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Abstract—To account for the unique characteristics and limita-
tions of the human visual system (HVS) when perceiving images,
a variety of perceptual quality metrics have been proposed in the
literature. Tailoring rate-distortion (RD) optimization for each
metric is cumbersome and time-consuming. In this paper, we
propose a general RD-optimization strategy called “transform
domain bounding box” (BB) that can easily adapt to different
quality metrics for JPEG-like block-based encoding of images.
First, we define an objective function that is a weighted sum of
the l0-norm of the transform coefficients (a proxy for rate) and
distortion from the transform domain representation. Next, for a
given distortion target τ , we define a don’t care region (DCR) that
specifies a search region of representations with distortion ≤ τ .
We then show that the sparsest transform domain representation
(lowest encoding rate) inside a BB that tightly contains theDCR
can be constructed efficiently. Varyingτ to induce different DCRs
and corresponding BBs results in a set of constructed sparse
representations of different sparsity counts, and the one that
optimally trades off rate and distortion can be easily identified as
solution to our objective. We show that our proposed BB strategy
can be easily re-targeted for three common quality metrics:MSE,
MSE-HVS-M and SSIM. Experimental results show that our BB
strategy outperformed unoptimized JPEG compression by up to
1dB in PSNR when distortion metric is MSE, up to 2dB when
metric is MSE-HVS-M, and up to 0.005 when metric is SSIM.

I. I NTRODUCTION

It is now well accepted in the signal processing community
that classical signal distortion metrics such as mean square
error (MSE) do not correspond well to how human visual
system (HVS) perceives quality in images or videos. For
example, spatial regions with larger intensities have stronger
error-masking effects [1], and structural errors in an image
are more objectionable than mosquito-like random noise [2].
In response,quality assessment has become a popular research
topic, where the goal is to derive computational metrics that
are more aligned to human’s perceptual quality. However, there
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is currently no consensus on which derived quality metric is
best. Given perceived quality is also influenced by the viewer’s
visual attention, driven by a complicated mixture of low-
level visual stimulus and contextual information [3], the “best”
quality metric is often application- and context-dependent, and
there likely will never be one single metric that is optimal for
all cases.

Given this state of affairs, individually optimizing imageen-
coding for a variety of quality metrics becomes a necessary but
cumbersome and painstaking process. To aleviate the burden
of tailoring coding optimization for each quality metric, in this
paper we propose a general rate-distortion (RD) optimization
strategy calledtransform domain bounding box (BB) that can
easily adapt to different quality metrics for JPEG-like block-
based encoding of images. First, leveraging on our previous
work on transform domain sparsification (TDS) [4], we define
an objective function that is a weighted sum of thel0-norm
of the transform coefficients of representationY (a proxy for
coding rate) and distortion due to selected representationY.
Next, we define adon’t care region (DCR) that specifies a
search regionS(τ) of representations with distortion less than
or equal to a distortion targetτ . GivenS(τ), we then construct
a BB B that tightly containsS(τ) and whose sides are either
parallel or perpendicular to the transform axes. Finding the
sparsest representationY∗ inside BBB turns out to be easy,
so if we perform this operation iteratively for differentτ , we
can identify a set of sparse representationsY∗’s with different
sparsity counts. The one that optimally trades off rate with
distortion is the the solution to our objective.

We show how BB strategy can be easily adapted to three
popular quality metrics in the literature: MSE, MSE-HVS-
M [1] and Structural Similarity (SSIM) [2]. In our experi-
ments, we show that our proposed BB strategy outperformed
unoptimized JPEG compression by up to1dB in PSNR when
distortion metric is MSE, up to2dB when metric is MSE-
HVS-M, and up to0.005 when metric is SSIM.

