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Abstract: Video streaming over wireless networks is challenging
due to node mobility and high channel error rate. In this paper, we
propose a multi-source video streaming (MUVIS) system to sup-
port high quality video streaming service over IEEE 802.11-based
wireless networks. We begin by collocating a streaming proxy with
the wireless access point to help leverage both the media server and
peers in the WLAN. By tracking the peer mobility patterns and
performing content discovery among peers, we construct a multi-
source sender group and stream video using a rate-distortion op-
timized scheme. We formulate such a multi-source streaming sce-
nario as a combinatorial packet scheduling problem and introduce
the concept of asynchronous clocks to decouple the problem into
three steps. First, we decide the membership of the multi-source
sender group based on the mobility pattern tracking, available
video content in each peer and the bandwidth each peer allocates to
the multi-source streaming service. Then we select one sender from
the sender group in each optimization instance using asynchronous
clocks. Finally, we apply the point-to-point rate-distortion opti-
mization framework between the selected sender-receiver pair. In
addition, we implement two different caching strategies, simple
caching simple fetching (SCSF) and distortion minimized smart
caching (DMSC), in the proxy to investigate the effect of caching
on the streaming performance. To design more realistic simula-
tion models, we use the empirical results from corporate wireless
networks to generate node mobility. Simulation results show that
our proposed multi-source streaming scheme has better perfor-
mance than the traditional server-only streaming scheme and that
proxy-based caching can potentially improve video streaming per-
formance.

Index Terms: Caching strategies, multi-source video streaming,
rate-distortion optimized packet scheduling.

I. INTRODUCTION

In recent years, there has been an increasing demand to de-
liver high-quality and high-bandwidth video streams over wire-
less networks. However, wireless networks present a number of
unique challenges as compared to delivering the same multime-
dia content through the traditional wired networks. In particular,
the end-to-end perceived video quality can fluctuate vastly due
to higher channel bit error rate, channel fading, interference, and
end host mobility.

Past literature on video streaming schemes over wireless net-
works have advocated protection-based approaches to address
the above challenges. Krishnamachari et al.[1] proposed an
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adaptive cross-layer protection strategy to enhance the quality
of scalable video transmission. Majumdar et al.[2] presented a
hybrid FEC/ARQ scheme to increase the robustness of video
streaming in IEEE 802.11 wireless LAN (WLAN). Wang et
al.[3] suggested using a video proxy in the base station to reduce
ARQ delay. While these approaches enhance the performance
of video streaming over wireless networks, none of them have
considered the problem from the perspective of rate-distortion
optimized streaming [4].

The goal of this paper is to design a video streaming scheme
that can be used to provide high quality video streaming ser-
vice such as video-on-demand over WLAN. Instead of using
the traditional server-client service model, we propose a joint
server/peer video streaming architecture to leverage peer re-
sources in WLAN and optimize the streaming performance from
the perspective of a single wireless client. We consider the sce-
nario where part of the multimedia content desired by the client
already resides on peers that are located in the same WLAN.
Connections to these peers typically have shorter delay and bet-
ter performance than communicating with a remote video server.
However, the reliability of wireless connections to these peers
heavily depends on the node mobility and physical channel char-
acteristics.

Our contributions in this paper are threefold.

• First, we propose a novel multi-source video streaming (MU-
VIS) system for delivering high quality video content over
WLANs. By leveraging nearby wireless peers and the remote
media server to form a joint sender group, our architecture can
shorten the transmission delay and decrease the quality degra-
dation due to packet losses and bandwidth variation. In addi-
tion, the proposed architecture can perform on-the-fly content
discovery to locate the desired video data among peers and track
peer mobility to maintain a more stable joint sender group. We
introduce a proxy-driven streaming scheme, which relies on a
proxy collocated with the access point (AP) to coordinate among
multiple senders and perform rate-distortion optimized stream-
ing/caching. Compared with a sender-driven approach, the pro-
posed proxy-driven streaming scheme avoids the synchroniza-
tion problem among multiple senders and can more easily adapt
to instantaneous changes in the network.
• Second, we formulate the multi-source (server/peers) stream-
ing as a combinatorial packet scheduling problem and decouple
it into two steps: first selecting the sender (server or one of the
peers) from the chosen sender group and then applying point-
to-point rate-distortion optimized streaming scheme between a
specific sender-receiver pair. To solve the sender selection prob-
lem, a set of asynchronous clocks are introduced at the proxy
and each clock is responsible for one particular sender-receiver
pair. In addition to sender selection, asynchronous clocks can
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also be used to perform rate control for streaming service by
properly choosing clock periods to satisfy rate constraints.
• Third, we propose a smart frame-level caching management
strategy, Distortion Minimized Smart Caching (DMSC), to man-
age the cache in the proxy. Instead of performing simple caching
according to data arrival order until the cache is fully occupied,
DMSC will selectively cache data units based on their relative
importance so that local retransmission can maximally reduce
the distortion perceived by the client under a certain cache size
constraint. Moreover, by using DMSC, the proxy can fetch data
units from the cache in a rate-distortion optimized way. Our
simulation experiments show that under typical WLAN condi-
tions, our proposed DMSC strategy can consistently improve the
system performance by 1 − 3dB compared with the traditional
simple caching scheme.
The rest of the paper is organized as follows. We describe the
related work in Section II and present the proposed MUVIS sys-
tem architecture in Section III. In Section IV, we introduce the
proxy-driven streaming scheme and analyze its performance in
Section V. In Section VI, we will discuss how the proxy cache
affects performance modeling and introduce a detailed cache
management mechanism. In Section VII, we present NS sim-
ulation results to evaluate our proposed schemes. We conclude
the paper and discuss future research directions in Section VIII.

II. RELATED WORK

In this section, we will briefly review research works related
to this paper.

A. Sender diversity in video streaming

Using sender diversity to enhance the video streaming qual-
ity has been actively explored in the past literature [5][6][7][8].
Xu et al. [5] proposed a peer-to-peer video-on-demand system
using multiple description and sender diversity, where they use
multiple ordinary computers (peers) as servers and the client can
stream different layers of the same video file from these peers.
Nguyen et al. [6] applied a receiver-driven rate allocation al-
gorithm to determine the rate for each server by taking into ac-
count available network bandwidth, channel characteristics, and
a pre-specified, fixed level of forward error correction to mini-
mize the probability of packet loss. Meanwhile, they proposed
a packet partition algorithm for the sender side to ensure that
no packet is sent by more than one server. Hefeeda et al. [7]
proposed a video streaming system that leverages underlying
peer-to-peer streaming support. Their proposed peer selection
method, called topology-aware selection, relies on the underly-
ing topology of sender candidates and network connection qual-
ities to infer goodness of the peers to choose the best senders.
The most closely related work is CoolStreaming [8], which is
a gossip-based peer-to-peer streaming system. Each user can
maintain connections to multiple peers and swap information
among them with certain delay constraints.

