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Abstract

Multi-homed mobile devices have multiple wireless com-
munication interfaces, each connecting to the Internet via
a long range but low speed and bursty WAN link such as
a cellular link. We propose a packet striping system for
such multi-homed devices — a mapping of delay-sensitive
packets by an intermediate gateway to multiple channels,
such that the overall performance is enhanced. In partic-
ular, we model and analyze the striping of delay-sensitive
packets over multiple burst-loss channels with random de-
lays. We first derive the expected packet loss ratio when
forward error correction (FEC) is applied for error protec-
tion over multiple channels. We next model and analyze the
case when the channels are bandwidth-limited with shifted-
Gamma-distributed transmission delays. We develop a dy-
namic programming-based algorithm that solves the opti-
mal striping problem for the ARQ, the FEC, and the hybrid
FEC/ARQ case.

1 Introduction

Many modern wireless devices are multi-homed — hav-
ing multiple wireless communication interfaces, each con-
necting to the Internet via a wireless wide area network
(WWAN) interface such as a cellular link. Though this type
of interface provides long range services, the bandwidth is
limited, and packet losses are frequent and bursty. To en-
hance performance in this setting, an assistant gateway can
“aggregate” device’s low speed WAN channels — a map-
ping of incoming packets to its multiple channels together
with the use of error protection schemes such as forward er-
ror correction (FEC) and retransmissions (ARQ) — to op-
timize end-to-end packet delivery. Clearly, such striping
engine can potentially improve delivery of delay-sensitive
media streaming data greatly: like a typical single channel
packet interleaver, by spreading FEC packets across chan-
nels, one avoids decoding failure due to a single burst loss,
yet unlike the interleaver, one also avoids excessive trans-
mission delay of long interleaving.

Indeed, this striping or inverse multiplexing problem has
recently received great interest in mobile wireless network-
ing domain [1, 2]. Yet previous work has mainly focused on
designing wireless inverse multiplexing systems to improve
TCP throughput in such environments. Unlike previous
work that focuses on bulk transfer, we focus our attention
on delay-sensitive packet delivery such as media streaming.
The rest of the paper is organized as follows. Section 2 dis-
cusses related work. Section 3 provides basic definitions
and the modeling of bursty error channels. Section 4 de-
rives the effective packet loss ratio when FEC is applied to
a single bursty channel. Section 5 derives the effective loss
ratio when Reed-Solomon (n, k) code is striped over a set
of m bursty channels under a particular mapping. Strip-
ing on bandwidth limited, bursty channels is analyzed and
optimization algorithms are designed in Section 6 for the
ARQ-based algorithm and Section 7 for the FEC-based and
hybrid FEC/ARQ algorithms. Finally, results and conclu-
sion are presented in Section 8 and Section 9, respectively.

This work is a generalization of our previous work [3]
on striping delay-sensitive packets over multiple burst-loss
wireless channels. In [3], the transmission delay of each
channel is modeled as a constant. In contrast, the transmis-
sion delay in this work has been generalized to a shifted-
Gamma-distributed random variable, which is found to be
accurate for common network load [4]. Given the general-
ization of network model, we detail the corresponding strip-
ing optimization based on earlier developed algorithms [3].

2 Background

As shown in Figure 1, striping is the mapping of a sin-
gle flow to multiple channels. While fair load sharing
among multiple channels is a concern, effective traffic map-
ping onto the channels for optimized performance (i.e., high
throughput and bounded delay) is also critical. The receiv-
ing end of the striping system must re-synchronize out-of-
order delivery packets. In this paper we assume the exis-
tence of reassembly mechanisms that handle reordering of
packets. Applications such as media streaming use receiver
buffers that can also be used for packet reordering.



Figure 1. Packet Striping Engine

Figure 2. Gilbert loss model

The inverse multiplexing network model we consider is
composed of wireless channels with bursty losses. We also
apply forward error correction (FEC) technique and analyze
the striping performance in bandwidth limited channels. We
are particularly interested in streaming applications that are
delay-sensitive. There is a significant amount related work,
although only a few of these consider striping in wireless
channels. We overview the earlier research in this area.

Modeling the wireless channel behavior has been an ac-
tive research area. Wireless channel is modeled using the
traces in [5]. Bursty errors are modeled using two-state
Markov chain and two variations. The length of errors is
shown to have two exponential curves and the length of
error-free packets has a combination of two Pareto distri-
butions and one exponential curve.

Streaming over lossy channels creates another challenge
as packets are delay-sensitive. Streaming packet schedul-
ing over wireless channels has been investigated in [6, 7].
Rate-distortion optimized packet scheduling is thoroughly
analyzed in [8], and scheduling of layered streaming video
is presented in [9]. FEC and ARQ performances in contin-
uous streams over bursty channels are compared in [10].