The outline of the paper is as follows. We first briefly



discuss related work in Section II. We next overview three
popular quality metrics, MSE, MSE-HVS-M and SSIM, in
Section III. We then describe our general transform domain
BB strategy in Section IV, where we also discuss how the
strategy can be implemented for each of the three metrics.
Experiments for all three metrics are discussed in Section V.
Finally, we present concluding remarks in Section VI.

II. RELATED WORK

As new quality metrics are still actively being investi-
gated and proposed [2], [1], RD-optimized coding tailored
specifically for an individual metric remains a popular re-
search topic [5], [6]. Our current work is unique in that
a general RD-optimization strategy is first sought, so that
subsequent re-targeting for a specific metric only requires
minimum investment in time and effort. We note that for
distortion metric MSE, the re-targeted implementation of our
BB strategy becomes very similar to thresholding algorithms
like [5] (though instead ofl0-norm as a proxy for rate, [5]
captures the cost of run-length coding as well, so that equally
sparse transform domain representations will have different
encoding costs). We do not claim strictly superior performance
over all metric-specific algorithms; rather, we stress thatthe
value of our proposal lies in the generality of the optimization
framework, and the ease in re-targeting for any distortion
metric that satisfies a transform-axis-aligned property (to be
discussed in Section IV-A).

Transform domain sparsification (TDS) was studied in our
previous work [4] for encoding of depth maps in texture-
plus-depth format of multiview video, where the depth maps
are used at decoder for view synthesis via depth-image-based
rendering (DIBR). Though the concept of don’t care region
(DCR) and the usage ofl0-norm of transform coefficients as
a proxy for coding rate are the same, the general optimization
strategy using bounding box (BB) is new in our current work.
Note also that DCR for depth maps in general is not transform-
axis-aligned, while our BB strategy applies only for transform-
axis-aligned DCRs.

III. I MAGE QUALITY METRICS

In this section, we overview three popular metrics for im-
age/video quality assessment in the literature: Mean Squared
Error (MSE), MSE-HVS-M, and Structure Similarity (SSIM).
Our purpose is not to argue the merits of one metric over
another, but that our BB optimization strategy can be applied
to a variety of proposed quality metrics in the literature. See
[7] for an extensive discussion on image quality metrics.

A. Mean Squared Error

One of the most commonly used quality metrics in the
image and video coding community ismean squared error
(MSE): given original signalx and reconstructedy of equal
dimensionRN , we calculate the average of the component-
wise squared differences between them:

MSE(x,y) =
1

N

N−1
∑

i=0

(xi − yi)
2 (1)

After computing MSE, Peak Signal-to-Noise Ratio (PSNR)
is often computed as a function of MSE to reflect the quality
of reconstructed signaly:

PSNR = 10 log10

(

MAX2
I

MSE

)

(2)

whereMAXI is the maximum pixel value.

B. MSE with Contrast Sensitivity and Masking

It is known that MSE does not capture HVS’s varying
sensitivity to different DCT frequencies.PSNR-HVS-M [1]
is a relatively new metric that takes into account Contrast
Sensitivity Function (CSF) and between-coefficient contrast
masking of DCT basis functions. It is computed as follows.
First, the weighted energy of DCT coefficients of a8×8 image
block X (in transform domain) is computed as:

Ew(X) =

N−1
∑

i=0

X2
i Ci (3)

where Xi is the ith DCT coefficient, andCi is the cor-
responding scaling factor determined by CSF. An error
X − Y between original blockX and reconstructed block
Y cannot be visually distinguished if it is smaller than
max(Ew(X)/16, Ew(Y)/16).

This masking effect can be too large if there exists an edge
in block x (in pixel domain). To take this into account, we
compute and useEm(x) below instead:

Em(x) = Ew(x)δ(x)/16 (4)

where δ(x) = (V (x(1)) + V (x(2)) + V (x(3)) +
V (x(4)))/4V (x), x(k) is the pixel sub-block in thek-
th quadrant, andV (x) is the variance of the pixel values in
block x. We can hence conclude that the maximum masking
effect isEmax = max(Em(x), Em(y)).

