
Near-Optimal Content Replication for
Interactive Multiview Video Streaming

Huan Huang S.-H. Gary Chan
Dept. of Comp. Sci. & Eng.

The Hong Kong University of

Science and Technology

Clear Water Bay, Hong Kong

Email:

{huangzunhuan, gchan}@cse.ust.hk

Gene Cheung
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku

Tokyo, Japan 101-8430

Email: cheung@nii.ac.jp

Pascal Frossard
École Polytechnique

Fédérale de Lausanne

EPFL-STI-IEL-LTS4, Station 11

CH-1015 Lausanne, Switzerland

Email: pascal.frossard@epfl.ch

Abstract—In interactive multiview video streaming
(IMVS), a client can watch the multiview video and interact
with it by switching to different viewing angles at frozen mo-
ments. To provide scalable IMVS services, a content provider
often deploys distributed content servers with heterogeneous
storage capacities in order to collaboratively replicate video
segments for their clients. IMVS presents a new challenge
in content replication: which video segments to replicate to
support interactive view-switching during an IMVS session.
In this paper, we first formulate the content replication
problem as an integer linear programming (ILP) problem,
which is proven to be NP-hard. We then propose a fast
algorithm to solve it with bounded approximation error. In
this algorithm, we first solve the ILP problem as a relaxed LP
problem, and then heuristically round the resulting fractional
LP solution to integer towards ILP feasibility. Simulation
results show that our replication strategy can substantially
reduce access costs compared to a commonly used replication
scheme and a state-of-the-art replication scheme.

I. Introduction

A multiview video is a set of 2D images of the same
3D scene captured synchronously by a large array of
closely spaced cameras from different viewpoints [1]. In
interactive multiview video streaming (IMVS), a client can
play back the captured video of a single view and, in
addition to random access in time, may perform inter-
view switching, i.e., pause the video in time and switch
to nearby viewpoints to observe the 3D scene from
different viewing angles (the so-called frozen moment [2]).
Active selection of viewpoints by a client can potentially
enhance a perception of depth in the observed 3D scene,
enriching visual experience.

In an IMVS network, there is a remote repository
storing all the pre-encoded multiview videos. In order
to support large number of users, distributed content
servers are deployed close to user pool. They collabo-
ratively replicate video segments for their clients given

This work was supported, in part, by the General Research Fund
from the Research Grant Council of the Hong Kong Special Admin-
istrative Region, China (611209) and Proof-of-Concept Fund at the
HKUST (PCF.005.09/10 & PCFX05-15C00610/11ONA).

their limited storage capacities. A client sends inter-view
or temporal switching requests of segments to its local
server. The local server fulfills the request directly if the
data has been replicated locally; otherwise, it contacts a
neighboring server or remote repository to retrieve the
missing data with some access cost. One of the most
challenging problems in IMVS is content replication
among the distributed servers, specifically, which video
segments should be replicated at each server to support
interactive view-switching but minimize network access
cost.

In this paper, we consider a typical IMVS network
where the inter-server transmission cost is negligible
compared to the cost between the remote repository and
the servers. Our work is based on a redundant coding
structure proposed in our previous work, which facil-
itates temporal and inter-view switching in IMVS [3].
Beyond inter-view switching, the proposed coding struc-
ture can also be used to enable indirect hit among neigh-
boring content servers: even if an exact requested view is
not available in neighboring servers, a different but cor-
related view can be first fetched locally; then, the remote
repository only needs to subsequently transmit the pre-
encoded view difference. Using this coding structure, we
formulate the content replication problem as an integer
linear programming (ILP) problem and show that it is
NP-hard. We then propose a content replication strategy
based on linear programming relaxation and integer pro-
gramming with near-optimal performance. The strategy
is to solve the ILP problem as a relaxed LP problem first,
and then round the resulting fractional LP solution to
integer using a rounding procedure with linear execution
time. Simulation results in typical network conditions
show that our replication strategy can reduce access cost
substantially compared to random replication and to a
state-of-the-art scheme.

The outline of the paper is as follows. We first discuss
the related work in Section II. We then review the
redundant coding structure used for IMVS in Section III.

