, the underlying IMVS system that deployssehstructures is still simplistic and has several
shortcomings. First, the available views for a client teeselwere limited by the few camera-captured views pre-
encoded at server, thus a view-switch could appear abruptianatural to a viewer. Second, when devising view-
switching model to predict client’s future view-switchipgtterns, previous IMVS system assumes a memoryless
model that is statistically independent in time. Howevérhas been shown [8] that viewers exhibit temporal
dependencies when switching views. Third, previous IMV&em assumes server-client communication takes place
over idealized zero-delay network. In a realistic packeitehed network such as the Internet with non-negligible
round trip time (RTT) delay, server’s responding upon necef each client’s requested view will mean each client’'s
requested view-switch will suffer at least one RTT delaynparing interactivity of the viewing experience.

In this paper, we first propose three significant improvemeanter existing IMVS system, and then study
the corresponding frame structure optimization. Firstetaging on the recent advances in depth-image-based
rendering (DIBR) [9] that enable synthesis of a virtual imiediate view between two captured views using depth
information, new IMVS system encodbsththe texture and depth maps of captured views intadao-plus-depth
coding format [10], each at the respective optimized quatitin parameter (QP). To enable free-viewpoint view-
switching [11], [12],i.e., synthesizing virtual views from an almost continuum ofwi®ints between the left-most
and right-most captured views, the server transmits texamd depth maps dfvo nearest captured views to the
client. This represents a major improvement in interactie®ving experience over previous IMVS systems that are
limited to streaming and rendering of captured views only.

Second, given free viewpoint selection is available tontienew IMVS system adopts a more realistic Markovian
view-switching model with memaory that more accurately cap$ user behaviors than previous memoryless models.
Third, assuming that the round-trip-time (RTT) delay dgrgerver-client communication is non-negligible, during
an IMVS session, IMVS system additionally transmits recamtdrames RTT into future playback. Doing so means
client can enjoy zero-delay view-switching during an IMMiBeaming session.

Given these improvements in the new IMVS system, we forraalie joint optimization of the frame encoding
structure, transmission schedule, and QPs of the textuledapth maps, and propose an iterative algorithm to
achieve fast and near-optimal solutions. Convergence efptioposed algorithm is also demonstrated. Note that
though the DIBR tool [9], [10] and view-switching model withemory [3] have both been studied as individual
pieces in the literature, this paper is the first attempt tmiiporate them into IMVS coding structure optimization.
As we shall see in the rest of the paper, it is a non-triviakegion of the previous IMVS work [5], [6], [7] to
take into consideration three practical components in IMyyStem. Experimental results show that our proposed
rate allocation method reduces transmission rate over fixedre/depth rate allocation methods by uB&5%. In
addition, for the same storage, transmission rate of thmdratructure generated by our proposed algorithm can
be up to55% lower than that of I-frame-only structures, ad@% lower than that of the structure without DSC
frames.

The outline of the paper is as follows. We first overview rethtvork in Sec. II. We then discuss the IMVS

system, source model of encoding multiview video, our galim¥d media interaction model with memory for
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view-switching and network delay model in Sec. Ill. In Se¢, we formulate the problem of finding the optimal
frame structure, transmission schedule and QPs for engadéiture and depth maps in a network-delay-cognizant
manner. In Sec. V, we develop an iterative optimization algm to efficiently find a solution for the proposed

IMVS problem. Simulation results and conclusion are giversec. VI and Sec. VII, respectively.

II. RELATED WORK

We divide our discussion on related work into three sectigvis first articulate the difference between interactive
and non-interactive media streaming. We then discussertlatork in multiview video streaming. Finally, we

differentiate our contributions in this paper relative tar @arlier work on IMVS.

A. Interactive and Non-Interactive Media Streaming

The communication paradigm for IMVS is one where the seragtinuously and reactively sends appropriate
media data in response to a client’s periodic requests fta dabsets; we call this paradigimteractive media
streaming This is in contrast tmon-interactive media streamingcenarios like terrestrial digital TV broadcast,
where the entire media set is delivered server-to-cliefdribea client interacts with the received data seg(
switching TV channel). Interactive media streaming hasattieantage of reduced bandwidth utilization since only
the requested media subset is transmitted. It is used forde wange of media modalities, such as interactive
light field [13], interactive image browsing [14], flexibledeo playback [15]. For multiview video, MVC [4], [16]
discussed in the Introduction where multiple captured siane compressed efficiently together into a single stream
would be suitable for non-interactive media streaming.dntrast, special frame structures need to be designed for

the periodic view-switching nature of IMVS [7]. This is thedus of previous IMVS work and this paper as well.

B. Interactive Multiview Video Streaming

For interactive streaming of stored multiview videos, ti@dayer approach proposed in [3], [17] can be one
solution, where coarse and fine quality layers of severalvigre grouped and pre-encoded. During actual streaming,
a subset of views of low quality plus two views of high qualitarefully selected based on user's behavioral
prediction, would then be sent to the client. All transnuttéews were subsequently decoded, and the highest
quality views that matched the user’s at-the-moment désiiews were displayed. While the intended IMVS
application is the same, our approach is different in thatfeeis on the optimal tradeoff among transmission
rate, storage and view synthesis distortion using comioinatof redundant P-frames and DSC frames in our frame
structure.

The most similar work to our IMVS work is [8], which developéree separate frame structures to support
three types of interactivity: view switching, frozen mormemd view sweeping. While the authors recognized
the importance of a “proper tradeoff among flexibility (irgetivity), latency and bandwidth cost”, no explicit

optimization was performed to find the best tradeoffs of ¢hgsantities in one structure.
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(b)

Fig. 2. Two extreme examples of frame structure to enable-gigitching for two views (white and grey) foA = 1. |-, P- and M-frames
are represented by circles, rectangles and diamonds,cteghe (a) P-frames only at switching points; (b) M-frasnenly at switching points.

C. Previous Work in IMVS

The problem of frame structure optimization for IMVS has teecently studied, where the goal is to design
frame structures at encoding time that facilitate periagéov-switching during an IMVS session, while trading off
expected transmission rate and storage required to sterstthcture. The encoding must be performégthout
knowing the exact view trajectory a client will take at streéme [5], [6], [7]. To see intuitively the tradeoff involde
consider the following two extreme examples. For simplieite let A = 1, but restrict allowable switches to only
neighboring views on a 1D camera array setup; i.e, only miebserving views:'s, j — 1 < k < j + 1, at time
i — 1 can switch to view;j at timei. To encode framé; ;, since temporal playback is not interrupted, at tiime
one of the previous frames;_; ;'s (for at most three different views) will be available at the decoder. Thus,
one way to support view-switching is to differentially enleoone P-frameP; ; for each possible decoded frame
Fi—1, in the decoder buffer. We call this approagundant P-frames-redundant in that an original pictur€’,
is represented by multiple coded versiads;’s. An example structure to allow view-switching betweer twews
is shown in Fig. 2(a) where only P-framé$ ;'s are encoded at view-switching points, each using a ptedic
F;_ 5 of previous instant. As shown in Fig. 2(a), this approach intrease the number of decoding paths at each
switching instant by a factor of two, resulting in a tree stane of sizeO(2%) if there are N switching instants
between two I-frames. So although this approach would leaal $tructure with minimum transmission cost (only
bandwidth-efficient P-frames are used), the size of thengpdiructure is impractically large.

At the other extreme, one can construcsiagle coded version of the original picturg?; for all possible
decoder stated,e., a frame (we callmerge frameor M-framé that can be correctly decodet matterwhich
F;_1 % is in the decoder buffer; see Fig. 2(b) for an example. Olsligwan independently coded I-frame would
fit the M-frame reconstruction constraint, but more gerigrahe can conceive other implementations of M-frame

that exploit correlation between the set of possible ptedsd”;_; ;'s and the target’?; for coding gain. Example
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Fig. 3. System overview of the proposed IMVS system.

implementations of M-frames include SP-frames in H.264 Hr& different DSC techniques [19], [20]In general,
different implementations of M-frames induce differerdadeoffs between storage cost and transmission rate [7].
However, any implementation of M-frame must necessarilyeHarger transmission rate than a P-frame, since by
definition, an M-frame must be encoded under the uncertaihtyhich one frame in the set of possible predictors
F;_1x's would be available at decoder buffer at stream time. Heacsiructure that uses M-frames exclusively at
all view-switching points has high transmission rate buakistorage cost (since each original picture is represente
by a single coded version).