Masking reduces error sensitivity for all coefficients except
DC, and so we can write the resulting noticeable difference
∆i for coefficienti as:

∆i =







|Xi − Yi| if i = 0
0 elseif |Xi − Yi| ≤ Enorm/Ci

|Xi − Yi| − Enorm/Ci o.w.
(5)

whereEnorm =
√

Emax/64.
Finally, we can compute the metric MSE-HVS-MMSEH

using obtained∆i’s as follows:

MSEH =

N−1
∑

i=0

∆2
iSi (6)

whereSi is another scaling factor based on CSF [8]. PSNR-
HVS-M is computed straightforwardly usingMSEH .

C. Structural Similarity

Yet another popular alternative quality metric to MSE is the
recently proposedStructural Similarity (SSIM) [2], defined as
follows:

SSIM(x,y) =
(2µxµy + c1) (2σxy + c2)

(

µ2
x + µ2

y + c1
) (

σ2
x + σ2

y + c2
) (7)
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Fig. 1. Examples of transform-axis-aligned Don’t Care Regions (DCR) using
weighted MSE andl1-norm of transform coefficients as distortion metrics for
two-dimensional signals.

whereµx and σ2
x are the pixel mean and variance of signal

x, andσxy is the cross-correlation between signalx and y.
c1 and c2 are constants pre-set for stability reasons; SSIM
is not sensitive to particular values ofc1 and c2. SSIM has
a maximum value of1.0, which indicates the reconstructed
signaly is exactly the same as the target signalx.

SSIM is typically calculated locally for a small local patch
(11×11 is calculated in [2]), and quality for the entire image,
mean SSIM (MSSIM), is computed simply as the average of
calculated SSIMs of all patches in the image.

SSIM of a block ofN pixels can also be expressed in the
block DCT domain1 as follows [9]:

SSIM(X,Y) =




2X0Y0

N
+ C1

X2

0
+Y 2

0

N
+ C2



×






2
∑N−1

k=1
XkYk

N−1
+ C1

∑N−1

k=1
X2

k
+Y 2

k

N−1
+ C2




 (8)

whereX0 is the DC coefficient in the blockY in DCT domain.
For optimization convenience, we will use (8) in our SSIM
computation. Also for convenience, we will define and use
distortion of SSIM (dSSIM) instead of quality SSIM during
optimization, as done in [6]:

dSSIM(X,Y) =
1

SSIM(X,Y)
(9)

IV. T RANSFORMDOMAIN SPARSIFICATION

Given orthogonal transformΦ, our goal is to find an RD-
optimal sparse representationY of dimensionN in the trans-
form domain. Specifically, we first assume that the number
of non-zero transform coefficients for a code block is a good
proxy for encoding rate; it has been shown theoretically for
low-rate [10] and experimentally [4] that this is a reasonable
approximation. We then seek to minimize the weighted sum
of l0-norm of Y (sparsity count) and distortiond of the
reconstructed pixel-domain signaly = Φ−1Y compared to
original signal (orground truth (gt)) xo:

Y∗ = argmin
Y

‖Y‖0 + λ d(xo,Φ−1Y) (10)

whereλ > 0 is a constant that specifies the relative importance
of rate to distortion.

1We will use the convention that the representation of a signal x in the
transform domain, given orthogonal transformΦ, is capital letterX = Φx.
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Fig. 2. Example of DCR and BB for a 3-dimensional signal. There are 7
lattice points in this case, one of which is feasible (insideDCR).

To solve (10) efficiently, we first provide an overview of
a generaltransform domain bounding box strategy, which we
will re-target for metrics MSE, MSE-HVS-M and dSSIM later.

A. Don’t Care Region

We first define the notion ofdon’t care region (DCR),
which is a restricted search region for sparse representations,
given a distortion tolerance level. Specifically, we define
S(τ) for distortion level τ as a region of representations
Y’s with distortion less than or equal toτ ; i.e., S(τ) =
{Y | d(xo,Φ−1Y) ≤ τ}.