We formulate the content replication problem as an ILP
problem and show that it is NP-hard in Section IV, and
provide a LP-based solution in Section V. Experimental
results and conclusions are provided in Section VI and
VII, respectively.

II. RelatedWork
There has been much research in multiview video

coding (MVC), focusing on compression of all captured
frames across time and view, and exploiting both tempo-
ral and inter-view correlation to achieve maximal coding
gain [4]. For an IMVS application [2], only a single re-
quested view per client is needed at one time. Although
MVC is suitable for compact storage of all multiview
data (e.g., on a DVD disc), using MVC directly for IMVS
means more than one video view must be transmitted
so that a single view can be correctly decoded and
displayed, leading to an increase in streaming rate.

In previous work on multiview video transport, non-
interactive stereoscopic video data (two views for left
and right eyes) is broadcasted / multicasted to a large
group of clients [5]. In contrast, our IMVS is interactive,
where a user can periodically select one out of a large
number of views (100 capturing cameras were used in
[1]) as the video is played back [2]. Our work extends
the optimization further by considering both the frame
structure and content replication strategy to achieve op-
timal overall IMVS system performance.

Previous work on content replication in video stream-
ing has focused only on the single-view case [6]–[8]. Gen-
erally, other work adapts Bit-Torrent protocol to address
video caching problem [9]. None of these works con-
siders taking advantage of correlation among views of
the same video for caching gain. Our previous work [3]
propose a pure heuristic-based solution for the single
movie case. In this work, we propose a LP-based content
replication strategy to minimize network transmission
cost for the multiple movies case.

III. Review of IMVS Coding Structure
A. Coding Structure in Details

To support inter-view and temporal switching while
achieving good compression efficiency, the following
frame structure was proposed [3] to pre-encode a given
multiview video content of length NK frames in time. K
consecutive captured video frames in time, nK, . . . , (n +
1)K−1, and of same view i, i = 1, . . . ,U, are encoded into
a segment1 Bn(i). K is the inter-view switching period,
determining how often in time view-switch can be re-
quested by client. In other words, segment Bn(i) of view
i, n ≥ 0, contains leading picture FnK(i) (head of Bn(i))
of time instant nK of view i, and trailing K − 1 pictures
FnK+1(i), . . . , F(n+1)K−1(i) (tail of Bn(i)). FnK(i) has a redun-
dant representation, so that inter-view correlations among

1We will adopt the convention that superscripts denote movie and/or
server, subscripts denote time, and brackets denote view in the sequel.

Fig. 1. Dependencies among segments in proposed multiview video
frame structure. Arrows among heads indicate feasible view switches
using pre-encoded differentials.

Fig. 2. An implementation of a segment using I-, P- and DSC frames
(denoted by circle, squares, and diamonds, respectively).

nearby viewpoints are exploited. Specifically, for a given
redundant window δ, head FnK(i) contains up to 2δ per-
encoded differentials using heads FnK(j)’s of nearby view
j’s as predictors, j ∈ {max(1, i−δ), . . . ,min(U, i+δ)}, so that
a view-switch from view j to i only requires transmission
of the corresponding pre-encoded differential. See Fig. 1
for an illustration of a multiview video frame structure
for five views U = 5 and redundant window δ = 2.

In more details, head of Bn(i) is represented by mul-
tiple compressed versions of the same picture FnK(i): i)
one independently coded I-frame InK(i), ii) multiple dif-
ferentially coded P-frames PnK(i)’s, and iii) one distributed
source coding (DSC) frame WnK(i). First, a temporal P-
frame PnK|nK−1(i) is motion compensated using a P-frame
PnK−1(i) of previous time instant nK − 1 and same view
i as predictor. Then, inter-view P-frames PnK(i| j)’s are
disparity compensated, each using I-frame InK(j) of a
nearby view j of the same time instant nK as predictor.
Temporal P-frame PnK|nK−1(i) is for video playback in
time in the same view i. Inter-view P-frames PnK(i| j)’s
are for inter-view switching.