However, not all the above works are specifically designed for
video streaming over WLAN and none of them perform frame-
wise sender selection. In contrast, our proposed scheme per-
forms frame-wise sender selection by taking into account avail-
able network bandwidth, channel characteristics, and peer dy-
namics. Moreover, none of above approaches consider rate-

distortion optimized streaming, which is the main idea that un-
derpins the proposed MUVIS system. After pre-fetching a rate-
distortion preamble from the media server, the MUVIS proxy
will run the rate-distortion optimization algorithm to schedule
packet transmissions between the client and multiple senders.

B. Caching strategies for video streaming over the Internet

Video caching has also been used in the past literature to im-
prove the quality of multimedia streaming systems. Early papers
[9][10] proposed and analyzed algorithms to cache intervals of
video data in the main memory. Earlier clients can then satisfy
multiple future clients that request the same video file a little bit
later. Tewari et al. [11] defined a new disk-based caching pol-
icy called the resource-based caching (RBC) algorithm, which
considers bandwidth as well as storage capacity constraints and
caches a mixture of intervals and full files that have the great-
est caching gain. As an improvement over RBC, Almeida et al.
[12] proposed a pooled RBC policy to allow sharing allocated
bandwidth of cached files. Whenever a new full file is added
to the cache, its bandwidth allocation is added to the bandwidth
pool. When a request for a cached file arrives, a new stream
from the bandwidth pool is assigned (if possible) to that request.
When it finishes delivering the file, the bandwidth is returned to
the pool and can be assigned to a new request, even if that re-
quest is for a different cached file. Rejaie et al. [13] defined a
frequency-based caching (FBC) policy to simply cache the files
or partial files that are estimated to have the highest access fre-
quency at the current time. In a complementary work, Sen et
al. [14] proposed a prefix caching strategy that caches the initial
frames of the video stream to reduce the client start-up delay and
decrease variation in quality. Selective partial caching [15][16]
has also been introduced to accommodate variations in media
display rate at the client end.

Motivated by the above studies, we propose a smart frame-
based caching strategy called Distortion Minimized Smart
Caching (DMSC) to manage the cache. DMSC combines the
design idea of RBC and selective caching to determine which
video frames should be cached in order to optimally improve
the quality at the client end. DMSC accomplished this using the
rate-distortion optimization framework.

C. Rate-distortion Optimized Streaming

To the best of our knowledge, the work by Chou et al. [4]
is the first work to systematically define and solve the point-to-
point rate-distortion optimized video streaming problem. Our
work heavily leverages their ideas, which we combine with the
concept of asynchronous clocks introduced in our previous work
[17] to implement multi-source diversity streaming. There are
a number of relevant works [4] [18] [19] [20] based on the
point-to-point rate-distortion optimization problem. Chakareski
et al. [18] focused on single path streaming and proposed a hy-
brid receiver/sender driven streaming scheme, while our work
focuses on streaming video from multiple paths simultaneously.
Both Chakareski et al. [19] and Begen et al. [20] considered
path diversity for media streaming in a receiver-driven rate-
distortion optimized framework, while the former specified a
single constraint on the expected overall transmission rate from
the senders to the client. In contrast, we consider M rate con-



• STEP1:  Client sends a SREQ(VFN, UID, SR) message to the proxy when 

it wants to stream video file using MUVIS.

• STEP2:  Proxy sets a timeout tSRTO and broadcasts a MREQ(VFN, UID, 

SR) message to the media server and all the mobile users in the WLAN.

• STEP3:  Server replies a SACK(RDP, AB) message once the request is 

authorized. Willing peers send a PACK(CL, UID, AB) message back to the 

proxy.

• STEP4:  Proxy builds up a content table to save all the replies. When the 

timeout tSRTO expires, proxy builds up a joint sender group based on the 

replies and mobility tracking results.

• STEP5:  Proxy runs the rate-distortion optimized streaming scheme to start 

streaming data from different senders.

• STEP6:  Peer sends out the PUPD(CL, UID, AB) message to the proxy if 

the available video content changes over time. Proxy updates content table 

once it gets a PUPD(CL, UID, AB) message or detects the peer departure.
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Fig. 1. Multi-source video streaming (MUVIS) (a) system architecture
(b) streaming session setup procedure

straints for M distinct delivery paths. Moreover, both of these
works focused on a general static path diversity streaming prob-
lem, that is, the number of paths was fixed during the entire
video streaming session. They did not consider the dynamic
membership of senders. In our work, we must address the dy-
namic group membership problem due to the nomadic nature of
wireless peers (potential senders).

III. MULTI-SOURCE VIDEO STREAMING SYSTEM
ARCHITECTURE

In this section, we present our proposed architecture for
streaming video over WLANs. We will start with an overview
and then discuss the content and sender discovery mechanisms
in details.

A. System overview

Figure 1(a) illustrates our proposed multi-source video
streaming (MUVIS) system architecture, where the client can si-
multaneously stream from the remote media server and nearby
peers in the WLAN. In this paper, we assume all the mobile
users (MU) are cooperative and have subscribed to the streaming
service provided by MUVIS. Traditionally, the client subscrib-
ing to a streaming service, such as video-on-demand (VoD),

will completely rely on the remote media server to provide the
video content. When a flash crowd appears, the media server
can easily be overloaded. In addition, the quality of the con-
nection traversing the Internet can frequently degrade due to
network congestion and link failure [21]. This simple server-
client model overlooks the possibility that the desired video
content may already exist among peers located in the same
WLAN. Compared with the connection to the remote media
server, connections to peers usually have shorter delay and po-
tentially higher bandwidth. In the proposed MUVIS system, we
explore the possibility that the desired video content may ex-
ist among peers and we make those nearby resources accessi-
ble to video subscribers. With the coordination provided by a
streaming proxy, which is physically collocated at the access
point (AP), a MUVIS client can establish multiple connections
simultaneously to its peers in addition to the connection with
the media server. In the case when server-proxy bandwidth is
smaller than proxy-client bandwidth, such multi-source stream-
ing can obtain extra bandwidth from peer senders and the ag-
gregated streaming rate will increase. Even in the case when
server-proxy bandwidth is larger than proxy-client bandwidth,
multi-source streaming can still improve quality of transmission
by using peer connections to shorten the transmission delay. In
contrast to our previous work [17], we only use the infrastruc-
ture communication mode of the IEEE 802.11 interface card
when designing MUVIS system and all the traffic between the
client and its peers have to go through the access point.