The shape of the DCR obviously depends on the metric
used to define distortiond(xo,Φ−1Y). In this paper, we will
restrict our consideration to DCRs that satisfy atransform-
basis-aligned property. To properly define this property, we
first note that frequency components of a transform domain
representationY can be divided into the following three types:

1) zero-components: frequency components that equal to zero, i.e.,
A0 = {Yi| Yi = 0}.

2) gt-components: non-zero frequency components that equal to
gt’s components, i.e.,A= = {Yi| Yi = Xo

i , X
o
i 6= 0}.

3) ngt-components: non-zero frequency components that are dif-
ferent from gt’s components, i.e.,A6= = {Yi| Yi 6= Xo

i , Yi 6=
0}.

We can now define the transform-basis-aligned property for
a DCR as follows:

A DCR is transform-basis-aligned if by reassigning a
subset of ngt-componentsA6= in a representationY to gt-
componentsA= to constructY′, the resulting distortion
is no worse; i.e.,d(xo,Φ−1

Y) ≥ d(xo,Φ−1
Y

′).

Geometrically, transform-basis-aligned means that the DCR
S(τ) is widest along a dimensioni when representationY has
all other componentsYj ’s, j 6= i, equal to gt componentsXo

j .
See Fig. 1 for examples of basis-aligned DCRs. An example of
DCR that is not transform-basis-aligned would be the ellipse
in Fig. 1(a) rotated clockwise by45o, i.e., when the distortion
metric is a weighted MSE of the pixel values in thepixel
domain.

An important corollary of transform-axis-aligned is that
when searching for representationY inside a DCRS(τ)
that has the smallest Lagrangian cost (10), it is sufficient
to consideronly representationsY’s with no ngt-components



A6=. The reason is as follows. Any representationY inside
S(τ) that has non-emptyA6= can be converted toY′ that
is also insideS(τ), by reassigning components inA6= to A=

without increasing distortion. Further,Y′ has the same sparsity
count asY; i.e., ‖Y‖0 = ‖Y′‖0. Hence,Y′ has no larger
Lagrangian cost (10) thanY, and it is sufficient to consider
only representations withA6= as empty set. This is a discrete
set of representations, and we call theselattice points. See
Fig. 2 for examples of lattice points for a three-dimensional
signal. Note that not all lattice points are feasible (insideS(τ)).

B. Transform Domain Bounding Box Strategy

For a constructed DCRS(τ), we next construct abounding
box (BB) B, with boundaries either parallel or perpendicular
to all axes in the transform domain, that properly contains
DCR S(τ), i.e., S(τ) ⊆ B. In other words, bounding boxB
is defined with boundary[Lj, Uj ] in each dimensionj in the
transform domain as follows:

S(τ ) ⊆ B = {Y | Lj ≤ Yj ≤ Uj , ∀j = 0, . . . , N − 1} (11)

As an example, we see in Fig. 2 a DCR in grey for a three-
dimensional signal is contained inside a BB in blue.

Constructing atight (smallest possible) BBB that contains
DCR S(τ) in general is non-trivial. However, if DCR is
transform-axis-aligned, then finding lower and upper bound
Li andUi for dimensioni of BB B is much easier; by setting
all other frequenciesYj ’s, j 6= i, to gt’sXj , one only needs to
identify range ofYi where distortiond(xo,Φ−1Y) does not
exceedτ . We discuss how this is done specifically for MSE,
MSE-HVS-M and dSSIM in the following sections.