Graphically, DSC frame WnK(i) is shown using the
multiple P-frames PnK(i)’s as predictors. In details, DSC
frame is constructed as follows. I-frame InK(i) is the
encoding target for WnK(i). Each PnK(i) provides side
information (SI) to help decode WnK(i). Because SI PnK(i)
and target InK(i) are both a representation of the same

picture FnK(i), the frequency contents in PnK(i) and InK(i)
in Discrete Cosine Transform (DCT) domain are mostly
the same, except for a few least significant bits (LSB)
in certain frequencies. If we now view each SI PnK(i) as
a channel-corrupted version of target InK(i), then WnK(i)
only needs to deploy a channel code (low-density parity
check code (LDPC) is used in [10]) that is strong enough
to overcome the largest “channel noise” in all SI PnK(i)’s,
no matter which SI PnK(i) is actually available at decoder,
recovering target InK(i) is perfectly.

Thus, by DSC frame construction, Wnk(i) can be per-
fectly reconstructed as long as one of the predictors
PnK(i)’s is available at decoder. Functionally, WnK(i)
serves as a merge operator to reconciliate minor differ-
ences due to motion/disparity compensation and quan-
tization among P-frames PnK(i)’s to target InK(i). This is
done so that other frames in turn can simply use the one
unified version of FnK(i), I-frame InK(i), as predictor for
differential coding. WnK(i) in practice is much smaller
than independently coded I-frame InK(i) [10]. Continu-
ing with our example, Fig. 2 shows an example frame
structure for segment (1, 2).

B. Coding Structure in Usage

We now discuss how the redundant frame structure
previously described is used in IMVS. If a viewer re-
quests a view j after observing view i, where |i − j| ≤ δ,
only inter-view P-frame PnK(j|i) and DSC frame WnK(j)
need to be transmitted. On the other hand, if |i − j| > δ,
then the much larger independently coded I-frame InK(j)
must be transmitted.

The cost of repository transmission is generally much
more expensive than a local server transmission; the goal
of content replication is to avoid repository transmission
as much as possible. Thus, to avoid repository transmis-
sion of InK(j) during an inter-view switch from i to j
when |i − j| > δ, if a neighboring server has replicated
I-frame InK(l) locally, |l − j| ≤ δ, then the server can
first forward InK(l) to the client, while the repository
transmits smaller P-frame PnK(j|l) and DSC frame WnK(j).
This is called indirect hit: a local server does not have the
requested view j replicated locally, but has a correlated
view l that can help to lower repository transmission cost
from InK(j) to PnK(j|l) and WnK(j).

To summarize, there are four possible transmission
costs during a requested inter-view switch from i to j,
depending on available replicated content in servers. In
order of increasing costs, they are:

1) Direct hit: when a neighboring local server has the
exact segment Bn(j) requested by a client. Repli-
cated I-frame InK(j) can be forwarded locally.

2) Differential transmission: when the repository trans-
mits pre-encoded differentially coded P-frame
PnK(j|i) and DSC frame WnK(j).

3) Indirect hit: when a neighboring server y has repli-
cated a correlated frame InK(l), which is forwarded

locally, and the repository transmits only P-frame
PnK(j|l) and DSC frame WnK(j).

4) Replicate miss: where servers do not have exact
or correlated frames, and the repository transmits
independently-coded I-frame InK(j).

Because there are no differentially coded P-frames
PtK|nK(i), n , t, there are only two possible costs for
temporal switching, direct hit or replicate miss, similar
to conventional caching mechanisms.

IV. Problem Formulation

In this section we present the distributed content
replication problem as an integer linear programming
(ILP) problem. We first define the decision variables,
followed by the constraints and optimization objective.

A. Decision Variables

Each server must decide which segment(s) of movie m
to replicate given its (limited) storage size. Let φx,m

n (i) ∈
{0, 1} be a binary variable denoting the decision to
replicate segment Bm

n (i) of movie m at server x. After
watching a segment Bm

n (i) of movie m, users can request
an inter-view or temporal switch, and IMVS network
has to decide from whom to get the segment. For inter-
view switching, we first define ξm

n (i, j) ∈ {0, 1} to be
the binary variable denoting the decision to directly
pull requested view j from a local server if an inter-
view switch is requested from view i to j of instance n
(direct hit). Further, we define ζm

n (i, j) ∈ {0, 1} to be the
binary variable denoting the decision to pull a correlated
view from a local server (and pre-coded differential from
repository) if an inter-view switch is requested from
view i to j of instance n (indirect hit). ξm

n (i, j) = ζm
n (i, j) = 0

would mean requested view j must be pulled entirely
from repository (replicate miss).