In our model, we assume the packet size and the trans-
mission rate are constant. The wireless channels are al-
ways available, although they will sometimes have errors.
In other words, the disappearance of the channels due to
mobility of the end hosts is not considered.

3 Channel Model Basics

Given the burst-loss nature of wireless links, we model
losses in each channel using a two-state Markov chain
(Gilbert model), shown in Figure 2. A correct (incorrect)
packet delivery event is denoted by 0 (1).

We begin with definitions similar to those introduced

in [11]. Let p and q be the Gilbert model parameters. Let
p(i), i ≥ 0, be the probability of having exactly i consec-
utive correctly delivered packets between two lost packets,
following an observed lost packet, i.e. p(i) = Pr(0i1|1).
Let P (i) be the probability of having at least i consecu-
tive correctly delivered packets, following an observed lost
packet, i.e., P (i) = Pr(0i|1). p(i) and P (i) can be written
mathematically:

p(i) =

{
1− q if i = 0
q(1− p)i−1p o.w.

(1)

P (i) =

{
1 if i = 0
q(1− p)i−1 o.w.

(2)

q(i) =

{
1− p if i = 0
p(1− q)i−1q o.w.

(3)

Q(i) =

{
1 if i = 0
p(1− q)i−1 o.w.

(4)

q(i) and Q(i) are complementarily defined functions;
q(i) = Pr(1i0|0) and Q(i) = Pr(1i|0).

We next define R(m,n) as the probability that there are
exactly m lost packets in n packets, following an observed
lost packet. It can be expressed recursively using earlier
definitions as:

R(m, n) =


P (n) for m = 0 and n ≥ 0
n−m∑
i=0

p(i)R(m− 1, n− i− 1) for 1 ≤ m ≤ n

(5)

We additionaly define r(m,n) as the probability that
there are exactly m loss packets in n packets between two
lost packets, following an observed lost packet. Similarly,
r(m,n) can be expressed recursively:

r(m, n) =


p(n) for m = 0 and n ≥ 0
n−m∑
i=0

p(i)r(m− 1, n− i− 1) for 1 ≤ m ≤ n

(6)
Finally, we define r̄(m,n) as the probability that there are

exactly m lost packets in n packets, following an observed
lost packet and preceding a successfully received packet.

r̄(m, n) = R(m, n)− r(m, n) (7)

We define the complementary function S(m,n), as the
probability of having exactly m correctly received pack-
ets in n packets following an observed correctly received
packet.



Figure 3. FEC encoding of data packets.

S(m, n) =


Q(n) for m = 0 and n ≥ 0
n−m∑
i=0

q(i)S(m− 1, n− i− 1) for 1 ≤ m ≤ n

(8)
s(m,n) and s̄(m,n) are defined counterparts to r(m,n)

and r̄(m,n).

4 FEC for One Burst-loss Channel

We derive the expected packet loss ratio (PLR) of FEC
code — αRS of (n, k) Reed-Solomon code in particular —
on a burst-loss channel. Reed-Solomon code is commonly
used in practice for FEC packet-level recovery systems with
delay constraints [12, 13, 14]. Figure 3 shows an example
of a RS (5, 3) code.

Recall RS(n, k) is correctly decoded if any k packets
of the group of k data and n − k parity packets are cor-
rectly received. First, we condition on the status of the last
transmitted packet (loss/success), giving us two conditional
probabilities, αRS|1 and αRS|0, respectively. αRS can then
be expressed as:

αRS = π ∗ αRS|1 + (1− π) ∗ αRS|0 (9)

where π = p
p+q is the raw PLR of the channel.

To find αRS|1, we consider the k data packet block and
the n − k parity packet block separately. We condition on
the status of the last (k-th) data packet; given the k-th data
packet is lost or received, we use R(., .) or S(., .) for prob-
ability calculation of the trailing n− k parity packet block.

Conditioning on the event when the k-th data packet is
lost, we consider all cases when any number i of the re-
maining k− 1 data packets are lost. Each case i will have a
loss ratio of i+1

k , assuming there are ≥ n− k + 1 total loss
packets including the n − k parity packets. Similar analy-
sis conditioning on the event when the k-th data packet is
successfully received completes the derivation for αRS|1:

αRS|1 =

k−1∑
i=0

(
i + 1

k

)
r(i, k − 1)

n−k∑
j=[n−k−i]+

R(j, n− k)

+

k−1∑
i=1

(
i

k

)
r̄(i, k − 1)

n−k∑
j=[n−k+1−i]+

S(n− k − j, n− k)

(10)

where [x]+ is the positive part of x. Following similar anal-
ysis for αRS|0 we get:

αRS|0 =

k−1∑
i=0

(
i + 1

k

)
s̄(k − 1− i, k − 1)

n−k∑
j=[n−k−i]+

R(j, n− k)