In our earlier IMVS work, we had posed the IMVS problem as a boratorial optimization in [21], proved
its NP-hardness, and provided two heuristics-based dhgosi to find good frame structures for IMVS. A more
thorough and analytical treatment of the same problem wangn [5], using only I- and P-frames in the structure.
We have also developed two novel DSC implementations teses\M-frames for IMVS in [20]. Preliminary results
of using I-, P- and DSC frames in an IMVS optimized structiggiiesented in [6]; [7] is a generalization of [6]
where the optimization is posed as a search for the best catidon of |-, P- and generalized M-frames.

Different from our most recent work in [7] where the numbewn@ws available for clients’ selections is limited
to the set of captured views, in this paper, we focus on codingcture optimization for a new IMVS system
that transmits texture and depth maps of captured viewssltlggoroviding free viewpoint synthesis at decoder. For
transmission over communication networks with non-nélgléground-trip time (RTT) delay, IMVS system transmits
frames of possibly selected viewpoints RTT into future pkgk, so that clients can experience zero-delay view-
switching. Given the new IMVS system, our goal is to optimireltiview video frame structure, transmission

schedule and QP to encode texture and depth maps for trasiemet stream time.

Ill. SYSTEM AND MEDIA INTERACTION MODEL

To facilitate understanding of our contributions in thigppg we first overview the system model for IMVS. We

then describe the source model for coded multiview vidend, BIBR used for synthesizing virtual views using

1In the context of DSC, “predictor” frames are used as siderinfition for decoding.
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coded texture and depth maps of neighboring views. We thecusgs a general view-switching model of finite
memory that captures user’s behavior in selecting (passiiolual) views. Finally, we discuss our network model

that considers the RTT delays between streaming server lamdsc

A. System Model for IMVS

The system model we consider for IMVS is shown in Fig. 3, wheamaultiview video sourceaptures time-
synchronized videos of a 3D scene frakh evenly spaced, horizontally shifted cameras in a 1D arrayid®o
serversequentially grabs captured texture and depth maps fromnttiéview video sourcg and encodes the texture
and depth maps separately into the same optimized frametwteld/” of I-, P- and M-frames, at their respective
optimized QPs. In other words, the same permutation of l-arRl M-frames used to encode texture maps at one
QP, will be used also to encode depth maps using a differensgpBrately. The video server stores a single data
structure7, using which the server can provide IMVS service for muétiplients. An alternative approach of live
encoding a unique view traversal of frames for each cliéntsractively chosen navigation path is computationally
prohibitive if the number of clients is large.

A client can request a view-switch every frames, where the requested view can be a captured view or an
intermediate virtual view between two captured views. Thailability of a large number of virtual views—an
almost continuum of views between left-most and right-nezgitured views—enables finer grain view-switches
compared to previous IMVS systems [5], [6], [21], where thaiable views were limited by the number of capturing
cameras, and each view-switch was an abrupt jump from onereawiew to another. To facilitate synthesis of a
virtual view at the client side, the server always transmdth texture and depth maps of the closest left and right
captured views. The client then interpolates the requestéahl view using received texture and depth maps via
DIBR (to be explained in Sec. IlI-C). Further, we assumeakfes are inserted every frames,A < A’ for all
K captured views for some pre-defined level of random access.

Since the same optimized frame structure is used to encdbédodure and depth maps of multiview video source,
for ease of discussion, we will use the tepitture to denote both texture and depth maps of the corresponding
captured image, and the terftrame to denote the specific coded version of texture and depth mfBpsa image.
Further, given view-switch periéd\, we user?; andF; ; to denote a picture and a frame of vigvat view-switch

instant:A, i.e., the time at which a client selects heth view-switch location.

B. Multiview Video Source Model

As done in [7], in this paper, a picture can be coded as an-auded I-frame with no predictor, a differentially

coded P-frame with a single predictor, or a conceptual Mafravith multiple predictors known at encoding time.

2Depth maps can be estimated from texture maps using steataiimg algorithms [22], or captured directly using tinfeflight cameras [23].

3In more general case ak > 1, a pictureF,L."j representsA consecutive pictures of view from time {A to time (i + 1)A — 1, and a
frame F; ; representsA consecutive actual frames of vieyy including a carefully chosen I-, P- or M-frame determingddur optimization
algorithm followed byA — 1 consecutive P-frames predicted from the same view.
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Fig. 4. Examples of (a) redundant P-frames and (b) M-frame.

I-frame is used for random access. For view-switching egitedundant P-frames or M-frames are used. Redundant
P-frames mean one differentially coded P-frame is conttdufor each potential predictor (last frame in a decoding
path from which a view-switch is possible). M-frame, on thhes hand, has a single frame representation for
multiple potential predictors; reconstruction properfyM-frame guarantees that the exact same frame can be
correctly decoded no matter which one of a set of predictomés known at encoding time is actually available at the
decoder’s buffer at stream time. Redundant P-frames dffeldwest transmission rate possible while increasing the
storage required as the number of decoding paths multipliestime. An M-frame has a single frame representation
and hence smaller storage, but at a higher transmissiorthateP-frame.

Fig. 4 shows an example tradeoff between transmission radestorage for redundant P-frames and M-frame
from three different predictors. The redundant P-frameBifn 4(a) need three different coded versions of picture
F?,, one for each of three different predictafs_; 1, F;—1 2 and F;_; 3, whereas in Fig. 4(b) only one M-frame
is needed to get the same coded version no matter which ohtke predictors is available at the decoder.

An M-frame can be implemented using one of many availabléngpéichniques such as SP-frames in H.264 [18]
and DSC frames [19], [20]. In this paper, we implement an Btfe using DSC [20], due to its demonstrably
superior coding performance over SP-frames. We overvienetitoding of a DSC frame as follows. First, motion
information from each of the predictor frames is encodecenthransform coefficients of the motion residuals
in Discrete Cosine Transform (DCT) domain from each préalicre compared. Because most significant bits
(MSB) of the transform coefficients are likely to be the samedil residuals, only the least significant bit (LSB)
bit-planes that are different among the residuals requice@ing. In particular, given the target is the I-frame, the
LSB difference between each residual and the target isprated as channel noise, and channel coding (such as
low-density parity check codes (LDPC) used in [19], [20])safficient strength is employed so that the largest noise
in all residuals can be removed. By encoding multiple motidarmation and LDPC codes for LSB bit-planes, the
exact same frame can be recovered no matter which predratoefis available at decoder’s buffer. By exploiting

correlation between predictor frames and the target, D8@drhas much smaller size than the independently coded

|-frame.
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C. Depth-image-based Rendering

Depth-image-based rendering (DIBR) is the process of ggiting novel intermediate virtual views of a 3D
scene from the texture and depth maps of neighboring andleampuints. DIBR-based view synthesis can be
implemented as follows. First, the original texture pixefone anchor view are projected into the 3D space, using
the associated depth map. Then, those 3D points are rectgdjeto the image plane of the virtual view. This
concatenation of 2D-to-3D projection and 3D-to-2D prajatis usually calleD warping[24]. Since the number
of disoccluded pixels in a virtual view synthesized usingues and depth map from one single viewpoint is large,
texture and depth maps of two adjacent views are often use®IBR [12]. If two texture pixels from left and
right anchor viewpoints map to the same virtual view pixekep blending is performed, where the weights for
the left and right corresponding pixels are inversely pripoal to the distance from the virtual viewpoint to the
left and right anchor viewpoints. It is possible that no tegtpixels from either the left or right anchor viewpoints
map to a particular virtual view pixel due to occlusion. listhase, the missing pixels are usually filled by image
inpainting methods from neighboring projected pixels [22] general, large distance between the left and right
anchor views could increase the number of disoccluded pixethe virtual view, leading to worse DIBR-based
view synthesis quality [12].

Note that though the DIBR view synthesis tool adopted in thpep interpolates an intermediate image using
only texture and depth maps of two neighboring coded vietns, &lso possible to use texture and depth maps of
other time instants and other views to impose time and viemsistency in view generation as done in [25]. Our
proposed coding structure optimization can easily be a&dijot a more advanced view synthesis tool, however, and

hence our use of a simple DIBR tool is sufficient to illustrate core contribution of coding structure optimization.

D. Probabilistic View-switching Model

Without loss of generality, we first denofé evenly spaced captured views by. .., K. Between every pair of
adjacent captured viewsandi + 1, we in addition define a set dk’ evenly spaced virtual view positions that
can also be requested by clienig., ¢ + ﬁ j e A{l,...,K'}, separated byiew spacingd = 1/(K’ + 1).
The total number of views available for client’s selectisnhience expanded t&8'(K — 1) + K. Fig. 5 shows an
example of multiview sequence whefé = 4 and K’ = 1 (d = 0.5). Note that all available discretgew-switch
positions(virtual and captured) available for client’s selectioe anultiples ofd. In the sequel, we will say that a
view-switch positionv = kd, k € 2%, 1/d < k < K/d, hasview coordinatek, wherek is view-switch positiorw
expressed in multiples of view spaciag

We design a view-switch model to allow a client to periodicakquest a view-switch everA frames from
view-switch positionv to another view-switch position’, where the differencév’ — v| is no larger thanLd,

L € Z*, where the pre-definediew difference bound. limits the speed of view transition.