Figure 1(b) summarizes the steps involved in establishing
a MUVIS session. When a MU joins the WLAN, it sends
an Association Request (AREQ) message containing its user
ID (UID) to the AP. When it leaves the WLAN, it will send
another message, Disassociation Request (DREQ), to termi-
nate the existing association. The proxy will keep track of
the association/disassociation behaviors for each MU in the
WLAN to monitor peer mobility. Whenever the client wants
to start streaming a video file, it will send out a request to the
proxy, which will be immediately forwarded to the remote me-
dia server. Meanwhile, the proxy will also broadcast it to the
peers in the WLAN and set up a timeout tSRTO for receiving
replies. After authorizing the request, the media server will re-
ply with a Server Acknowledge (SACK) message to the proxy
with the Rate-Distortion Preamble (RDP) included. Here, the
RDP is the directed acyclic graph (DAG) representation of the
desired video file, which will be used by the proxy to perform
the rate-distortion optimized packet scheduling. We will dis-
cuss the DAG in more detail in Section IV-A.1. Upon receiving
the broadcast request, peers which can contribute to the multi-
source streaming will send a Peer Acknowledge (PACK) mes-
sage back to the proxy. When the timeout tSRTO expires, the
proxy will construct a joint sender group based on the replies
and peer mobility history and schedule streaming from multiple
senders to the client.

B. Content discovery among peers

In general, the remote media server stores a full copy of the
desired video file while peers may only have part of it. This as-
sumption about partial content availability at peers is reasonable
because peers may delete part of the content after viewing due



SSID UID Content Portions Allocated Bandwidth
server [0s, 60s) variable

12 8088 [0s, 5s) 100kbps
8092 [50s, 60s) 200kbps

Table 1. Content table

UID association time disassociation time
8088 10 : 10 : 10am 10 : 23 : 19am

10 : 39 : 10am 10 : 53 : 19am
10 : 59 : 10am 11 : 08 : 09am

8092 10 : 10 : 10am 10 : 43 : 10am
10 : 45 : 10am 11 : 23 : 19am

Table 2. Mobility tracking table

to storage limitations or have only downloaded the beginning
portions of the video due to lack of interest and/or early exit in
their previous streaming sessions. Performing content discovery
is necessary for locating the desired video content among peers.

The content discovery process proceeds as the following.
Once the proxy gets the Streaming Request (SREQ) message
from a client, it will initiate a multi-source streaming session
for this client and randomly generate an unused integer number
as the streaming session ID (SSID). Then the proxy will start
a timer tSRTO and broadcast a Media Request (MREQ) mes-
sage to the remote media server and all the MUs in its transmis-
sion range, including the desired video file name (VFN), client’s
UID, and the preferred streaming rate (SR). The request will be
rebroadcast if no reply arrives at the proxy before tSRTO ex-
pires. If the proxy gets no reply before tSRTO expires, it will
send a System Busy message to the client. The client will wait a
random time before it sends another SREQ to the proxy. When
MUs receive the request from the proxy, they will search their
local archives to see if they have the desired video content. Any
MU that has kept full or partial copies of the desired content
and is willing to share will reply to the proxy with its UID, a
content list (CL) showing which portion of the requested video
content it has, and the allocated bandwidth (AB) for this session.
Meanwhile, the media server will also reply with its content in-
formation and allocated bandwidth after authorizing the request.
After tSRTO expires, the proxy will construct a content table as
shown in Table 1. To keep the information in Table 1 up-to-date,
the proxy will send out a periodical probing beacon to detect the
existence of MUs. At the same time, whenever the available
content for video file VFN changes in an MU, the MU will au-
tomatically send a Peer Update (PUPD) message to update its
entry in the content table. Once an MU leaves the WLAN, the
proxy will delete the corresponding entry from the content table
upon receiving the DREQ message.

C. Joint sender group membership

The mobility of MUs makes membership of the candidate
sender group rather dynamic. This can potentially lead to high
variation of the video quality perceived by the client. To smooth
the video quality variation, we try to enlist the more stable nodes
into the joint sender group. In this paper, we characterize the
mobility using two metrics, session duration and revisit inter-

val. The session duration refers to the amount of time that a user
stays associated with an access point (and hence served by our
proxy) before moving to another access point or leaving the net-
work, while revisit interval refers to the amount of time before
the next visit of the MU. Longer session durations and shorter
revisit intervals represent lower mobility. By keeping track of
these two metrics, we can infer how stable an MU can be as a
potential video source.

Our proposed streaming scheme relies on the proxy to
keep track of peer mobility by recording the associa-
tion/disassociation behaviors for each MU in the WLAN, as il-
lustrated by Table 2. When the proxy gets a streaming request
from the client, it will use the information in Table 2 to generate
a mobility factor mj for each MU, as illustrated by Figure 2. T a

j

is the set of association times for MU j, T d
j is the set of dissoci-

ation times for MU j, �j is the set of session duration times Rj

for MU j, �j is the set of revisit intervals Vj for MU j, and C1

and C2 are weighting coefficients. A larger mj value represents
higher stability.

After checking the mobility level of each peer in the content
table, the proxy will select peers that are less mobile as potential
senders. In this paper, we simply pick peers starting with the
most stable one until the aggregated bandwidth from peers and
the server reaches the link capacity between the proxy and the
client. A comprehensive peer selection algorithm is out of scope
of this paper and we will explore it in the future work.

1 if The proxy detects that MU j joins the WLAN at time ta
2 if MU j has not visited WLAN in the past, i.e. Ta

j ≡ ∅
3 T a

j ← dummyvalue

4 else
5 T a

j ← {T a
j , ta}

6 if The proxy detects that MU j leaves the WLAN at time tb
7 if MU j has not visited WLAN in the past, i.e. Td

j ≡ ∅
8 T d

j ← dummyvalue

9 else
10 Td

j ← {T d
j , tb}

11
12 �j ← T d

j − T a
j ,�j ← T a

j (k)− T d
j (k − 1)

13 if The proxy needs to construct a joint sender group
14 for Each MU listed in the content table

15 mj ← E{Rj}
E{Vj}(C1σ2(Rj)+C2σ2(Vj))

Fig. 2. Pseudo-code for Generating Mobility Factor for Mobile User

IV. PROXY-DRIVEN RATE-DISTORTION OPTIMIZED
VIDEO STREAMING

The MUVIS system uses a proxy-driven rate-distortion opti-
mized video streaming scheme. The basic idea of this scheme
is that under certain network constraints, the proxy will opti-
mally schedule requesting transmission of data units from dif-
ferent senders and relaying them to the client to minimize the
perceived quality degradation. In other words, for each DU, the
proxy has to decide: when and from which sender to request
the corresponding packet(s). Here, we use the client-perceived
distortion to measure the quality degradation, which includes
two parts: the distortion caused by quantization during source
coding, and the distortion caused by network transmission. In
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this paper, we concentrate on the second type of distortion, i.e.,
minimizing the network-caused distortion under certain network
constraints.