Having constructed BBB, since transformΦ is orthogonal,
we can construct asparsest lattice pointY∗ (in transform
domain) insideB easily; i.e., Y∗ = argminY∈B‖Y‖0.
Specifically, for each defined boundary[Lj , Uj ] of B, we set
coefficientYj = 0 if Lj ≤ 0 ≤ Uj, and setYj = Xj otherwise.
Continuing with our example in Fig. 2,L3 ≤ 0 ≤ U3, so
we can set coefficientY3 = 0 while keepingY1 = X1 and
Y2 = X2, resulting a2-sparse representation shown in yellow.
See Appendix for a proof for the minimum sparsity count of
constructedY∗.

BecauseB is a superset that containsS(τ), we can establish
the following useful lemma:

Lemma 1: The sparsity count‖Y∗‖0 of the con-
structed sparsest lattice pointY∗ inside BBB that
contains DCRS, i.e.,S(τ) ⊆ B, is a sparsity lower
bound for any representation inside DCRS(τ).

The corollary of lemma 1 is that ifY∗ is also insideS(τ),
then it is also the sparsest representation inS(τ). In practice,
very oftenY∗ ∈ S(τ) is then the sparse solution we sought for
givenτ . If Y∗ /∈ S(τ), then a simple greedy procedure can be
taken where we iteratively restore a zero-componentY ∗

k = 0
to Xo

k (choosing one that results in the largest decrease in
distortiond(x,Φ−1Y)) until Y∗ ∈ S(τ).

If we now iteratively vary τ to induce different DCRs
S(τ)’s and resulting in different sparse lattice pointsY∗’s,
we can find a series of representations with different sparsity

1) Compute suitable target distortionsτ ’s.
2) For each computedτ ,

a) Construct BBB that contains DCRS(τ ). Construct
sparsest lattice pointY∗ insideB.

b) If Y∗ /∈ S(τ ), iteratively restore zero-componentY ∗
j =

0 to gt’s Xo
j (one with largest decrease in distortion),

until Y∗ ∈ S(τ ).
c) Compute Lagrangian cost ofY∗.

3) Identify Y
∗ for all τ ’s with smallest Lagrangian cost as

solution to (10).

Fig. 3. Generic transform domain bounding box strategy.
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/ distortion tradeoffs. From among the discovered sparse
representationsY∗’s, we can find a near-optimal solution to
(10) by identifying the one that has the smallest Lagrangian
cost. See Fig. 3 for a summary of this BB strategy.

There are two remaining problems that need to be solved
to implement the BB strategy: i) how to identify suitableτ ’s
for construction of DCRsS(τ), and ii) for givenτ , how to
construct tight BBB that containsS(τ). We next discuss these
problems specifically for distortion metrics MSE, MSE-HVS-
M and dSSIM in order.

C. Bounding Box Strategy for MSE

Suppose MSE is chosen as the distortion metric. The
uniqueness of MSE is that DCRS(τ) = {y | d(xo,y) ≤ τ},
translates simply to a sphere with radius

√
τ . It is thus clear

that the DCR is transform-axis-aligned. Then, given DCR
sphereS(τ) with radius

√
τ , a bounding boxB that tightly

containsS can be very easily found:

B =
{

Y | Xo
j −

√
τ ≤ Yj ≤ Xo

j +
√
τ , ∀j = 0, . . . , N − 1

}

(12)
See Fig. 4 for an illustration. Given this simple geometric
interpretation, the previously discussed BB strategy can be
implemented simply as follows.

For each non-zero coefficientsXo
j of gt X, we can compute

a distortionτ = (Xo
j )

2, which is the minimum distortionτ at
which the lower and upper bound of frequencyj includes zero;
i.e., 0 ∈ [Lj, Uj ]. Computingτ ’s for all frequencies provides
us the set of suitable target distortions that we need for the
BB strategy.