To optimize multiview video frame structure at encodingdimwithout knowledge of clients’ eventual chosen

view trajectories at stream time, we propose the followingpbpbilistic model to capture the view-switching trend

of a typical client. Suppose a client is watching view conadék at view-switch instaniA, after watching view
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position 3.5
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Fig. 5. Example of progressive view-switch fé¢ = 4 captured views (rectangles) with’ = 1 intermediate view (circles) between two
captured viewsd = 0.5), view difference bound. = 1, initial view v° = 2.5, view-switching periodA = 1 and RT'T = A — e. View-switch
positions in the shadeless box and shaded boxes with diff@aterns represent the ones covered by the initial chudkséructure slices at
time 2 and 3 respectively. Each double-end arrow delimits the rangeoskible view-switches covered by one structure slice aéteeiving a
view-switch coordinate feedbadk from client.

coordinatek’ at instant(i — 1)A. The probability that she will select view coordinateat instant(i + 1)A is
Qe k1), 1 € {max(1/d,k — L),...,min(K/d,k+ L)}:
Ol — (2k — K')), max(1/d,k — L) <1

< min(K/d,k+ L)

Qi (1) = i@(n —(2k—K")), l=min(K/d,k+ L) 1)

n=I

zl: ®(n— (2k — k'), | =max(1/d,k— L)

n=-—oo

where®(n) is a symmetricview-switching probability functiomentered at zero; see Fig. 6(a) for an example. In
words, (1) states that the probability, (1) that a client selects view coordinatelepends on both the current
view coordinate: and previous selected coordinat& the probability is the highest at positidn+ (k — k') where
the client continues in view-switch directidn— %’. If [ is a boundary coordinaté,or K, or at the view difference
boundk + L, then the probability2 (1) needs to sum over probabilities in view-switching probigbfunction
®(n — (2k — k')) that fall outside the feasible views as well, as shown in B{tp), where the right-most boundary

view is requested giveX =3 andK’' =1, i.e, [ = 3/d.

E. Network Delay Model

Round trip time (RTT) delay is the time required for a packetravel from a client to the server and back. In
our IMVS scenario, RTT delay represents the minimum seclient interaction delay experienced by a client from
the time she sends a view-switch request, to the time theteffevideo due to the request is received. Here, we

assume there are different RTTs between the video servediffiedent clients, though RTT of each server-client

4Given all available view-switch positions (captured andual) for client’s selection are integer multiples of vi@pacingd, we can define
the view-switch probability functiori2,, ;. (1) in discrete domain, wherg’, k andi are all view coordinates.
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Fig. 6. Example of view-switch probability function fdk = 3 captured views withK’ = 1 intermediate view between two neighboring
captured viewsd = 0.5). (a) original ®(n); (b) shifted function®(n — 6).

pair remains constant (each of server-to-client and clierserver transmission takes exactly half of RTT) once
video streaming starts. In addition, we assume all RTTs doeroeed an upper-boun@7'7T,,.,. There is much
work in the literature in estimating RTT in typical packetiched networks [26], [27], but is outside the scope of
this paper. We will simply assume the probability densitydtion (PDF) of RTT(x), is knowna priori at video

encoding time.

IV. PROBLEM FORMULATION

Having described the functionalities of the new IMVS systand models in Sec. Ill, we now formulate the
IMVS problem as an optimization problem: given pre-definedtage and distortion constraints, design an optimal
frame structure and associated transmission schedulesedaet optimal QPs for texture and depth map coding, that
minimize the expected server transmission rate, whileidiog clients with zero-delay view-switching interactiyi
in IMVS. In Sec. IV-A, we first develop a network-delay-cogant transmission protocol for transmitting frames in
a coding structure for IMVS, so that each client can enjopaglay view-switching given her unique server-client
RTT. We then provide definitions of optimization variablssarch space, constraints and objective in Sec. IV-B.

Finally, we formally define the IMVS optimization problem 8ec. IV-C.

A. Network-delay-cognizant Transmission Protocol

Previous IMVS works [5], [6], [7] do not properly address theblem of network delay; hence a view-switch
request from a client will suffer at least one RTT delay initidd to the system’s inherenk-frame view-switch
intervaP. In this section, we develop a transmission protocol fomoek-delay-cognizant view-switching, so that
a client can play back the video in time and perceiveadditional view-switching delay (beyond the system’s
A-frame view-switch interval), even when RTT is non-nedllgi The key idea is to send additional data to cover

all possible view-switch positions to be requested by antlane RTT into the future beyond the requested view.

5View-switch interval A for IMVS systems can be set very small (on the order of edety 5 frames), and hence an additional RTT delay

on the Internet of up to hundreds of milliseconds can be mefntal to the interactive multiview video experience.
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Server Client
streaming starts —gf<=---------------
0.5*RTT
RIT|f---——————————————= playback starts
1 view-switch
“ : A
1" feedback arrives RTT
2™ feedback arrives - .
1* slice arrives
2" slice arrives

Fig. 7. Timing diagram during server-client communication

TABLE |
SUMMARY OF NOTATIONS FORIMVS PROBLEM FORMULATION

Notations Description

K, K' number of captured views, number of virtual views betweea heighboring captured views.
L, v° view difference bound, starting view-switch position.

RTT, ¢ RTT delay, number of view-switches that a structure sliceet® into future after receiving a client feedbagk.
T, Q=1[Q+,QqT frame structure, QPs for encoding texture and depth map.

B(T,Q), C(T,Q), D(Q) | storage cost, transmission cost, distortion cost of a frameture7 and QPsQ.

F;’] F; ; original picture, coded frame of view-switch instak and view ;.

L 5, P j, M; ; I-frame, P-frame, M-frame of view-switch instanf\ and viewj.

2i(9), ¢(E:(9)) the set of frames, the center view coordinate for decodingest-switch instantA.

p(Z:i(0)), q(Fi5,0) transmission probability of a slicg; (), a frameF; ;, givend.

P(x), ¥(J) probability density function ofR7"T", probability mass function of.

t9(T,G(5), Q) transmission rate of a frame structufeand QPsQ, given schedule(4).

D;(Qt), D (Q) average distortion of frames of captured vigywirtual view k, given QPsQ.

Following the illustration in Fig. 7, we first discuss timimyents during server-client communication in IMVS
system assuming constant transmission delay (as discirsSegt. IlI-E). The server first transmits anitial chunk
of coded multiview data to the client, arriving at the cIielnRTT time later. Upon receipt of the initial chuck at
time 0, the client starts playback, and makes her first view-switeframe time later. Her first view-switch decision
(feedback) is transmitted immediately after the view-stjtand arrives at server at tin%eRTT -+ A. Responding
to the client’s first feedback, server immediately sendstracture slice arriving at the cIient%RTT time later,
or RT'T time after the client transmitted her feedback. More gdhetiaen, the client sends feedbacks in interval
of A-frame time, and in response, server sends a structure alicesponding to each received feedback every
A-frame time. We assume there are no packet losses durin@tpmaksmission.

Notice that from the time the client starts playback to timeetithe first structure slice is received from server,
A + RTT time has elapsed. Therefore, before the arrival of the firattre slice, the number of view-switches,

0, that the initial chunk must enable is

5= {MJ )

A

For simplicity, we assume that IMVS session starts from anknmitial positionv°® with view coordinatek?, i.e.,
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v° =k°dandk® € Z%,1/d < k° < K/d. Given each subsequent view-switch can maximally altex zieordinate
by +L, initial chunk must contain data enabling view-switchesitw coordinated’; = {k | max(1/d, k°—iL) <
k <min(K/d,k° +iL),k € Z*} at view-switch instant$iA)'s, where0 < i < 4.

Because subsequent structure slices arrive exefyame time, each structure slice only needs to enable one
more view-switch for the client to continue video playbaoktime and enjoy zero-delay view-switching. Notice
that because each structure slice arrives at the chi&hif’ time after the client sent her view-switch feedback,
the view-switch enabled by the structure slice correspumth the client's feedback sent at instant iA is the
first view-switch after time ¢t + RT'T, i.e., view-switch at instan{i + )A. In other words, given client’s view
coordinate selectioh at instantiA, the spanof view-switch coordinate¥; s that a structure slice must cover for
the view-switches at instartt + §)A, is Viis = {k | max(1/d,h —6L) < k < min(K/d,h + éL),k € Z+}.