Directly solving such a combinatorial packet scheduling
problem is hard, and the computation complexity makes it in-
feasible for a real-time application. Instead, we decouple it into
two steps. In each transmission opportunity (to be defined later),
we first select a sender (server or one of the peers) and then
apply point-to-point rate-distortion optimization (RaDiO) algo-
rithm to schedule the packet transmission between the selected
sender-receiver pair. Before we start the detailed discussion of
the decoupling process, we first present our system model.

A. System model

Figure 3 illustrates the system model for the proxy-driven
streaming scheme, which includes a media server (node 0), a
proxy (node A), a client (node C), and a set of peers (node m,
m ∈ {1, ..., M(t)}). M(t) is the number of peers in the multi-
source joint sender group at the given time t. At this point, we
assume that there is no cache in the proxy.

A.1 Source Model

We assume that a compressed video representation has been
assembled into data units with one frame per data unit. Since the
video file is predictively encoded, data units in the bit stream
will be dependent upon each other. We use a directed acyclic
graph (DAG) [4] to model such dependency, where each DU i

represents a frame i and a directed edge represents the depen-
dency relation between two data units. In this formulation, data
unit is the smallest granularity we will consider in the optimiza-
tion. Parameters associated with each DUi include: the size ni,
the decoding time Ti, and the distortion reduction Di. The size
ni is the size of DUi measured in number of RTP packets. The
decoding time Ti is the time by which DUi must arrive at the
client. Di is the distortion reduction if DUi arrives at the client
on time and is successfully decoded.

A.2 Network model

In Figure 3, we denote the channel between node m and node
n as ζmn, m, n ∈ {0, ..., M(t), A, C} and m �= n. Each channel
includes one forward path and a backward path that are modeled
as independent time-invariant packet erasure channels with ran-
dom delay. Here, we define the forward path as the path from the
node m to the node n, and the backward path as the reverse. We
define the packet loss as one minus the probability that a packet
transmitted by node m is successfully received by the node n.
Hence, for ζmn, we can characterize its forward path by random
loss εF

mn and delay density f F
mn(x) = e−γF

mnx, x ≥ 0, where
γF

mn is a constant determined through measurements [22]. Then,
the packet sent by node m at time T will be correctly received
by node n by time T ′ with the following probability:

pF
mn(T ′ − T ) = (1 − εF

mn)
∫ T ′−T

0

fF
mn(x)dx (1)

Similarly, the backward path for ζmn can be characterized by
εB
mn and delay density f B

mn(x) = γB
mne−γB

mnx, x ≥ 0. The
packet sent by node m at time T will be received correctly by
node n at time T ′ with probability pB

mn(T ′ − T ), which has the
same form as (1).

Thus, for ζmn, the probability that a request (or data unit) sent
by node m at time T to the node n will result in a data unit (or
an acknowledgment) successfully arriving at node m by time
T ′, Pmn(T ′ − T ), will be:

Pmn(T ′−T ) = (1−εF
mn)(1−εB

mn)
∫ T ′−T

0

fF
mn(x)∗fB

mn(x)dx

(2)
where ∗ denotes convolution.

A.3 Network constraints

To prevent link overloads or potential congestion problems,
the streaming rate we use for each connection in MUVIS sys-
tem has to satisfy certain constraints set by the network. The
connection to the media server, since it will traverse the Inter-
net, needs to be TCP-friendly. In order not to claim more band-
width than what a normal TCP connection would use under the
same network conditions, the maximum streaming rate Ω j for
sender j without causing congestion collapse is determined by
the well-known TCP-friendly rate control (TFRC) [23]:

Ωj =
L

μj

√
2αj/3 + tRTO(3

√
3αj/8)αj(1 + 32α2

j)
(3)

where μj is the round-trip time, αj is the loss event rate per-
ceived by the receiver and tRTO is TCP retransmission timeout
value. According to Floyd et al. [23], it is reasonable and prac-
tical to estimate tRTO using tRTO = 4μj . Let j in (3) be 0 for
the connection to media server.

TFRC might result in bandwidth under-utilization in wireless
network environment. This is due to the fact that end users
cannot distinguish between packet loss due to bit error versus
network buffer overflow [24]. However, the design of a high
throughput rate control scheme for streaming video over WLAN
is not the focus of this paper. As a starting point, we still use



TFRC to decide the maximum non-congested streaming rate
over wireless channels. We segment the connection between the
sender j and the client into two parts: sender j to the proxy and
the proxy to the client, and implement TFRC for each segment.

Based on the above discussion, we can summarize the rate
control policy as follows. For each connection between a se-
lected sender (Node j, j ∈ {0, . . . , M(t)}) and the proxy (Node
A), we implement TFRC using (3) with parameters μj and αj

corresponding to the measured mean round-trip time (RTT) and
loss event rate on that connection. Since the proxy aggregates
the traffic from multiple sources, we need a separate TFRC con-
nection between the proxy and the client to avoid overloading
the channel and affecting other non-video traffic.

B. Sender selection using asynchronous clocks

There are two factors that will affect sender selection: the
allocated bandwidth Wj of sender j and its maximum non-
congested streaming rate Ωj . The sender that can allocate more
bandwidth for streaming and has better connection with the
client will be selected to stream data to the proxy more often.
Based on the above criteria for sender selection, we introduce
the concept of asynchronous clocks. The idea is to set up a clock
j (j ∈ {0, . . . , M(t)}) at the proxy for each sender-receiver
pair j. This clock j wakes up at regular intervals of Δj and
is inversely proportional to the channel quality and W j . Once
a clock j wakes up, it signals that a data unit transmission op-
portunity is immediately granted for the proxy to request a data
unit from sender j. After the proxy initiates the request, the
clock will be reset to wake up after another Δj .

Given Ωj , as defined by TFRC (3), and Wj (included in the
PACK message), we can define Δj as:

Δj =

⎧⎪⎨
⎪⎩

L
Ωj

, j = A

max{ L
Ωj

, L
Wj

}, j = 0, 1, . . . , M(t)
(4)

where we assume that packet size L is the same for all senders.
To couple the data transmission deicsion with the awakening

of asynchronous clocks, we introduce the concept of a transmis-
sion token, which denotes the permission to use a connection.
Once an asynchronous clock wakes up, a transmission token
will be assigned to the selected sender. We associate one trans-
mission token for each TFRC connection, and whoever gets the
transmission token can use that connection for transmission.