We note that while we cannot guarantee that constructed
lattice pointY∗ will also be inside DCRS(τ), for the same
sparsity count‖Y∗‖0, Y∗ in fact has the smallest distortion of
all representations, since the‖Y∗‖0 zero-components ofY∗

correspond to gt’s‖Y∗‖0 componentsXj ’s with the smallest
magnitudes. Hence without performing step 2(b) in Fig. 3,
we can nonetheless find theoptimal solution to (10) using
the BB strategy. The resulting algorithm is actually similar
to thresholding algorithms designed explicitly for MSE in the
literature [5].

D. Bounding Box Strategy for MSE-HVS-M

Suppose MSE-HVS-M is chosen as the distortion metric.
We first show DCR using MSE-HVS-M as distortion metric is
transform-basis-aligned. If a representationY has non-empty
A6=, it is easy to see that by reassigning those components
in A6= to A= to constructY′, the resulting distortion is no
worse:

d(x,Φ−1Y) − d(x,Φ−1Y′) =
∑

i∈A6=∈Y

∆2
iSi ≥ 0 (13)

For a given distortionτ and DCRS(τ), we can compute a
tight BB enclosing DCRS(τ) as follows. For DC coefficient
Y0, because there is no masking effect, we can compute the
lower and upper bound forY0 as follows:

τ = (X0 − Y0)
2S0

Y0 = X0 ±
√

τ

S0
(14)

For AC coefficientYi, it is slightly more involved because
of masking:

τ = (|Xi − Yi| − Enorm/Ci)
2Si (15)

We first assumeδ(X) ≈ δ(Y). To find the lower boundLi

of Yi, we knowLi < Xi, and henceEmax = Em(x). We can
then deriveLi as:

Li = Xi −
√

τ

Si

−
√

Ew(X)δ(X)/16/64 /Ci (16)

For upper boundUi of Yi where Ui > Xi, we know
Emax = Em(y). Using again (15), we can derive the following
quadratic equation and solve forUi:

0 =

(

C2
i − δ(X)Ci

1024

)

U2
i − 2C2

i

(√

τ

Si

+Xi

)

Ui

+C2
i

(√

τ

Si

+Xi

)2

−
δ(X)

∑

j 6=i X
2
i Ci

1024
(17)

Ui will be the larger of the two roots, since by assumption
Ui > Xi.

We now need to find a suitable sequence ofτ ’s for the
algorithm to seek sparse solutions. For DC coefficientY0, it is
simply τ = X2

0S0. For AC coefficientYi, it is computed as:

τ =







[

max(0, Xi −
√

Ew(X)δ(X)/1024/Ci)
]2

Si if Xi ≥ 0
[

min(0, Xi +
√

Ew(X)δ(X)/1024/Ci)
]2

Si o.w.
(18)

Having computed a suitable set ofτ ’s, the BB strategy in
Fig. 3 can be implemented for MSE-HVS-M to find a solution
to (10).

E. Bounding Box Strategy for dSSIM

When the distortion metric is dSSIM, we apply the trans-
form domain BB strategy as follows. First, we argue that DCR
using dSSIM as metric is transform-axis-aligned. The argu-
ment is that each frequency componentYj of representationY
contributesY 2

j to the numerator andXjYj to denominator of
dSSIM, where the ratio is smallest whenYj = Xj . Thus, DCR
is widest at dimensioni when other frequency components
Yj ’s, j 6= i, are the same as gt’sXj ’s.

For a given DCRS of maximum dSSIMτ , we compute the
largest and smallest DC components,L0 andU0, of a tight BB
B that containsS by letting Yj = Xj for j = 1, . . . , N − 1,
and solving forY0 using (8):

τ =





X2

0
+Y 2

0

N
+ C2

2X0Y0

N
+ C1



×






∑N−1

k=1
2X2

k

N−1
+ C2

2
∑N−1

k=1
X2

k

N−1
+ C1






︸ ︷︷ ︸

K1

(19)

0 =

(
1

N

)

Y 2
0 −

(
2τX0

K1N

)

Y0 +

(
X2

0

N
+ C2 −

C1τ

K1

)

L0 andU0 are the smaller and the larger values whenY0 is
sought in quadratic equation (19).