This protocol—transmitting multiple views for the sake dient’'s selection of a single view in the future—is in
stark contrast with the protocol in [5], [6], [7], where onbne single view is transmitted corresponding to each
client's request. Fig. 5 illustrates a view-switching exdgenfor K = 4, K’ =1, L =1, v° = 2.5, A = 1 and
RTT = A —efor smalle > 0. The initial chunk contains only enough multiview data t@kle = 1 view-switch,
spanning view-switch coordinaté§ = {4,5,6}. If the client first selects view-switch coordinate= 4 at time1,
then the first structure slice must span view-switch coais); ;5 = {3,4,5}. Instead, if the client first selects

view-switch coordinaté. = 6, then the corresponding slice must span view-switch coatds); 5 = {5,6,7}.

B. Definitions for IMVS Optimization

Before formally defining the IMVS optimization problem, wesfi define optimization variables (frame structure,
associated transmission schedules and QPs), and storagemission and distortion costs corresponding to a set
of variables. See Table | for a summary of notations.

1) Redundant Frame Structurédne can construct edundant frame structur§ , comprised of I-, P- and
M-frames, denoted a$; ;'s, P, ;'s and M, ;'s respectively, to represent the captured multiview vidieones at
view-switch instant A’s and viewj’s for IMVS. Each frame not located at view-switch instantst(shown in our
graphical model) is a P-frame predicted from a frame of thmesgiew and previous time instant. Note that while
we already discussed one concrete DSC implementation aaméd in Sec. 11I-B, our abstraction and subsequent
optimization can apply more generally to any implementatibM-frame. Fig. 8 shows one example frame structure
for multiview sequence in Fig. 5.

A frame structure]” forms adirected acyclic grapi{DAG) starting with an I-frame if initial view-switch posin
is a captured view, or an I-frame and a P-frame predicted ftioenl-frame if initial view-switch position is a
virtual view, as starting nodes. In Fig. 8, I-fram&s, and P-framel, 3 are two starting nodes of structuve for
synthesizing virtual viev2.5. 7" is “redundant” in the sense that an original picté® can be represented by more
than one framd; ;. In Fig. 8, original picturef’y , is represented by two P—frameBa(L) and Péi), each encoded
using a different predictot;, 4 and Ps 3, respectively. Depending on which predictor is availaltldecoder during

stream time, different coded framé$ ;'s can be transmitted to enable correct decoding and (8figtitferent)
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view-switch
position 1
view-switch
position 1.5
view-switch
position 2
view-switch
position 2.5
view-switch
position 3
view-switch
position 3.5
view-switch
position 4

Fig. 8. Example frame structure fdt = 4 captured views withK’ = 1 intermediate view (small circles) between two neighboriagtured
views (view spacingl = 0.5), view difference bound, = 1, initial view v© = 2.5, view-switching periodA = 1 and RTT = A —e. |-, P-

and DSC-frames are represented by large circles, rectagleé diamonds, respectively.

reconstruction of original picturé’’,. This is done to lower transmission rate by exploiting clatien between
the requested picture and frames in the decoder buffer,@asidid coding drift [5].

2) Structure Slice:As discussed in Sec. IV-A, depending on the view-switch domte h selected by client
at view-switch instan{i — §)A, a set of frames of different captured viewpoints will bensmitted for possible
decoding at view-switch instantA. Given ¢, we definestructure slice=;(0), with center coordinate:(=;(0)),
as a set of frames to enable selection of view-switch coatdmin span{k | max(1/d,c(Z;(0)) —6L) < k <
min(K/d,c(Z;(0)) + 6L),k € Z1} at view-switch instanfA. Center coordinate(=;(d)) is the client's selected
view coordinateh at view-switch instan{i — §)A.

Consider the example in Fig. 8, where initial chunk contdiasnes >, Py 3, P12 and P; 3 to cover view-
switches to positiong, 2.5 and3 at time 1. If the client selects view-switch coordinate= 4 (view 2) at time
1, then the corresponding structure slice transmitteﬂgfé(l) ={P21, P22, P23} with 0(55”(1)) = 4, to cover
possible view-switches to positionis5, 2 and 2.5 at time 2. Instead, if client remains in coordinate= 5 (view
2.5) at time 1, then the structure incEég)(l) = {P22, P, 3} will be sent to decoder With(Eéz)(l)) =5, for the
possible switches to positior2s 2.5 and3 at time2. Notice that different slices can contain the same framed, a
can also contain different number of frames.

3) Transmission Schedul&Vhich slice=;(d) of structureT is transmitted for view-switch instadtA depends
on sliceZ;_1(d) transmitted previously (for differential coding), andetit’s selected view-switch coordinakeat
view-switch instant(i — §)A. We can formalize the association amadBg (d), h and Z;(d) via atransmission
scheduleG(d). More preciselyG(¢) dictates which structure slicg;(6) will be transmitted for client’s selection
at view-switch instaniA, given previous transmitted slicg;_; () and client’s selected view-switch coordindte
at view-switch instanti — 0)A:

G(8) : (Bi1(5),h) = Ei(8), max(1/d,c(Zi_1(6)) — L) <h

. - ®3)
< min(K/d, c¢(Z;-1(5)) + L)
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where center coordinate &; () is ¢(Z;(d)) = h. In what follows, we denote a scheduled transmission fraoe sl
Ei—1(0) to sliceZ;(0), with client’s selected view-switch coordindiet instant(i—0)A, as(Z;-1(9), h) W =:(9).

Note that for a given structurg and sliceZ;_; () available for decoding at view-switch instafit— 1)A, if
client selects view coordinate at view-switch instan{: — §)A, there may exist different decodable sliceég0)’s,
and hence different transmission schedulés)’s, that enable all reachable view-switch coordinatesat instant
1A. Our optimization will hence consider not just optimal sture 7, but also optimal schedul&'(s) for the
chosen structurg .

4) Feasible Structure Spacdased on the above discussion, we can defifieaaible frame structurd given
0 as one where every reachable view-switch coordinate, astredmed by the view-switching model (Sec. IlI-D),
can be requested by a client evekyframe interval and be executed with zero-delay usingMiathematically, we
say thatT is feasible given) if there exists at least orfeasible schedul&(§), such that each sequence of client’s
permissible selection of view-switch coordinatés, ho, ..., will lead to a corresponding scheduled transmission
of decodable sliceE,;5(4),=Z;+145(0),..., such that center coordinate and view span of each Slicg(d) are
c(Zi45(0)) = h; and Vs = {k | max(1/d,h; — L) < k < min(K/d, h; + 6L),k € ZT}, respectively. Center
coordinates and view spans of slices defined above ensureaalhable view-switch coordinates can be selected
by client at instantsi + §)A, (i + 1+ 0)A, etc.

More generally, RTT between server and client can take dierdifit values resulting in differerdts. In what
follows, we definefeasible spac® as the set of all feasible frame structufg's, where a feasible structufg is
one where there exists at least one feasible sche@(i¢ for each possiblé.

5) Structure Slice Probability and Frame Transmission Riboiity: To properly define transmission cost, we first
definestructure slice probabilityp(Z;(4)) as the probability that structure sliég (0) for decoding at instantA
is transmitted, given schedu&(d). Considering the structure slic&(4)’s in the initial chunk, whereé) < i <4,
are always sent to client, this probability could be comgutgursively using view transition probabilifyy (1)

P(E()) =
1, 0<i<é (4)
> p(Ei—l(5))2/:94.«51»71(5))(C(Ez‘(5)))7 i>96

Z;-1(0)€g
whereG = {Z;_1(8) | (Ei_1(6), ¢(Z:(6))) 2L =,(6)}. In words, (4) states tha(=;(6)) is the sum of probability
of each slice=;_1(9) switching to slice=;(9), scaled by the slice probability &;_1(0) itself, p(E;_1(4)), given
scheduleG(0) dictates slice transmission in frame struct(re
Further, we defindrame transmission probability(F; ;,¢) as the probability that a framg; ; is transmitted

from server to client, which can be calculated using the éefistructure slice probability (4):

WFsd)= S pEG) ©)
Zi(0)|F; j€E:(5)

In words, the transmission probability of a frarfig; is the sum of probabilities of slices;(d)’s that includeF; ;.
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6) Storage Cost:For a given frame structurg and the associated QPs for texture and depth ima@esnd

Qq, we can define the correspondisprage cosby simply adding up the sizes of all the framgs;’s in T, i.e,

BT.Q = Y IF;@Ql= > (IF5(Q0l+IF5(Qu)) (6)

F; ;€T F; j€T
where Q is the pair of QPs for texture and depth maRs= [Q:, Q4]”, |F; ;| is the size of frameF; ; which
depends on the specific Q¥ Fj7 and Fi‘fj denote the texture and depth maps of frafyg, respectively.