As illustrated by Figure 3, all the packets requested from dif-
ferent senders will be forwarded directly to the client upon ar-
rival at the proxy. Since the end-to-end transmission path in-
cludes both the sender-proxy connection and the proxy-client
connection, the proxy will wait until it collects transmission to-
kens in both the first leg (sender-proxy pair j) and the second
leg (proxy-client) before sending a request to sender j. If more
than one clock expire on the first leg while waiting for the clock
on the second leg, the proxy will suspend all these clocks until
the clock on the second leg wakes up. Once the clock on the
second leg wakes up, the proxy will pick one sender for the first
leg that has the best connection quality (equivalent to shortest
clock period). After selecting a sender j, the proxy will then

pick a data unit to request from sender j, release any obtained
transmission tokens, and reset the suspended clocks.

C. Point-to-point rate distortion optimized video streaming

In each transmission opportunity, after identifying a sender
using asynchronous clocks, the problem will be simplified into
a point-to-point RaDiO packet scheduling problem.

The motivation of RaDiO is to provide an alternative solution
to a heuristic approach to schedule time-critical data based for
transmission. Specifically, it will address the following schedul-
ing issue: given a set of interdependent video packets with their
respective deadlines, a set of scheduling slots (also called trans-
mission opportunities), and a set of streaming rates constrained
by network status, which packet should be sent in each slot to
yield the lowest distortion perceived by the receiver? Chou et
al. [4] has systematically defined and solved this problem for
a lossy packet-switched networking environment. Our work
builds on this and extends it to a decoupled multi-source stream-
ing problem.

C.1 Optimization window

Once the proxy obtains the tokens required for requesting a
data unit from sender j, an optimization instance will appear.
At any given optimization instance to, an optimization window
equal to N frame-time is selected. The window is defined to
be the set of data units whose delivery deadline falls within start
time, start(t), and end time, end(t). Data units are brought into
the optimization window by start(t). By keeping the window
small, it keeps the optimization computationally feasible and the
instantaneous client buffer small. When data units cannot be
reasonably be expected to be delivered to the client on time,
end(t) expires them. The slope of both functions — the rate at
which the window advance in time — is the playback speed at
the client. The optimization is performed again in P seconds,
which is equivalent to the time elapsed before next transmission
opportunity appears. Figure 4 is a plot of the playout deadline
T of data units against the proxy running time t, where d is the
playback delay at the client.
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C.2 Transmission policy

We now describe the transmission process of a data unit. The
proxy can request the data unit from the sender for a certain
period of time, which may start at the time when it first gets
included into the optimization window and end at the time when
it is due at the receiver, i.e., the playout deadline. A discrete set
of transmission opportunities (decided by asynchronous clocks)
within this period represents the times at which the data unit
may be (re)transmitted from a selected sender.

For each DUi, i ∈ {1, 2, . . . , N}, we define a transmission
policy πi, where πi ∈ Π. Π corresponds to a family of trans-
mission schedules, which dictates when and how the data unit
should be requested/transmitted. Let π = {π1, . . . , πN} be
the transmission vector for N data units. Let πi be defined as
πi = {Hi, ci}, where Hi is the transmission history of DUi

and ci is the transmission decision which determines if DUi is
chosen for (re)transmission at current transmission opportunity.

Given the source model defined in IV-A, the goal of point-to-
point RaDiO is then to choose the transmission policy π given
the set of asynchronous clocks, deadlines, distortion reduction,
network feedback, packet loss, and delay distribution to mini-
mize the distortion defined by:

D(π) = {D0 −
N∑

i=1

Di

∏
l�i

ql(πl)} (5)

where l � i denotes the set of DUl’s that precede or are equal
to DUi in the DAG. D0 is the overall expected distortion for
the group given no data unit is received, D i is the distortion
reduction if DUi is successfully decoded, and ql(πl) is timely
arrival probability under the transmission policy π l.

V. PERFORMANCE MODELING

In this section, we will formulate the proxy-driven MUVIS
scheme proposed in the previous sections.

A. Problem statement

Consider N data units in a selected optimization window for
(re)transmission that have not yet arrived at the client correctly.
As previously discussed, an optimization opportunity will ap-
pear when the proxy collects tokens at both the first leg and the
second leg as shown in Figure 3. Now the remaining question is
which data unit should be picked among the N data units in the
window.

Let li be the number of previous transmission attempts for
DUi. For each attempt k ≤ li, we define a time stamp t

(k)
i and a

sender ID s
(k)
i to record when and from which sender the proxy

requested DUi. For each data unit DUi, i ∈ {1, 2, . . . , N}, we
define its transmission policy πi as πi = {Hi, ci}, where Hi ={

(t(1)i , s
(1)
i ), . . . , (t(li)i , s

(li)
i )

}
, ci = (to, j) if DUi is selected

to be requested from sender j and ci = ∅ otherwise.

Based on the channel model in Section IV-A.2, the probability
that a request sent by the proxy to sender j at time T will result

in a data unit successfully arrival at the client by time T ′ is:

Θj(T ′ − T ) = (1 − εF
Aj)(1 − εB

Aj)(1 − εF
AC)

×
T ′−T∫
0

fF
Aj(x) ∗ fB

Aj(x) ∗ fF
AC(x)dx (6)

Using Θj(T ′−T ) and the source model defined in Section IV-
A.1, the probability of successfully receiving data unit i, q i(πi),
is:

qi(πi) =1 − (1 − Θci(Ti − to))
li∏

k=1

(
1 − Θ

s
(k)
i

(Ti − t
(k)
i )

)
(7)

where Θci(Ti − to) = 0 if ci is ∅.
Therefore, we can deduce the expected distortion D(π) for N

data units at the client using (5).

B. Solution

To solve the scheduling problem defined in (5), we will de-
couple it into two steps: first selecting a sender using asyn-
chronous clocks and then applying point-to-point RaDiO frame-
work to select a DU for (re)transmission. We already show
how to set up asynchronous clocks in section IV. In this sec-
tion, we will focus on how to select a DU using the RaDiO
framework. To do that, we will leverage the work of Chou et
al. [4]. Following their discussion, the optimal data unit DU i

for (re)transmission is the one with the largest λi = λ′
iSi/ni,

where λ′
i is the increase in successful-delivery likelihood given

one transmission is sent at the optimization instant and Si is data
sensitivity. λ′

i and Si can be defined as the following:

λ′
i = qi(πi,1) − qi(πi,0) (8)

Si =
∑
k�i

Dk

∏
l � k
l �= i

ql(πl) (9)

where πi,1 = {Hi, (j, to)} is the transmission policy of DUi

given one more transmission request is sent to j at time to, and
πi,0 = {Hi} is the policy of DUi given no request is sent at
time to.