+

k−1∑
i=1

(
i

k

)
s(k − 1− i, k − 1)

n−k∑
j=[n−k+1−i]+

S(n− k − j, n− k)

(11)

5 Striping FEC for Multiple Burst-loss
Channels

Data and parity packets of a given RS(n, k) can be
striped over a set of m channels in multiple ways. We
call the mapping of k data and n − k parity packets to m
bursty channels an FEC distribution. We denote such map-
ping function as g : (k, n−k) → (u,v), u,v ∈ Im. It is a
mapping of two scalars to two vectors of length m, where ui

(vi) represents the number of data packets (parity packets)
assigned to channel i. In addition, we define wi = ui + vi

as the total number of packets assigned to channel i.
Let random variable X be the number of unrecoverable

data packets at the receiver in k data packets in a RS(n, k)
code. Let Y , Z and Θ be the number of correctly transmit-
ted data packets, parity packets and total packets, respec-
tively. X , Y and Z are related as follows:

X =

{
k − Y if Y + Z ≤ k − 1
0 o.w.

(12)

When given probability mass functions (pmfs) of Y , Z and
Θ = Y + Z, we can find the expectation of X as follows:

E[X] = E[k − Y |Y + Z ≤ k − 1]P (Y + Z ≤ k − 1)

= (k − E[Y |Θ ≤ k − 1]) P (Θ ≤ k − 1) (13)

To find P (Θ ≤ k − 1), we first define random variables
Yi ≤ ui, Zi ≤ vi and Θi ≤ wi as the number of correctly
transmitted data packets, parity packets and total packets in
channel i, respectively. We can then write:

Y =

m∑
i=1

Yi, Z =

m∑
i=1

Zi, Θ =

m∑
i=1

Θi (14)

For each channel i, pmf of Θi = Yi + Zi can be written as:

P (Θi = j) = πi R(wi − j, wi) + (1− πi)S(j, wi) (15)



Table 1. Average PLR for FEC distribution search algorithms
Algorithm greedy1 greedy2 greedy3 greedy4 even optimal
Avg PLR 0.0128 0.0127 0.0130 0.0129 0.0172 0.0124

where j = 0, . . . , wi. Since Θ, as well as Y and Z, are
all sums of random variables, we derive pmf of Θ using
probability generating function (pgf) GΘ(ξ):

GΘ(ξ) = E[ξΘ] =
∑

j

P (Θ = j)ξj = E[ξΘ1+···+Θm ]

= E[ξΘ1 ] · · ·E[ξΘm ] = GΘ1(ξ) · · ·GΘm(ξ)

Hence pgf GΘ(ξ) is simply a product of pgfs GΘi(ξ)’s.
We recover pmf of Θ from pgf GΘ(ξ) as follows (p.148 of
[15]):

P (Θ = j) =
1

j!

dj

dξj
GΘ(ξ)

∣∣∣∣
ξ=0

(16)

We can now find P (Θ ≤ k − 1) by summing P (Θ = j)
for 0 ≤ j ≤ k − 1.

To find E[Y |Θ ≤ k − 1], we make the simplifying as-
sumption that Y and Z are independent. We get:

E[Y |Y + Z ≤ k − 1] ≈ E[Y |Y ≤ k − 1]

=

k−1∑
j=1

jP (Y = j)

P (Y ≤ k − 1)
(17)

pmf of Y is found similar to Θ. We will denote π(g) as
E[X]/k — PLR given mapping g for RS (n, k) code.

5.1 Fast FEC Distribution Search Algo-
rithms

The number of unique mappings of n − k parity and
k data packets to m channels is exponential in m and k.
Instead of exhaustive search, we explore practical greedy
schemes to select good FEC distributions. A greedy algo-
rithm incrementally grows an FEC distribution one packet
at a time. The order in which one grows the FEC distri-
bution — when to insert a data packet or a parity packet
— greatly affects the performance. We tried several greedy
algorithms and present the four best performers.

The first algorithm greedy1 first allocates one data
packet to the optimum channel — channel in which adding
the additional packet will result in the smallest PLR. It then
allocates one parity packet to the optimum channel, then
the rest of the data packets one at a time to the optimum
channel, and then the rest of the parity packets. greedy2
allocates one data packet to the optimum channel, all the
parity packets one at a time to the optimum channel, and
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Figure 4. PLR for different FEC distribution
search algorithms

then the rest of the data packets. greedy3 allocates data
and parity packets alternatively to optimum channel when
possible. greedy4 allocates data and parity packets al-
ternatively in small bundles, proportional to the ratio of
data to parity packets. We also compare them with an
even allocation scheme even where the same number of
data and parity packets are evenly allocated to each chan-
nel,