7) Transmission CostGiven a frame structurg and the associated QR3¥, we can define the corresponding
transmission costFirst, given the relationship betweérand R7'T" in (2), one can see that the same transmission
scheduleG(d) for a given frame structurg can be applicable to a range &T'T’s, (§ — 1)A < RTT < 0A;

i.e., the same slic&; () of structure7 can be transmitted for view-switch instaizk. Therefore, to facilitate the
definition of transmission cost, we map the PDF of RT{z), into a discrete probability mass function (PMF) of

an integer numbes of view-switch intervalA, ¥ (¢), by integratingy (=) over the rangé(é — 1)A,0A):

SA
(d) = / P(x), 1<0< dmax )
(6—1)A

Wheredmax = [(A+ RTThwax)/A]. Then, given schedulgs(o)’s for possibles’s, transmission cost(7, G(), Q)

of a frame structur§ associated with QP is defined as the expected transmission dost,

Smax
C(T.G0.Q) = Y _¥() t5(T,G(9).Q) (o)
6=1
whereG() denotes the set of schedul@$o)’s for all §’s.
For a given schedulé&'(d), individual transmission cost (7, G(d), Q) of structure7 and QPsQ depends on
view transition probability2, (1), which can be calculated by adding up the sizes of all frafes in 7, scaled

by the corresponding frame transmission probability (5):

ts(T,G(0),Q) = > aq(Fi;,0) |Fi;(Q) )

F; ;€T

8) Distortion Cost: Since clients can request captured or synthesized viewsbiggrvation, we defindistortion
costas the average distortion of all captured and synthesizudsvavailable in the system. For distortion of a picture
in a captured view, we use the Mean-Squared-Error (MSE) dxtvthe original and coded versions of the texture
maps of the picture. On the other hand, since no capturedeinm@vailable for a virtual view, we synthesize
an image using the uncompressed textures and the depth snohgesighboring captured views as reference to
calculate its MSE. We denotg as the discrete set of available QPs for texture and deptimgod

Notice that the distortion of both captured views and virtviaws are mainly influenced by the chosen QPs
Q, and independent of a particular frame structiireFor example, in Fig. 8, captured vielat time 3 can be
reconstructed with roughly the same distortion using eimeP-framePg(L) or Pg(i). Let D$(Q:) be the average
distortion of frames at all view-switch instants of captlingew j given the texture QR);, and D;(Q) be the

average distortion of synthesized frames at all view-dwittstants of virtual viewk given the texture/depth QPs
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Q used for both neighboring captured views. Distortion dd$€)) is then given by
1 K K—-1 K’
D(Q) = K-DK T K (; Dj(Q:) + ; ;:: i+ K’+1 ) (10)
From (6) and (10), it can be seen that coarse @Pgesult in smaller frame size of texture and depth coding,
|Ff5(Qu)] and|Ff(Qq)], and larger distortiorD(Q). This means that given a storage constraint, a frame strictu
can afford more redundant representations of one picturgyusdundant P-frames to lower transmission rate, at
the expense of sacrificed visual quality. Alternativelyefi@PsQ can lower the distortion, but the increased frame

size will lead to less redundancy (more M-frames) used irené structure, resulting in larger transmission rate.

C. Optimization Definition

We can now formally define our IMVS problem as a combinatasjatimization problem as follows.

Problem Definition 4.1:Given a number of captured views, the IMVS optimization peabis to find a structure
T using a combination of I-, P- and M-frames, and associatéwdidesG(d)’s for possibled’s, as well as
texture/depth QP€), that minimize the transmission coS{ 7, G(), Q) while both a storage constraiit and a

distortion constraintD are observed. Mathematically, this optimization problengiven by:

TE@%i(?wQEA ¢(7.¢0.Q (11)
s.t. B(T,Q) < B, D(Q) <D
It is instructive to compare our new joint optimization fartation with that in [7]. On one hand, the objective of

both formulations is to minimize transmission rate subjea storage constraint. On the other hand, our formulation
is different from [7] in two respects. First, to enable IMVSthwfree viewpoint synthesis, our joint optimization
considers the optimal bit rate allocation between texturé depth maps since both types of maps need to be
transmitted for view synthesis at decoder, while [7] coaessdcoding of texture maps only. Correspondingly, an
additional distortion constraint is considered in our fatation to identify the optimal texture/depth QPs. Second,
in our formulation, we consider structure optimization f@riable network delays. As we will see in Sec. V-B, it
turns out that different delays contribute to scheduledsngission of different coded frames. This is in contrast to

structure optimization in [7] where only one logical schiedexists for a given structure.

V. ALGORITHM DEVELOPMENT

In this section, we develop algorithms to select a good framecture, associated transmission schedules, and
texture/depth QPs for the IMVS optimization problem in (1 first propose an iterative procedure by alternately
optimizing structure7 and associated schedule €gf) only, then QPsQ only, while keeping the other set of
variables fixed. We then present a greedy algorithm to opénai frame structurg and schedule sef() given
QPsQ. Finally, we present a low-complexity algorithm to updates@ for a given frame structurg and schedule
setG().
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Fig. 9. Relationship betweeR and1/Q P of |-, P- and DSC-frames, for the texture and depth codingegfience (alpog and (b)Pant omi ne.

A. Two Sub-Problems

To simplify the optimization, we divide the overall IMVS aptization problem into two simpler sub-problems,
optimizing one set of variables while keeping the other setdfi We formalize the definitions of the two sub-
problems as follows.

Problem Definition 5.1:Given chosen texture/depth map QRS at iterationk that satisfy distortion constraint
D, the IMVS optimization problem degeneratessiab-problem onefind structure7 and associated schedule set
G() to minimize transmission cogt(7, G(), Q™*)), subject to storage constraift, i.e.,

oo a7, 60.Q") (12)

s.t. B(T,.Q™)< B
Notice that since the quality of view synthesis depends onlQPsQ(*) and not on the particular chosen structure
T, the distortion constraint can be ignored in this sub-probl

Problem Definition 5.2:Given a fixed frame structurg®) and associated schedule €&t () at iterationk, the
IMVS optimization problem degenerates $ab-problem twofind QPsQ for texture and depth coding, such that
the expected transmission cast7 *), G(*)(), Q) is minimized while observing both the storage constrairand

the distortion constrainD:
min  C(T™,G™(),Q)

QeA (13)
st. B(TW, Q) <B, DQ) <D
Based on the two sub-problems, we can summarize the iterptdcedure as:
1) Initialize a pair of texture/depth QRR(?) satisfying the distortion constraid®, and setk = 0.
2) Fix Q®), and optimize structur§” and associated schedule €&f) to minimize the transmission rate in
sub-problem one (12). Fdr > 0, stop if the pre-defined convergence criterion is satisfied.
3) Fix 7 and G*)(), and findQ that minimizes the transmission rate in sub-problem twg.(13

4) Go to step 2 and sét <+ k + 1.
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Fig. 10. Relationship between distortidn and quantization parametef§:, Q) of sequence (aPpog and (b)Pant omi ne.

As we can see above, the crux of the iterative procedure i®lie ghe two sub-problems separately. In the
following, we will propose a greedy frame structure and scte optimization algorithm and a QP update algorithm,

both with low complexity, to separately address the two grdblems.

B. Frame Structure & Schedule Optimization

We first present a frame structure and schedule optimizaligorithm given fixed QP€(*). Though (12) differs
in some respects from the frame structure optimization lprakin [21], a similar proof can be easily constructed
to show that sub-problem one is also NP-hard. Given the ctatipnal complexity of (12), we first convert the
storage-constrained problem (12) into the following urstoained problem:
J(T,G(),Q"W) = C(T,G(), Q™) + AB(T, Q™)

-2 (Z V(@)a(Fi,0) + A) 115 (QY)

Fij€T \ &

min
T€06,G()
(14)

where the Lagrangian multipliex is a fixed parameter that represents the tradeoff betweaantiasion rate and
storage, and/ (T, G(), Q'®) is the Lagrangian cost. To find the optimakhat minimizes transmission cost while
observing storage constraint in (12), a bisection-searethod is used over a predefined randgi,, Amaz]-

To solve (14) efficiently for giver\, we use a greedy approach to find near-optimal frame strietu associated
schedules. In a nutshell, we iteratively build one “struetlayer” ¢, and “schedule layery;() one view-switch
instant at a time from front to back. Structure layeris comprised of frameg’; ;'s of all captured viewsj’s at
instantiA, and schedule layey; () consists of local schedulgs(d)’s for all possibled’s, each mapping a structure
slice Z;_1(9) in structure layert,_; to a structure slices;(d) in ¢;, given client's view-switching feedback at
instant(i — §)A. At each view-switch instantA\, the key question is: given structufe_; and schedule se&t;_;()
constructed up to instarit— 1) A, how to optimally construct structure laygrand schedule layey; () to minimize
(14)?