For each AC componentYj , we follow similar procedure to
solve for lower and upper bound,Lj andUj . Having derived
all limits [Lj, Uj ]’s, BB B that contains DCRS(τ) is well
defined.

The remaining task is how to identify a suitable set of
dSSIM τ ’s so that corresponding DCRS(τ)’s will induce
different sparsity count. We again follow similar procedure as
we have done for MSE and MSE-HVS-M. For each coefficient
Yj , we setYj = 0 and all other coefficientsYk ’s, k 6= j,
to original signalXo

k ’s. This results in SSIM using (8) and
corresponding dSSIM, which we labelτj . This is in fact the
minimum dSSIM value at which BBB will induce sparse
lattice pointY with Yj = 0, i.e., 0 ∈ [Lj, Uj ]. Computingτ
in this fashion for all frequency components yields a suitable
set of target distortionsτ ’s for BB strategy in Fig. 3.

V. EXPERIMENTATION

A. Experimental Results for MSE

To test the effectiveness of our proposed transform domain
BB strategy, we first investigate the effective of our strat-
egy for MSE. Fig. 5 shows the coding performance (PSNR
versus image encoding size) for our proposed scheme and
the unoptimized JPEG compression implementation (gt), for
imagesdancers and parrots. We see that our strategy
outperformed gt by noticeable amount; the largest coding gain
is 1dB in PSNR.
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Fig. 5. MSE comparison fordancers andparrots.
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B. Experimental Results for MSE-HVS-M

Next, we make the same comparison for distortion metric
MSE-MVS-M. The coding results for the samedancers and
parrots are shown in Fig. 6. We see again that our proposal
outperformed gt in general. Specifically, our BB-based scheme
outperformed gt by up to2dB at mid-encoding rate.

C. Experimental Results for SSIM

Finally, we made the same comparison when SSIM is the
quality metric. Fig. 7 shows the coding performance of gt and
our proposed strategy for imagesdancers andcemetery.
The coding gain here is not as significant, though we do
observe a 0.005 gain in SSIM.

VI. CONCLUSION

To account for the unique characteristics and limitations of
the human visual system (HVS) when perceiving images, a
variety of quality metrics have been proposed in the liter-
ature. In this paper, we present a general RD-optimization
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Fig. 7. SSIM comparison fordancers andcemetery.

strategy based on transform domain sparsification that can
easily adapt to diffferent quality metrics for JPEG-like block-
based encoding of images. In particular, we first define a don’t
care region (DCR) that specifies a restricted search region
of representations with distortion no larger than a distortion
targetτ . Then, usingl0-norm as a proxy for encoding rate,
we show that the sparsest transform domain representation in
a bounding box (BB) that tightly contains the DCR can be
constructed efficiently. Varyingτ to induce different DCRs
results in different discovered sparse solutions, and the one
that optimally trades off rate and distortion can be identified.
Experimental results show that our BB strategy outperformed
unoptimized JPEG compression by up to1dB in PSNR when
distortion metric is MSE, up to2dB when metric is MSE-
HVS-M, and up to0.005 when metric is SSIM.

APPENDIX

We prove by contradiction that the constructed sparse representa-
tion Y

∗ inside a BBB in Section IV-B is indeed the sparsest one
possible. Suppose there exists a feasible representationZ inside BB
B with sparsity count strictly smaller thanY∗; i.e., ‖Z‖0 < ‖Y∗‖0.
Given Z hasN − ‖Z‖0 zero frequency components, it follows that
there must be at least one zero frequency componentZk = 0, where
0 /∈ [Lk, Uk], since there are onlyN−‖Y∗‖0 frequency components
j’s with 0 ∈ [Lj , Uj ]. However, having a zero componentZk = 0
where0 /∈ [Lk, Uk] meansZ must be outside BBB by definition of
BB in (11). A contradiction.
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