VI. PROXY ASSISTED SMART CACHING

All the previous discussions are based on the assumption that
there is no cache available in the proxy. However, we notice that
a wireless channel is much more error-prone compared with a
wire-line channel due to high bit error rate, contention, and end
host mobility. Local caching and retransmission can be per-
formed to improve wireless channel throughput by concealing
wireless losses from end users. Therefore, in this section, we re-
visit the problem by considering the role of caching at the proxy.

Since the cache size is finite, contention will take place when
a packet arrives at a full cache. To solve the cache contention
problem, a comprehensive cache management is needed. In
contrast to our previous work [25], here we consider two differ-
ent caching strategies: Simple Caching Simple Fetching (SCSF)
and Distortion Minimized Smart Caching (DMSC).



• Simple Caching Simple Fetching (SCSF): The basic idea of
SCSF is that the proxy saves a copy of incoming data before
forwarding it to the client, but only if its cache is not full. Oth-
erwise, it will directly forward the incoming data to the client.
When the data unit to be retransmitted is in the cache, the proxy
will fetch it from its cache instead of requesting it from the joint
sender group (i.e., local retransmission).
• Distortion Minimized Smart Caching (DMSC): Instead of
simply forwarding packets to the client when the cache is full,
we propose a more intelligent caching strategy so that more
important data units will have a higher chance to be cached.
The basic idea of DMSC is to use the distortion reduction con-
tributed by successful delivery of DUi to denote its importance
and cache data that will maximize the distortion reduction at the
client under a certain cache size constraint. By implementing
DMSC, there is no packet forwarding anymore. Instead, pack-
ets arriving in the proxy will be cached/dropped based on their
importance, and the proxy cache will operate as a secondary
sender, which can actively send out DUs to the client under the
regulation of its associated asynchronous clock.

The introduction of cache into the proxy will affect how to as-
sociate the optimization instances with the awakening behavior
of the asynchronous clocks, and as a result, affect the way we
model the whole system. In the following discussion, we will
present the detailed DMSC cache management mechanism and
model the performance of a cache-enabled MUVIS system.

A. Transmission token reinterpretation

When the proxy implements SCSF, it still has to ensure that
an end-to-end connection between the sender j and the client
exists before requesting new data from sender j. Therefore, the
transmission token will be similarly treated to the case where
the proxy has no cache. In contrast, when the proxy imple-
ments DMSC, the end-to-end connection between sender j and
the client is not critical. We do not need to collect transmis-
sion tokens on both legs. Hence, if a first leg clock j wakes up,
the proxy will immediately request a data unit from sender j re-
gardless of the second segment. The requested data units will be
cached once they get to the proxy. If the second leg clock wakes
up, the proxy will immediately select a data unit from the cache
to send to the client.

B. Performance modeling for cache-enabled MUVIS system

B.1 Case one: SCSF is implemented

When the proxy uses SCSF strategy, we still need to collect
tokens for both legs before sending a request to sender j. Since
the cache size is limited, some data units will be cached while
others will be forwarded directly to the client. For a data unit
DUi that has not been cached, the probability q i(πi) that DUi

will arrive at the client before its deadline Ti can be defined
using (7). If the data unit DUi under (re)transmission consid-
eration happens to be cached, the proxy will send DU i directly
from its cache to the client. Suppose that DUi is successfully
cached by the proxy at the l ′i

th attempt (l′i ≤ li). Since DUi

has already arrived in the cache successfully, the transmission
history for the past li attempts can be discarded. Thus, the prob-
ability of successfully receiving cached DUi at the client by its

deadline Ti, qi(πi), is:

qi(πi)=1−(
1−PF

AC(Ti − to)
) li∏
k=l′i+1

(
1 −PF

AC(Ti − t
(k)
i )

)
(10)

where
∏li

k=l′i+1

(
1 − PF

CA(Ti − t
(k)
i )

)
= 1 if l′i + 1 > li.

B.2 Case Two: DMSC is implemented

When DMSC is implemented, the optimization instance
means that the proxy can request a data unit from sender j or
it can stream a data unit from its cache to the client, depending
on whether the awakened clock is in the first leg or the second.
If it is in the first leg, the proxy will request transmission from
sender j. The optimization window will contain data units that
have not yet arrived at the proxy correctly. For a data unit DU i

that that has not yet correctly arrived at the cache, π i will be the
transmission request policy from proxy to senders. We can de-
fine the probability that DUi will arrive at the proxy before its
deadline as:

qi(πi) =1−(1 − PAci(Ti − to))
li∏

k=1

(
1 −P

As
(k)
i

(Ti − t
(k)
i )

)
(11)

If it is in the second leg, a data unit transmission will be sched-
uled from the proxy to the client. The optimization window
will then only contain data units that are already available in the
cache but not available in the client yet. For a data unit DU i in
the cache, πi will be the transmission policy from the proxy to
the client. We can define the probability that DUi will arrive at
the client before its deadline as:

qi(πi)=1 −(
1 − pF

AC(Ti − to)
) li∏
k=1

(
1 − pF

AC(Ti − t
(k)
i )

)
(12)

Having qi defined by (7), (10)-(12), now we can deduce the
expected distortion for N data units using (5) for both of the
above cases. Note that for the first case and for proxy-client pair
in the second case, D(π) corresponds to the expected distortion
at the client, while for the sender-proxy pair j in the second case,
D(π) corresponds to the expected distortion at the proxy.

C. Cache management

Cache management for a DMSC includes three parts: cache
write, cache read, and cache flush. Cache write refers to the
strategy for writing incoming data units to the cache. When the
cache is not full, all incoming data units will be cached using the
First-Come-First-Cache (FCFC) criteria. Since data units may
be delayed differently before they arrive at the proxy, packet
reordering is needed to guarantee that data units with shorter
play-out deadlines will be saved further ahead in the cache so
that they have better chances to be selected earlier for transmis-
sion. When the cache is full, the proxy has to rely on its flushing
strategy to free up some space before writing an incoming data
unit into the cache.

Cache read refers to the strategy for selecting a data unit to
transmit to the client. In each optimization instance to, the proxy
will pick up to N data units from the head of the cache. For



each data unit DUi we define two parameters, last transmis-
sion time T i

l and retransmission timeout TO. T i
l is the latest

time when DUi was (re)transmitted. TO denotes the amount of
time that will elapse before DUi will be re-selected for retrans-
mission consideration. If DUi has been (re)transmitted in the
past TO seconds, i.e. to − T i

l ≤ TO, it will not be considered
for (re)transmission at time to. Once we select data units un-
der (re)transmission consideration at time to, the remaining part
will be equivalent to the point-to-point RD optimized streaming
problem.