For temporal switching, we define θm
n,t(i) ∈ {0, 1} as the

binary variable denoting whether to pull segment Bm
t (i)

from a server if a temporal switch is requested from time
instance n to t.

B. Linear Constraints

Let Sm
n (i) be the size of segment Bm

n (i) of movie m.
Because of finite storage capacity cx of server x, we have
the following capacity constraint for each local server x:

∑

m

∑

n

∑

i

φx,m
n (i)Sm

n (i) ≤ cx, ∀x. (1)

For temporal switch variable θm
n,t(i), it can be 1 only

if there is at least one server x replicating segment Bm
t (i)

locally. Thus, we can write:

θm
n,t(i) ≤

∑

x

φx,m
t (i), ∀m, n, t, i. (2)

Similarly, for direct replicate inter-view switch variable
ξm

n (i, j), it can be 1 only if there is a server x replicating

segment Bm
n (j):

ξm
n (i, j) ≤

∑

x

φx,m
n (j), ∀m, n, i, j. (3)

For indirect replicate inter-view switch variable ζm
n (i, j),

it is more complicated. It can be 1 only if there is a
server x replicating segment Bm

n (l), where view l is in
the window j − δ ≤ l ≤ j + δ, so that repository can send
only P-frame Pm

n (j|l) and DSC frame Wm
n (j). Thus, we can

write:

ζm
n (i, j) ≤

∑

x

l= j+δ
∑

l= j−δ,l, j

φx,m
n (l), ∀m, n, i, j. (4)

For a given inter-view switch from i to j, to ensure that
indirect and direct hits are not selected simultaneously,
we write:

ξm
n (i, j) + ζm

n (i, j) ≤ 1. (5)

We can see that all constraints are linear with respect to
the decision variables.

C. Inter-view & Temporal Switch Model

Before defining the objective, we first describe the
probabilistic model we use to describe the likelihood
of a user choosing different inter-view and temporal
switches. Let pm

n,t be the probability that a user chooses a
temporal switch from a segment of time instant n of any
view to segment of instant t of the same view. Further,
let Pm

n be the relative temporal popularity of segments in
instant n, i.e.,

∑

n Pm
n = 1. Pm

n can be derived from pm
n,t’s

easily, if we assume a user starts an IMVS session in
the first instant and has a variable lifetime (in terms of
number of temporal switches before leaving the IMVS
session) with known probability mass function.

Similarly, we can define πm(i, j) as the probability that
a user switches from view i to j in any time instant.
Further, we define Πm(i) as the steady state probability
of view i, where

∑

iΠ
m(i) = 1. Finally, let Ω be the

probability that a client performs temporal switching;
i.e., he switches to a different view with probability 1−Ω
at any time from any view.

D. Linear Objective

We first define sm
n (i) and um

n (i) to be the expected cost
of temporal and inter-view switching at segment Bm

n (i)
of movie m, respectively. Let Qm be the probability that
movie m is selected for observation. We can now write
the expected user access cost S as

S =
∑

m

∑

i

∑

n

QmPm
nΠ

m(i)
[

Ω sm
n (i) + (1 −Ω) um

n (i)
]

. (6)

Our objective is to minimize expected user access cost
S by deciding, which server to replicate each segment
Bm

n (i) (φ’s), and where to pull content during a temporal

switch (θ’s) or an inter-view switch (ξ’s and ζ’s), i.e.,

min
{φ},{θ},{ζ},{ξ}

S. (7)

We can write temporal switch cost sm
n (i) as the sum of

all time-to-time switch costs Cm
n,t(i)’s to some time t:

sm
n (t) =

∑

t

pm
n,t Cm

n,t(i). (8)

Similarly, we can write inter-view switch cost um
n (i) as

the sum of all view-to-view costs Tm
n (i, j) to some view

j:

um
n (i) =

∑

j

πm(i, j) Tm
n (i, j). (9)