To construct locally optimal structure laygrat view-switch instantA, we first initialize structure layet? with

K M-frames, one for each ok captured views. More precisely, for each M-framhg ; of captured viewj, we

August 13, 2012 DRAFT



IEEE TRANSACTIONS ON MULTIMEDIA, FEBRUARY 2012 19

assign all frameds;_; ;s in structure layert;_; of instant(i — 1)A that can switch to view at instantiA, as
predictors of)M; ;. Since an M-frame is not a redundant representation (omeefiger captured picture), the initial
structure layer has minimum storage of all possible layers.

Corresponding to initial structure lay&, we construct initial schedulg’(5) givend as follows. We first designate
structure slice&; (4)’s using created M-frames, where each sk;€)) of center coordinate(=;(4)) = h has enough
M-frames to enable view-switches to coordinates= {k | max(1/d,h—dL) < k < min(K/d,h+0L), k € ZT}.
Then, given client’s view coordinate selectibrat instant(i —4d)A, an initial schedulg? () will map any previously
designated structure slicg;_;(d) in ¢;,—; with center coordinate(=;_1(0)) = A/, max(1/d,h — L) < b’ <
min(K/d, h+ L), to the same, (8), i.e. (Z,_1(5), h) “L) =,(5).

However, large M-frame sizes in initial structure layread to large transmission cost. To reduce transmission
cost, we incrementally add the most “beneficial” redundaifittfhes one at a time—beneficial meaning one that
reduces the Lagrangian cost—thereby increasing storagéeiMinate when no more beneficial redundant P-frames
can be added.

In details, we describe the algorithm as follows. First, mifial structure layer?, we construct one M-frame
for each captured viey at view-switch instantA. We then designate structure slicEg¢d)’'s and determine the
corresponding schedul@$(d)’s as described earlier, and compute the resulting locatdragjan cost in (14). Given
the initial structure and schedule layers, we improvandg; () by iteratively making local structure augmentations:
selecting one candidate from a set of structure augmenga#ibeach iteration, which offers the largest decrease in

local Lagrangian cost. The possible augmentations are:

» Add new P-frameP; ; to t;, predicted from existing framé; ;, of neighboring viewk of sameinstantiA.
o Add a new P-frameP ;, predicted from an existing framg,_, ;, in ¢;_; of the previousinstant(; — 1)A.

» Select a different predictaF; ;, of the sameinstantiA for an already constructed P-frani&; in ¢;.

Notice that the last augmentation does not increase the euoflrepresentations of a given captured view, while
each of the first two increases the number of frame repres@misby one P-frame.

Using constructed structure lay&rin the I-th iteration, we build up the corresponding schedyl@) givené by
minimizing transmission rate. More specifically, given &t's selected view coordinafe at view-switch instant
(1 — 0)A and a structure slic&;_;(d) in ¢;,_; with center coordinate(=;_;(0)) = h/, max(1/d,h — L) < h/ <
min(K/d, h + L), we designate structure sli& (§) by finding the set of frames; ;’s in ¢, which possesses the
smallest size of transmitted frames while enabling all heéde coordinate¥; = {k | max(1/d,h —0L) < k <

min(K/d,h+0L),k € Z*} at view-switch instantA. This can be mathematically expressed as

gi(®): _min >~ |Fyl (15)
E;(0)eg’ —
F; j €2,(6)

whereG’' = {51(6) | (Ei_1(6)7 h) = 51(5)}
Note that different from frame optimization methods in [7heve there is only one logical schedule for a given

structure due to the assumption of zero network delay, inptteposed greedy algorithm, we need to optimize

August 13, 2012 DRAFT



IEEE TRANSACTIONS ON MULTIMEDIA, FEBRUARY 2012 20

multiple schedulegy;(d)’s for different ¢’s in the schedule layer given a structure layerat instantiA, each
corresponding to clients’ view-switch feedbacks at déferinstants(i — 6)A)’s.

The above process repeats to find the most locally benefiaghantation at each iteration, update the corre-
sponding schedules by (15) and compute the local Lagramgisinin (14), until no more Lagrangian cost reduction
can be found. Note that after updating the local scheduleselh iteration, it is possible that some frameg;in

are not used by any view-switch. In this case, those unusedes will be removed from the structure.

C. Optimal Quantization Parameters Update

We next present a low-complexity algorithm to optimally apel QPsQ for given structure7 *) and schedule
setG(*)(), as defined by the second sub-problem (13). To find the opsuiation of the constrained optimization
problem (13), the naive approach of exhaustively seagchlhcandidate€)’s that satisfy both storage constraint
B and distortion constrainD is too expensive in practice. Instead, we develop a straegypdate QPs by first
studying rate-quantization (R-Q) and distortion-quaattan (D-Q) characteristics of multiview videos.

1) R-Q Model AnalysisDuring the last decades, the relationship between rate &dfQ@ideo coding has been
extensively studied for applications such as rate conBated on the experiments on a large number of multiview
video sequences, we adopt the modified linear R-D model faé3in [28], where the rat& of a coded frame
is modeled aR(QP) = X/QP + L. Here X is a constant and. is an offset indicating the overhead bits.

Fig. 9 shows the relationship between coded Bitend 1/QP of one I-, P- and M-frame, on the texture and
depth coding respectively of the sequen@eg and Pant om ne. As shown in Fig. 9,R is linearly correlated
with 1/QP no matter if the frame in question is coded using I-, P, or Bhfe. As a consequence, the storage cost
B(T,Q) in (6) of a given frame structurg can be written as a function of QR3 as:

Xf,j t
B(T,Q) = > + L+

P €T Qi

Xidj d X1 Xo
Qa 7 Qr  Qa (16)

where X/ ; and L} ;,

andX; = > X/, Xo= Y X/ andL= ) (L!;+L{) are the corresponding parameters of the overall
F; ;€T ) Fi,jeT. Fi,jET_ »
structure7 . In our experiments, instead of calculating the specifiapeaters for each framg; ;, X, X, and L

X;fj and L;{j are the individual parameters of texture and depth compsrfen frameF; ;,

of a given structurél” can be directly estimated from a number of available R-Q tgaino fewer thar8) by the

least-square solution of the following linear problem:

A[X1,Xo,L)]" =B 17)
where matrixA and column vectoB are composed of row vectof$/Q:,1/Qq4,1]'s and the storages of each
available R-Q point respectively.

2) D-Q Model Analysis:To the best of our knowledge, the relationship between vigmihesis distortion and

texture/depth QPs has not been formally studied in thealitee. However, in our experiments, we observed that

the distortion cost defined in (10) is roughly correlatedwigxture and depth QPs through a linear model,

D(Q) =Y1Q: +Y2Qu+ Z (18)
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Fig. 11. Region of valid QP candidates for the second sublgno.

whereY?, Y, and Z are constants. Fig. 10 shows the relationship between gweliatortionD and QPsQ of the
sequence®og andPant oni ne, whereK = 4 and K’ = 4.

3) Quantization Parameters Updat&ased on the R-Q model (16) and D-Q model (18), given the g&oamd
distortion constraints3 and D in (13), the set of valid QP$Q;, Q4)’s can be shown to be the shaded region in
Fig. 11. In Fig. 11,/; andl, are two boundaries of the valid region, which are determimgdhe corresponding
constraintsB and D respectively, and)! = [Q}, Q}]T and Q? = [Q?, Q%7 are two intersection points between
Iy andly, with Q} < Q7 andQ? < Q..

We introduce the following lemma, which can lead to a cloBadi solution to optimally update QPs in (13).
Lemma 5.1:Given a fixed structure/ *) and schedule se(*)() at the k-th iteration of the algorithm, the
optimal QPsQ of sub-problem (13) is located at the boundary ligecorresponding to the distortion constraint

D.
Proof: The proof is given in Appendix I. [ |

The conclusion of Lemma 5.1 suggests that we can now limis#ia&ch range of optimal QPs for given structure
T®) and schedule set*)() to a line on which the distortions of all QPs are identicalgual to the distortion
constraintD. Further, it turns out that with the help of Lemma 5.1, we caenederive a closed-form solution to
update QPs of sub-problem two at each iteration, withoutsaarch process. More specifically, we first simplify
sub-problem two (13) to a single-constraint problem, stdtemally as a theorem below.