Cache flush regulates when and how to flush the cache. The
cache will be flushed when one of the following situations hap-
pens: i) an acknowledge is received from client; ii) a cached
data unit expires; and, iii) a data unit arrives at the fully occu-
pied cache. In the first two cases, the acknowledged or expired
data units will be deleted from the cache immediately. In the
third case, we need to decide the relative importance of data
units in the cache and the incoming data unit. Let t be the time
when the contention happens. At time t, the relative importance
Ii of DUi is measured by λi and its time-to-live (TTLi):

Ii = min{λi ·
⌊

TTLi

to − t + μP

⌋
, λi}, (13)

where, TTLi is given by TTLi = Ti − t, to is the first trans-
mission opportunity appearing after t, μP is the measured mean
round trip time for the connection between the proxy and the
client, and λi is the benefit of transmitting DUi defined in Sec-
tion V. The smaller Ii, the less important DUi will be. (13)
shows that DUi that cannot arrive at the client by its play-out
deadline Ti will be the least important. With the relative im-
portance defined by (13), if the incoming data unit is more im-
portant than some data unit in the cache, we need to flush the
least important data unit from the cache to make room for the
incoming data unit. If the incoming data unit is less important
than any data unit in the cache, the proxy will choose to drop the
incoming data unit.

VII. PERFORMANCE EVALUATION

To evaluate the proposed MUVIS system, we use the network
simulator NS-2.27 to implement our schemes. We characterize
the received video quality using the Peak Signal-to-Noise Ratio
(PSNR). In the following discussion, we will first describe how
to simulate the wireless environment and video source in Section
VII-A, and then present the simulation results in Section VII-B.

A. Simulation design

We simulate a hybrid networking environment that consists
of two parts: wireless LAN and wired Internet. The topology
includes one server, one AP and three MNs (one client and two
peers). A proxy node is co-located with the AP and commu-
nicates with all mobile nodes at 2.437GHz using IEEE 802.11
infrastructure mode. Meanwhile, the server is connected to the
proxy/AP over a wired connection.

We will use the empirical results of Balazinska et al. [26]
to generate more realistic mobility patterns instead of using the
random way-point model. To model the mobility of an indi-
vidual mobile user, we need to compute two metrics: session
duration and revisit interval.
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Fig. 5. Packet interdependency: (a) Linear directed acyclic graph(DAG),
(b) Distortion matrix

• Session Duration: For MN j, we denote the session duration
as Rj . Our definition of session duration is equivalent to the per-
sistence metric in the work of Balazinska et al., which is shown
to follow a power law distribution with an exponent of 1.78, i.e.,
P (X = x) ∼ x−1.78.
• Revisit Interval: After a MN leaves the AP, it is likely that it
will come back and visit the AP again. The revisit interval de-
fined in Section III-C shows how likely it is for a MN to visit an
AP that it has visited recently. Balazinska et al. [26] presented
a prevalence metric to measure the fraction of time that a user
spends with a given AP. In this paper, we will derive the revisit
interval based on that prevalence distribution.
Let Vj be the revisit interval. The prevalence of MN j is Prevj

and the prevalence probability distribution follows a power law
[26], i.e. P (Prevj = x) ∼ 0.001x−1.75. Using Prevj and Rj ,
the revisit interval Vj is defined by Vj = Rj/Prevj .

For the wire-line connection, we set both forward and back-
ward packet loss rates (PLR) to be 5%, and the round trip time
(RTT) to be 100ms. The bandwidth of the link between the
server and the proxy node is set to be 1.1Mbps. We add some
background traffic to simulate a more realistic networking envi-
ronment. Here, we use constant bit rate (CBR) traffic as the
cross traffic. Therefore, in the presence of background traf-
fic, the allocated bandwidth for streaming service between the
server and the proxy is at most 150 Kbps. For the wireless
network set-up, we enable RTS/CTS and implement DCF. We
choose the wireless bit error rate (BER) to be 1.5 ∗ 10−5. The
link layer (re)transmission delay is set to be 50μs and the max-
imum number of link layer retransmissions is 4. The data rate
of the wireless channel is 11Mbps, and only up to 1.1 Mbps
out 11Mbps will be used for streaming service. For each MU,
the maximum allocated bandwidth for streaming service will be
450 Kbps for the proxy-to-client connection and 150 Kbps for
all peer-to-proxy connections.

Two 300-frame Class-B1 standard video sequences, foreman
and container, are used to drive the simulation. These video

1Class B sequences normally have medium spatial detail and low amount of
movement or vice versa.
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Fig. 6. Effect of multi-source streaming (’Foreman’)

sequences are encoded at 120kps as shown in Figure 5(a) using
H.263 version2 at QCIF, with 30 frames per second and a 1/25
I-frame frequency. For each sequence, the PSNR between the
original frame i and the reconstructed frame j is calculated for
every combinational of i and j for i ≤ j and saved as a matrix
d illustrated by Figure 5(b). Considering the interdependency
shown in Figure 5(a), the distortion reduction D i for DUi can
be expressed as:

Di =

{
d(i, i) +

∑NGOP

j=2 d(i, j), (i mod NGOP ) = 1
d(i, i) +

∑NGOP

j=i+1d(i, j)−∑NGOP

j=i d(i−1, j), otherwise

where d(i, j) is the distortion reduction if frame i is used to con-
ceal the loss of frame j, and NGOP is the number of frames in
one Group of Pictures (GOP). Di will then be used to design the
scheduling scheme and estimate the performance of the client
based on successfully received data units.

B. Simulation Results

To show the benefits of multi-path rate-distortion optimized
streaming and to compare different caching strategies, we have
implemented the following streaming schemes: Joint sender
group with DMSC (JS-DMSC), Joint sender group with SCSF
(JS-SCSF), Joint sender group with No Cache (JS-NC), Server-
only with DMSC (SO-DMSC), Server-only with SCSF (SO-
SCSF), and Server-only with No Cache (SO-NC). The first three
schemes, JS-DMSC, JS-SCSF, JS-NC, use the proposed MU-
VIS scheme but different caching strategies. The other three
schemes, SO-DMSC, SO-SCSF, SO-NC, do not use MUVIS
and only rely on the media server to provide video contents.

B.1 Multi-Source Diversity

We test the different streaming schemes using both the Fore-
man and Container sequences and measure the effect of multi-
source diversity on the system performance for No Cache ,
SCSF and DMSC scenarios, respectively. Figure 6 compares
the performance of the multi-source streaming and single-source
streaming in one typical simulation run. In this set of simu-
lations, we consider transmitting Foreman over the simulated
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wired/wireless network, and for this specific run, we can see that
using multi-source streaming improves the quality of received
video at the client.