Each time-to-time switch cost Cm
n,t(i)’s can be written

simply in terms of temporal switch variable θm
n,t(i):

Cm
n,t(i) = θ

m
n,t(i) ε + (1 − θm

n,t) Sm
t (i). (10)

Equation (10) says that the time-to-time switch cost is a
small ε if segment Bm

t (i) is replicated in a neighboring
server, and size of the segment Sm

t (i) if Bm
t (i) must be

pulled from the repository.
View-to-view cost Tm

n (i, j) is only slightly more in-
volved. If it is a direct hit in server (ξm

n (i, j) = 1), then
like previous (10), it is a small cost ε. If is is an indirect
hit (ζm

n (i, j) = 1), then repository must transmit a P-frame
and a DSC frame, resulting in cost ε+dm

n ; we approximate
transmission of a P-frame Pm

n (j|l) and DSC frame Wm
n (j)

for any intermediate view l, j − δ ≤ l ≤ j + δ, to be dm
n .

Finally, if it is a replicate miss (ξm
n (i, j) = ζm

n (i, j) = 0), then
repository must transmit all requested content, resulting
in cost Dm

n (i, j):

Tm
n (i, j) = ξm

n (i, j) ε + ζm
n (i, j)(ε + dm

n) +
[

1 − ξm
n (i, j) − ζm

n (i, j)
]

Dm
n (i, j). (11)

Repository cost Dm
n (i, j) depends whether the target

view j is within the prediction window [i − δ, i + δ] or
not:

Dm
n (i, j) =

{

|Pm
n (j|i)| + |Wm

n | if |i − j| ≤ δ;
|Im

n (j)| if |i − j| > δ.
(12)

Since ε, Sm
n (i), dm

n and Dm
n (i, j) are fixed, it is clear that

time-to-time switch cost Cm
n,t(i) and view-to-view switch

cost Tm
n (i, j) are linear in the decision variables. Thus,

expected temporal and inter-view switch cost sm
n (i) and

um
n (i) are also linear, and objective function S is also lin-

ear. Since all the constraints are also linear, our problem
is an Integer Linear Programming problem (ILP).

E. NP-Hardness Proof

We briefly outline a NP-hardness proof of our ILP
problem by showing a special case can be mapped to
the known NP-complete problem bin packing [11]: given
a bin capacity W, a list of items of sizes a1, . . . , aZ,

and integer B, is there a capacity-preserving item-to-bin
assignment so that B or fewer bins are required?

Consider a special case of our problem where there
are B servers in the IMVS network, each of storage
size W, and the single multiview video only has one
view. Thus, client can only perform temporal switching.
Suppose each segment Bn of Z segments has size az,
and each segment is requested with equal likelihood. If
there is a content replication strategy to fit all segments
in the servers (reflected in the resulting cost S since
no repository transmission is required), then there is
a capacity-preserving item-to-bin assignment to fit all
items in B or fewer bins. Thus, our optimization problem
is at least as hard as the NP-complete binary decision bin
packing problem, and hence is NP-hard.

V. LP Relaxation and Rounding Algorithm

We discuss how a LP relaxation of the ILP problem
can be easily solved. Given the LP-relaxed solution, we
finally discuss a heuristic to round the fractional LP
solution to integers to find a feasible solution.

A. LP Relaxation

The ILP problem posed earlier have linear constraints
and objective; it is hard because of the additional integer
constraints. If we remove these integer constraints, we
can solve the resulting LP problem using one of several
known algorithms like Simplex in polynomial time [11].
The resulting objective function value S∗ represents a
super-optimal solution value; i.e., S∗ ≤ So, where So is the
true optimal solution value to the original ILP problem.
The reason is that LP problem is a relaxed version of the
original ILP problem with fewer constraints.

If we now perform rounding to the LP solution so
that the integer constraints are satisfied, we have a (likely
sub-optimal) solution that is feasible with objective value
Sa. It is then easy to see that the approximation error ε
away from the true optimal solution we suffer from our
rounded solution is bounded as follows:

ε = |Sa − So| ≤ |Sa − S∗|. (13)

Thus, the LP solution provides us with an a posteriori
approximation bound to quantify the quality of our
rounded solution. We discuss next how the LP solution
also provides additional information so we can perform
integer rounding to a good approximate solution.