Theorem 5.1:Given structure] () and schedule se(*) (), the optimization of transmissiafi(7 %), G*)(), Q)
in terms ofQ, with storage constrainB and distortion constrainb, is mathematically equivalent to the following
univariate optimization problem:

%131 A1/Qi+ As/(D — Z —Y1Q¢) + S

(19)
st QE<Qe<Q?
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TABLE Il
PROCEDURES TO ITERATIVELY FIND OPTIMAL FRAME STRUCTURETRANSMISSION SCHEDULE AND QUANTIZATION PARAMETERS

1) Initialize texture/depth quantization paramet€¥) satisfying the distortion constraii. Setk = 0,
and specify values ok,,,;,, Amnqz, and a tolerance as the convergence criterion.
2) Fix Q™) for any k > 0. Search the suitable trade-off parameXérover [Ain, Amaz] for the given
storage constrainB. Generate optimal structurg*) and schedule sef*)() based on the greedy
structure and schedule generation algorithm, which aekiéive following unconstrained minimum given
A*

T(k)érgl-)i,%(k)() J(T(k)7 G(k)()7 Q(k))
— C’(T(k), G(k)(), Q(k)) + )\*B(T(k), Q(k))
For k > 0, if C(T®,GR(),Q")) > c(T*-1 g¢-1(),Q*), continue to use frame struc-
ture and schedule at the previous iteratiom., set 7F) = 7Gk-U gk = Gk-D(), If
[(C(T®, G0 (), QW) — c(Tk-Y, G0 (), QM) /C(T®,G®)(),QM)| < &, stop the iteration
and output(7®) G*) (), Q*)) as optimal result. Otherwise, go to step 3 to continue thatitn.
3) Fix 7" and G*)(). Randomly select (I > 3) quantization parameter paiQ; = [Q:.;, Qa.i]”,
i=1,2,...,1, calculate the transmission cast and distortion cosD; for the given7*) and G(*) ().
Then, estimate parameters, A, Y1, Y> and Z by solving two linear problems as (17). Updag®)
to Q**t1) based on (20) so tha)(*+1) can achieve the following constrained minimum:

min  C(T®,GM(),Q**Y)

QU+ea
s.t. B(T®,Q*+V)y < B, DQ*)<D

4) Go to step 2k + k+ 1.

where

Z‘I’(5)< Y alFi 09X
§

F; ;€T®)

Ag = (Z\I’((S) ( Z q(Fi,j76)ng>> Yz
§

Fi ;€T
S= Y WO | > aFuy8)(Li,+ Liy)
5 Fy €T

Proof: By using Lemma 5.1 and taking R-Q model (16) and D-Q model ifii8)(8), optimization sub-problem

(13) can be found to become (19). [ |
Note that after applying Lemma 5.1, the denominator of tremisd component in (19) denotes that the corre-

sponding view synthesis distortion of the optimized QPsgasisfies the distortion constraif, while the constraint
Qi < Q: < @Q? guarantees the storage constraihts satisfied.

Given the convexity of the target function in (19) over thaga[Q}, Q?], we next evaluate the minimization by
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taking derivative of (19) with respect 1@, °. The optimal (Q;, Q?) is then found to be
VA (D-2Z) Qtl S VAL (D-2Z) S Q?

VALIY1+VAYT) (\/_A1Y)1+\/A2Y1

* 1 VA{(D-Z 1
Qr = @ T vy < @ (20)

QQ VA (D-2) > Q2

t VALY +V AR YT t

Qi= (D—-Z-11Qp)/Y2
Note that similar to (16), to reduce the computational caxity, instead of using the specific expression in (19), all
the necessary parametets, A,, Y1, Y2 andZ to calculate(Q;, Q%) in (20) can be directly derived by solving the
linear problem (17) from multiple quantization paramet@gs, Q,)’s for the fixed7*) and G*)(). The optimal
QPsQ in Step 3 of the proposed iterative optimization algoritham de then updated using (20).

At the end of this section, for the completeness of desoiiptive describe in Table Il the complete procedures to
iteratively optimize frame structure, associated scheduld quantization parameters, based on the proposed greedy
frame structure and schedule generation algorithm in Ség.avid QP update algorithm in Sec. V-C.

We claim that the proposed iterative joint optimization @rhe structure, transmission schedule and quantization
parameters in Table Il is guaranteed to converge, whichaiedtformally as a theorem below.

Theorem 5.2:Based on the greedy frame structure and schedule genetidrQP update algorithms, the
convergence of the proposed iterative optimization is guoiged.

Proof: The proof is given in Appendix II. [ |

VI. SIMULATION RESULTS
A. Simulation Setup

To gather multiview video data for our experiments, we erchithe firs0 frames of sequenc&og, Pant oni ne

and Chanpai gn [29] of 4 captured views K = 4), at resolution1280 x 960 and 30 frames per second (fps).
Each sequence has different characteristic and camena, sequ different distance between neighboring capturing
cameras, and capturing objects with various range of degitres. The MPEG depth estimation reference software
(DERS) 3.0 [25] is used to generate the depth maps. We setutihéer of synthesized views between neighboring
captured views to bél’ = 4; hence there aréK — 1)K’ + K = 16 views available for clients’ selection. To
synthesize the virtual views, the view synthesis referesafevare (VSRS) 2.0 [22] is used for DIBR. Note that
different multiview video characteristics can affect theaunt of geometric errors caused by depth map estimation,
which is reflected by the resulting view synthesis distortad DIBR. To generate data for DSC implementation
of M-frames, we use the algorithm in [20], developed usin@@3. tools (with half-pixel motion estimation). In
addition, the random access periddand view-switch period\ are set to b80 and3, respectively. The Lagrangian

multiplier X is swept from0.01 to 40.96 to induce different tradeoffs between storage and trarsangate.

6Though we focus on the optimization of (19) in terms @f, the same process can be carried@p as well, correspondingly, (19) is
formulated as function of);
"The QPs of a practical video codec are chosen from a discettef salues, while the R-Q and D-Q models we developed inghjser are

in continuous domain. Therefore, there is an inherent rogndrror for the resulting optimal QP&; and Q7.
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Fig. 12. Convergency rate of the iterative procedure, wlieree sequences are encoded320KBytes with distortionD = 23 for Dog,
D = 11 for Pant om ne, and D = 36 for Chanpai gn.

For view-switching interactive model, we set view diffecerboundl. = K’ + 1 = 5, which means the distance
between two consecutive view-switches cannot exceed #tateen two neighboring captured views. In addition,
we assume the view-switching probability function in thenfio®(n) = ¢1 — ¢2||n||, =5 < n < 5, wheregs =
(11¢y — 1)/30 such thatZ@(n) = 1. Note that¢; is the probability that client switches to the view coordea
where she remains in the same view-switch direction as @uewiew-switch, and- is the decreased probability
when she transitions to neighboring view coordinates ireothiew-switch directions. By changing;, we can
model the behaviors of video streaming clients with différeiew-switching habits.

For the PDF of RTT delay, we assume an uniform distributiothwipper boundR7T'T},.. = 5A (500ms) for
simplicity, i.e., ¥(x) = 1/(5A), z € (0,5A). Correspondingly, the PM® (4) of ¢ could be calculated from (7) as
W(6)=0.2,1<6<5.

B. Simulation Results

1) Convergency Speed of Iterative Optimizatidkie first examine how fast the proposed iterative joint optani
tion algorithm of frame structure, transmission scheduleé @Ps could converge. In Fig. 12, supposifig= 0.2,
we plot the change of transmission rate at each step of th@opedal iterative algorithm, where the storage constraint
is 320KBytes for all three sequences, the distortion constrargdt to be23, 11 and 36 for Dog, Pant om ne
and Chanpai gn respectively. In Fig. 12, the points with step indic&s— 1 and 2i represent the transmission
rates after Step 2 and Step 3 at thth loop of the iterative procedure, respectively. Firsg van see that as
shown in the proof of Theorem 5.2 in Appendix Il, the transsiwa rate is a non-increasing function at each step
of the iterative algorithm. Second, we can observe that vappiied to different sequences, the proposed iterative
algorithm can coverage to the optimal solution very fashimit2 iterations, demonstrating the efficiency of the
proposed algorithm to real multiview video data.