We repeat the above simulations 50 times with different ran-
dom seeds. For each streaming scheme, we plot the cumula-
tive distribution function (CDF) of the across-run average PSNR
(computed across multiple runs for each frame) shown in Fig-
ure 7 and Figure 8. In each figure, we compare the CDF of
six competing streaming schemes and show the corresponding
median values. From these two figures, we can see that those
schemes using multi-source diversity have higher median val-
ues, which means more satisfying video quality 50% of the time.
We can compute the mean PSNR for each scheme by further
averaging the across-run average PSNR in Figure 7 and Fig-
ure 8 over the entire sequence run-time, respectively. Table 3
and Table 4 show the mean PSNR of both video sequences for
these six competing strategies in the lossy scenario. As a com-
parison, we show the mean PSNR in the loss-free scenario as
well. From Table 3 and Table 4, we can see that for both se-
quences, multi-source streaming schemes achieve better perfor-



PSNR w/o Loss (dB) PSNR w/ Loss (dB)

30.71

w/ JS-DMSC w/ JS-SCSF w/ JS-NC
29.16 25.56 24.45

w/ SO-DMSC w/ SO-SCSF w/ SO-NC
27.01 23.23 21.44

Table 3. Average PSNR (’Foreman’)

PSNR w/o Loss (dB) PSNR w/ Loss (dB)

34.32

w/ JS-DMSC w/ JS-SCSF w/ JS-NC
32.40 30.45 29.77

w/ SO-DMSC w/ SO-SCSF w/ SO-NC
31.95 29.86 27.13

Table 4. Average PSNR (’Container ’)
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PSNR w/o Loss (dB) PSNR w/ Loss (dB)

30.71

w/ JS-DMSC w/ JS-SCSF w/ JS-NC
28.30 24.88 23.45

w/ SO-DMSC w/ SO-SCSF w/ SO-NC
18.84 19.18 18.31

Table 5. Average PSNR when the server-client connection is the

bottleneck (’Foreman’)

mance than schemes that only use the media server by effec-
tively leveraging the content available at peers. Such multi-
source streaming can offer additional advantages. For example,
when the remote media server is overloaded or when there is
congestion on the path to the server, the client can avoid qual-
ity degradation by requesting data units from its neighboring
peers. Second, peer-to-peer streaming with neighboring nodes
may incur less delays. To illustrate this, we change the available
bandwidth between the server and the proxy for the streaming
service to be 0.1 Mbps, representing a scenario where the path to
the server is congested. We use the Foreman sequence and rerun
the simulation using this new setting 50 times with different ran-
dom seeds to get the mean PSNR. We show the quality variation
using six different schemes in Figure 9. As a comparison, we
use Figure 9(a) to show the quality variation for the case when
server-client connection is not the bottleneck, while Figure 9(b)
shows the case when server-client connection is the bottleneck.
To obtain Figure 9, we average the PSNR over the sequence
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Fig. 10. Effect of different caching strategies on the system performance
when multi-source streaming is supported (’Foreman’)

run-time for each scheme. In Figure 9, the y-axis shows the se-
quence run-time average PSNR for each of those the 50 runs
while the x-axis shows the corresponding streaming schemes.
By further averaging the results in Figure 9 over the 50 runs, we
can get the average PSNR for each scheme as shown in Table
5. Both Figure 9 and Table 5 clearly demonstrate that at the on-
set of the appearance of congestion, streaming schemes that use
multi-source diversity can maintain good performance by lever-
aging multiple connections, while those that only rely on the
server connection suffer great performance degradation.

B.2 Cache Strategies

In Section VI, we discussed how the introduction of cache in
the proxy affects performance modeling. To measure the cache
effect and compare different cache strategies, SCSF vs. DMSC,
we evaluate the streaming performance in both the single-source
and multiple-source scenarios. In our simulations, we measure
the cache size in terms of the number of RTP packets, which is
set to be 100 RTP packets throughout the experiments. We first
study how the introduction of cache affects the streaming qual-
ity. To do this, we simulate three schemes: JS-DMSC, JS-SCSF
and JS-NC. We repeat the same experiments 40 times each, and
average the results over 40 runs to get the across-run average
PSNR perceived by the client. In Figure 10, we observe that
using limited cache also helps improve the performance for the
multi-source streaming scheme. With the same cache capacity,
the proposed DMSC strategy can provide better system perfor-
mance compared to the SCSF strategy. Table 3 and Table 4
presented in Section VII-B.1 also show that using limited cache
can improve the average streaming performance in both single
and multi-source scenarios.

The last set of results show the average PSNR under different
loss conditions. Figure 11(a) shows how different schemes per-
form under fixed wireless BER (1.5 ∗ 10(−5)) but varying wired
PLR, while Figure 11(b) shows how they perform under fixed
wired PLR(5%) but varying wireless BER. From Figure 11, we
can see that most of time multi-source streaming can provide
more satisfying performance than the server-only approach by
leveraging peer connections to compensate the quality degrada-
tion caused by the increased loss. The one exception, shown in
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Fig. 11. Average PSNR vs. Varying Loss Conditions (’Foreman’)

Figure 11(b), is that SO-NC performs better than JS-NC when
the wireless BER is really high. This is because wireless con-
nection is much worse than the wired connection, and without
caching, the increased contention from having peer connections
will cancel out the benefit of multi-source diversity and degrade
the quality instead. In addition, Figure 11 also clearly shows
how different caching strategies work under varying loss envi-
ronments. As illustrated, DMSC-based schemes perform better
than SCSF-based schemes and the schemes with no cache, espe-
cially when DMSC is jointly used with multi-source streaming.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose the multi-source video streaming
(MUVIS) system to support high-quality video streaming ser-
vice over WLANs. MUVIS uses a proxy collocated with the
access point to leverage the media server and mobile peers as a
joint sender group (multi-source) and stream video to the client
in a rate-distortion optimized way. We formulate such a multi-
source, rate-distortion optimized streaming process as a combi-
natorial packet scheduling problem and combine the concept of
asynchronous clocks and the rate-distortion optimization frame-
work to solve it. To investigate the cache effect, we present
two different caching strategies, the traditional Simple Caching
Simple Fetching (SCSF) and our proposed Distortion Minimized
Smart Caching (DMSC), and model the overall system perfor-
mance. The measurement results from corporate wireless net-
works are used to generate more realistic peer mobility mod-
els for the simulations. Numerical investigations through NS
simulations show that schemes with multi-source diversity can
provide better performance than those with a single sender. The
simulation results also show that caching at the proxy will poten-
tially increase the streaming performance. Compared with the
simple caching strategy SCSF, our proposed DMSC strategy can
provide better performance. It also achieves higher resilience to
packet loss, especially when it is jointly used with multi-source
streaming. In this paper, we focus on the performance of a single
wireless client. In the future, we will address the performance
of multiple wireless clients running multiple co-existing MU-

VIS sessions. In addition, we will also investigate admission
control and rate allocation for multiple streaming sessions over
WLANs.
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