B. Rounding Heuristic : Minimum Eviction

Given an LP solution, we can classify the storage
variables φx,m

n (i)’s into two classes: 1) Primary variables:
a segment Bm

n (i)’s fractions φx,m
n (i)’s across servers sum

to one, i.e.
∑

x φ
x,m
n (i) = 1; 2) Secondary variables: segment

Bm
n (i) where

∑

x φ
x,m
n (i) < 1. LP solution tells us that

primary variables are more important than secondary
ones, because they are stored in entirety in servers.
Heuristics Minimum Eviction essentially tries to fit as

many primary variables in server storage as possible by
iteratively considering the fractional segment with the
largest size first:

1) Identify storage variables φx,m
n (i)’s that equal 1.

These are stable assignments and will not be
changed further.

2) Find a target fractional primary variable φx,m
n (i) < 1

representing the largest fractional segment. Round
this fraction up, and corresponding variables
φ

y,m
n (i)’s in other servers y down.

3) If rounding up in step 2 results in server x storage
constraint violation, evict secondary variables in
order of decreasing fractional segment sizes until: i)
constraint is met, or ii) no more secondary variables
are left.

4) If server x storage constraint is still violated, evict
the unstable primary variable φx,m

n (i) < 1 in server
x in order of decreasing fractional segment sizes
until: i) constraint is met, or ii) no more unstable
primary variables are left.

5) If server x storage constraint is still violated, evict
the target unstable φx,m

n (i) instead.
6) Go to step 1. If no variables after another iteration,

round down all remaining fractional variables.

The key idea is that by attempting to round up storage
variable with the largest fractional segment size, it is
either kept at server x, or it is removed from the servers,
but never moved from one server to another.

VI. Illustrative Simulation Results

We now present simulation setup and results to
demonstrate the performance of our replication strategy
over competitor schemes.

Unless otherwise stated, we use the following parame-
ters in all experiments: number of serversV = 3, number
movies M = 3, number of views U = 7, number of
segments in time N = 7, server storage size cx = 3840
units, ∀x ∈ V, I-, P- and DSC frame sizes are 48 units,
4 units and 8 units, segment size 144 units, view switch
tendency Ω = 0.3.

We first solve the LP-relaxed version of the ILP prob-
lem, resulting in a “super-optimal” (SUP) solution. Based
on the solution of the LP relaxation, we use LP relax-
ation with integer rounding (LPRR) to find an approx-
imate solution. We compare with random replication
(RAN), which randomly replicates movie segments at
each server. We also compare with a state-of-the-art
scheme called Local Greedy (LG), which divides the
movies into three categories: those popular ones which
all servers store, those medium popular ones which
only one server store, and those unpopular ones which
only the repository stores. To show the performance of
LPRR, we compare the segment access cost of different
solutions.

Figure 3 plots the access cost versus view switch
tendency for different schemes. View switch tendency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

View switch tendency

A
c
c
e

s
s
 c

o
s
t

RAN

LG

LPRR

SUP

Fig. 3. Access cost versus view switch tendency
given different schemes.

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

Size of redundant window δ

A
c
c
e

s
s
 c

o
s
t

RAN

LG

LPRR

SUP

Fig. 4. Access cost versus size of redundant
window given different schemes.

1 2 3 4 5 6 7 8
0

10

20

30

40

50

Server size (*960)

A
c
c
e

s
s
 c

o
s
t

RAN

LG

LPRR

SUP

Fig. 5. Access cost versus number of servers
given different schemes.

equals to 1 means users only perform inter-view switch
at every switch opportunity. We observe that the access
cost decreases with view switch tendency; higher view
switch tendency means the repository has a high prob-
ability to transmit I-frame or P-frame-plus-DSC-frame
instead of the whole segment. LPRR and SUP have very
similar performance, showing the near-optimality of our
proposed scheme. LPRR has much smaller access cost
than RAN and LG, partly because LPRR optimizes con-
tent replication exploiting available indirect cost in the
designed redundant frame structure whenever possible.