2) Algorithm Performance Comparison with Different Digton Constraints: We next study the change of
transmission rate resulting from our optimized structwehedule and QPs when we vary storage and distortion
constraints. When, is set to be).2, we generated tradeoff points between storage and trasismiste for different

view synthesis distortion, shown in Fig. 13. First, for aggivdistortion, we see an inverse proportional relationship
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Fig. 13. Tradeoff between storage and transmission rate different distortion constraints: (&og; (b) Pant oni nme; (c) Chanpai gn.
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Fig. 14. Tradeoff between storage and transmission rateywdifferent coding configurations, for a given distortioonstraint: (a)Dog with
D = 31; (b) Pant om ne with D = 10; (c) Chanpai gn with D = 36.

—e—o—

between transmission rate and storage, because largagstbudget means more frame structure redundancy,
resulting in more bandwidth-efficient P-frames used in anfastructure. Second, we observe that in general larger
distortion means a smaller transmission rate and stordgs.iJ also expected, since better view synthesis quality
means smaller quantization distortion, leading to compaaig large frame sizes of encoded texture and depth
maps, which are expensive for both storage and transmissiodwidth. In addition, for the same storage, the
transmission rate drops more slowly as the increase ofrtimtoconstraint.

3) Algorithm Performance Comparison Using Different Seu@oding Models:Then, we analyze the effects of
different video source coding models on the performanceashé structures generated by our proposed algorithm.
In Fig. 14, we plot the tradeoff points between storage aadsmission rate for our algorithm using I-, P- and
M-frames ( PM), using I- and P-frames @) and using only I-framesl ¢ onl y), when ¢, is set to be0.2 and
distortion constraint is set to b&l, 10 and 36 for Dog, Pant oni me and Chanpai gn respectively. First, we
observe that - onl y has a single tradeoff point, because placing I-frames aswiiching points results in no

flexibility to trade off between storage and transmissiae,réherefore could not take advantage of extra storage if
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available to lower transmission rate.

Second, for the same storagi@Moffers lower transmission rate by up%o.7% for Dog, 22.8% for Pant oni nme
and 55.3% for Chanpai gn, due to the optimal usage of redundant P- and DSC-frames.péHfermance im-
provement ofl PMover | - onl y for Pant oni ne is much smaller thabog and Chanpai gn. This is due to
the relatively small size of I-frames iRant omi ne, as a result of almost textureless background region in the
sequence, which introduces adequate spatial redundaneffiicient intra prediction.

Third, we observe that structures using M-frames can offieoticeable improvement over those using I-frames,
with transmission rate saving up &¥.5% for Dog, 11.3% for Pant omi nme and 23.9% for Chanpai gn. The
improvement is larger at stringent storage constrainth(iignsmission rate), because DSC-frames are more often
used by the optimized frame structure to lower overall gfera

4) Algorithm Performance Comparison with Different RTT &l We then evaluate the impact of RTT delays
on the performance of frame structures optimized from tloppsed algorithm. Given the corresponding storage and
distortion constraints, Fig. 15 depicts the change in etqggetansmission rate with the increase of RTT delay when
the same frame structure generated from the proposed thlgois individually operated on server-client channels
with different RTT delays. More specifically, we first optizei the frame structure, schedule and QPs to lower
the expected transmission rate with respect to the PDF of R{d), subject to given storage and view synthesis
distortion constraints as discussed in Sec. V. We then conip& corresponding individual transmission rate (9)
when the resulting frame structure performs on differemicefit RTT delays. To induce different view-switching
probability ®(n), ¢; is set to bed.2 and0.4 for two trials.

First, we see that transmission rate is a non-decreasipgfstetion with the increase of RTT delay, and in
general, larger RTT delay results in more transmission Wwattl consumption. This is intuitive: given a frame
structure7, all RTT delaysRT'T’s, (§ —1)A < RTT < §A will use the same transmission sched@!®)), leading
to the same coded frames delivered from video server for &actsmission, while in overall larger RTT delay
means more view-switch positions to cover at each strudlice, resulting in larger transmission rate.

Second, we can observe that transmission rate cannot befuncreased wheRTT > 2A. This can also be
easily explained: wheRT'T > 2A, one client is able to reach allk — 1)K’ + K = 16 available view-switch
positions within one RTT no matter which view-switch pamitishe choose one RTT before. Correspondingly, each
structure slice needs to cover &l = 4 captured views, resulting in a constant transmission rate.

Third, as ¢, is increased, the transmission rate of the optimized fratnectsire decrease. This is expected:
larger ¢, means higher probability that client remains at the same-gigitch direction, which also increases the
probability that client stays at the same view after one vésvitch; therefore, more P-frames predicted from the
previous frames of the same view are used in the structuseltieg in lower transmission rate. Moreover, the
frame structure has the same transmission rate WtER > 2A, independent or,, because of transmission of
all captured views at each slice structure.

5) Improvement of Texture/Depth QP Optimizatidrinally, we verify the effectiveness of the proposed quan-

tization optimization algorithm for texture and depth mayling. Using the same distortion constraints for three
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Fig. 15. Transmission rate of a frame structure versus RTaydéa) Dog at 360KBytes; (b) Pant oni me at 420KBytes; (c) Chanpai gn
at 420KBytes.
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Fig. 16. Tradeoff between storage and transmission rategudifferent selection methods for texture and depth QRsafgiven distortion
constraint: (a)Dog with D = 31; (b) Pant oni me with D = 10; (c) Chanpai gn with D = 36.

sequences in Fig. 14, Fig. 16 compares the tradeoff poiriteeled storage and transmission rate generated by our
guantization optimization algorithmQP Opt ) with two anchor results. The firsSaénme QP) uses the same QP

to encode both texture and depth maps. The secbngdd Dept h Rat e) is a constant rate allocation method
with a pre-defined depth rate equali0% of texture rate. We observe th@P Opt consistently outperforms the
other two methods for all test sequences, whilexed Dept h Rat e is better tharSane QP for Pant omi ne

and Chanpai gn, but worse forDog. For example, at a storage 860 KBytes QP Opt yields a transmission
rate reduction oveBane QP about8%, 38% and 26%, and overFi xed Depth Rate about19%, 32% and

7%, for Dog, Pant om me and Chanpai gn respectively. It illustrates the importance of joint texetland depth

guantization optimization.

VIl. CONCLUSION

In this paper, we propose three major technological imprevas to existing IMVS works. First, in addition

to camera-captured views, we make available additionabalirviews between each pair of captured views for
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clients’ selection, by transmitting both texture and deptaps of neighboring captured views and synthesizing
intermediate views at decoder using DIBR. Second, we cacist Markovian view-switching model that more
accurately captures viewers’ behaviors. Third, we optinfiiame structures and schedule the transmission of frames
in a network-delay-cognizant manner, so that clients cgayerero-delay view-switching even over transmission
network with non-negligible RTT.

We formalize the joint optimization of the frame encodingusture, transmission schedule, and QPs of the texture
and depth maps, and propose an iterative algorithm to aelfiégst and near-optimal solutions. Experimental results
show that our proposed rate allocation method can lowesitn@ssion rate by up t88% over naive schemes. In
addition, for the same storage, using our generated frarnetstes can lower transmission rate by up5t%

compared to I-frame-only structures, and uR®% compared to structures without M-frames.

APPENDIX |

PROOF OFLEMMA 5.1

As shown in Fig. 11, given storage and distortion constsaftand D in (13), both two boundary lineg,
andl, of the valid QP region are monotonically decreasing fumgtioTherefore, for any poif®® = [Q¢, Q4T
in the valid region, we can always identify one unique pa@dft = [Q?, Q%7 on I such thatQ? = Q¢ and
QY% > Q4. On the other hand, given a frame structdré”) associated with schedule s6t*)() and a texture
quantization paramete);, transmission cost functiofi(7*), G*)(), Q) is strictly decreasing function in terms of
depth quantization parametél,. So, we can have (7™, G* (), Q) > C(T™,G*) (), Q). This proves that

the optimal quantization solutio® in (13) is located ons.

APPENDIXII

PROOF OFTHEOREMb.2

In Table Il, given frame structurg *~1), scheduleG*~)() and QPQ*) at step 2 of thek-th iteration, we
compare the new result of*) and G*)() to that of 7(*=1) and G*~1)() such thatC(7™,G* (), Q*)) <
C(T*=D, G- (), Q™). This means the transmission cost function is noincreasirsgep 2. On the other hand,
given frame structuregy (®), schedule setG(*)() and QPQ) of the k-th iteration, we searches at step 3 the
entire space of all possible QPS, for the best solutiolQ**1) to lower transmission coste., Q*) e A. This
meansC(7T®), G® (), Q1) < ¢(T™®, G*) (), Q™). Hence, we prove that the transmission cost function is a
noincreasing function at each step of the proposed iteraptimization algorithm.

Since both® and A are finite space, the noincreasing nature of the transmisgigt function guarantees that

the proposed iterative algorithm is surely to converge.
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