Figure 4 plots access cost versus size of redundant
window size δ. (Note that δ = 0 corresponds to the
case when only I-frames are used to encode heads of
coding units for view-switching.) We observe that the
access cost decreases with δ; a larger redundant window
means that the likelihood of indirect hit and differential
transmission increases, so the repository just needs to
transmit the pre-encoded differentials instead of a large
I-frame, leading to a lower access cost. LPRR can reduce
access cost substantially as compared to LG and RAN.

Figure 5 plots access cost versus number of servers.
We observe that access cost decreases with the capacity
of servers, because servers can replicate more views
to serve the request directly. We can see that LRRR
outperforms RAN and LG significantly in access cost.

VII. Conclusion
In this paper, we consider the problem of optimally

replicating content for an IMVS network with distributed
servers to support users watching multiview video while
periodically requesting inter-view or temporal switches.
We show that by using a redundant frame structure,
the repository access cost can be lowered via “indirect
hit”. By replicating and locally forwarding correlated
views in servers that are different from the requested
views, the repository only needs to transmit pre-encoded
frame differentials between the replicated views and
the requested views. We propose a LP-based strategy
with integer rounding to replicate segments of different
movies among multiple servers, so that users can access

the requested data with low access cost. Our simulation
results show that our proposed scheme significantly
outperforms a commonly used replication scheme and
a state-of-the-art replication scheme in terms of access
cost, and that it is very close to the LP-relaxed optimal
solution.

References

[1] T. Fujii, K. Mori, K. Takeda, K. Mase, M. Tanimoto, and Y. Sue-
naga, “Multipoint measuring system for video and sound—100
camera and microphone system,” in IEEE International Conference
on Multimedia and Expo, Toronto, Canada, July 2006.

[2] G. Cheung, A. Ortega, and N.-M. Cheung, “Interactive streaming
of stored multiview video using redundant frame structures,” in
IEEE Transactions on Image Processing, vol. 20, no.3, March 2011,
pp. 744–761.

[3] H. Huang, B. Zhang, S.-H. G. Chan, G. Cheung, and P. Frossard,
“Coding and caching co-design for interactive multiview video
streaming,” in Proc. of the 31th Annual IEEE Conference on Computer
Communic ations (INFOCOM’12) mini-conference, 2012.

[4] P. Merkle, A. Smolic, K. Muller, and T. Wiegand, “Efficient predic-
tion structures for multiview video coding,” in IEEE Transactions
on Circuits and Systems for Video Technology, vol. 17, no.11, Novem-
ber 2007, pp. 1461–1473.

[5] Z. Chen, M. Zhang, L. Sun, and S. Yang, “Delay-guaranteed
interactive multiview video streaming,” in Circuits and Systems,
2009. ISCAS 2009. IEEE International Symposium on, may 2009, pp.
1795 –1798.

[6] S.-H. Chan and F. Tobagi, “Distributed servers architecture for
networked video services,” IEEE/ACM Transactions on Networking,
vol. 9, no. 2, pp. 125–136, Apr 2001.

[7] W.-P. K. Yiu, X. Jin, and S.-H. G. Chan, “VMesh: Distributed
segment storage for peer-to-peer interactive video streaming,”
IEEE Journal on Selected Areas in Communications (JSAC) special issue
on Advances in Peer-to-Peer Streaming Systems, vol. 25, no. 9, pp.
1717–31, Dec. 2007.

[8] S. Borst, V. Gupta, and A. Walid, “Self-organizing algorithms
for cache cooperation in content distribution networks,” ACM
SIGMETRICS Performance Evaluation Review, vol. 37, no. 2, pp. 71–
72, 2009.

[9] J. Lv, X. Cheng, Q. Jiang, J. Ye, T. Zhang, S. Lin, and L. Wang,
“LiveBT: Providing video-on-demand streaming service over bit-
torrent systems,” International Conference onParallel and Distributed
Computing Applications and Technologies, pp. 501–508, 2007.

[10] N.-M. Cheung, A. Ortega, and G. Cheung, “Distributed source
coding techniques for interactive multiview video streaming,” in
27th Picture Coding Symposium, Chicago, IL, May 2009.

[11] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Dover, 1998.