⌊
k
m

⌋
and

⌊
n−k
m

⌋
, with leftover packets, k − m

⌊
k
m

⌋
and (n − k) − m

⌊
n−k
m

⌋
, allocated to the channel with

smallest PLR. For three burst-loss channels of parameters
(0.05, 0.45), (0.03, 0.27), (0.05, 0.4), we calculated PLR
for these algorithms for RS(7, x) and RS(8, x) where 1 ≤
x ≤ n − 1. The resulting average effective PLRs over the
possible FEC’s are shown in Table 1. We compare their
performance with the optimal FEC distribution, found by
exhaustive search optimal.

even is by far the worst performer and greedy2 is the
best overall performer. In fact, when we plot the difference
in effective PLR compared with optimal in Figure 4, we
see that although greedy2may not always be the best per-
former in the group, it has the overall smallest maximum
difference. For the above reasons, we use greedy2 as our
heuristics for constructing FEC distribution.

6 Delay-sensitive Traffic over Bandwidth-
limited Channels

We expand the Gilbert loss model in Figure 2 to a
bandwidth-limited, burst-loss model with random delays
as shown in Figure 5. Each j of m channels is mod-
eled by a FIFO queue and transmission link pair: a queue
with constant service rate µj is connected to a transmis-
sion link of shifted-Gamma-distributed random variable de-
lay γj ∼ G(κj , αj , λj) and Gilbert-modeled burst loss of
parameters pj and qj . At a given time, the fullness of
the queue j is lj . The time required to transmit a packet
through queue j is then: (lj +1)/µj +γj . In more details, a



Figure 5. Bandwidth-limited Network Model

Gamma random variable γ with Gamma shape parameter α
and scale parameter λ has the following probability density
function (pdf) (pg.117 of [15]):

gΓ(γ) =
λ (λγ)α−1

e−λγ

Γ(α)
0 < γ < ∞ (18)

where Γ(α) is the Gamma function:

Γ(α) =
∫ ∞

0

τα−1e−τdτ α > 0 (19)

Similarly, the shifted version of the Gamma random vari-
able with shift parameter κ is:

gΓs(γ) =
λα (γ − κ)α−1

e−λ(γ−κ)

Γ(α)
κ < γ < ∞ (20)

In addition, we assume the client can inform the striping
engine of a loss event losslessly in constant time DF .

For input into the striping engine, we assume the pack-
ets in the incoming queue before the striping engine are la-
beled with expiration times di’s. A packet with di must be
delivered by time di or it expires and becomes useless. We
assume the packets are ordered in the incoming queue by
earliest expiration times. We assume striping engine is acti-
vated whenever there is a packet in the incoming queue.

6.1 ARQ-based Algorithm

To achieve low complexity, we choose to optimize one
packet at a time with expiration time d. Let f(d′), d′ =
d − t, be the probability that a packet with expiration d is
timely delivered to the client, where t is the time of opti-
mization instant at the striping engine. Let fARQ(d′) be the
probability that the same packet is timely delivered using
(re)transmission (ARQ). Let f

(i)
ARQ(d′) be the probability

that the same packet is timely delivered if channel i is first
used for ARQ. Given the client can errorlessly inform the

engine of the loss event in time DF , the packet has a chance
for retransmission with a tighter deadline. We can write:

f(d
′
) =

{
fARQ(d′) if d′ ≥ 0
0 o.w.

fARQ(d
′
) = max

i=1,...,m
f
(i)
ARQ

(d
′
)

f
(i)
ARQ

(d
′
) =

∫ d′−
(

li+1
µi

)
κi

gΓs (γ)
(
(1− πi) + πif(d

′ −DF − γ)
)

dγ

(21)

The interval over which the integral is taken is written as
such, because gΓs

(γ) is zero for transmission γ < κi, and
the packet in question will miss its deadline d for γ > d′ −(

li+1
µi

)
.

6.2 Quantization & Dynamic Program-
ming

As (21) is defined recursively within an integral, it is
difficult to solve directly. Instead, our approach is to first
approximate (21) using quantization, before using dynamic
programming to resolve the recursive calls. By quanti-
zation, we mean we divide the non-zero area under pdf
gΓs(γ), γ ≤ d′ −

(
li+1
µi

)
, into L evenly spaced regions,

where region l has boundaries [b(i)
l−1, b

(i)
l ):

b
(i)
l−1

= κi +
l − 1

L

(
d′ −

(
li + 1

µi

)
− κi

)
b
(i)
l

= κi +
l

L

(
d′ −

(
li + 1

µi

)
− κi

)
(22)

This is illustrated in Figure 6. It is easy to see that by
construction, transmission delays γ’s in each region l are
upper-bounded by boundary b

(i)
l . If we quantize all the de-

lays in each region l to b
(i)
l , each region has probability∫ b

(i)
l

b
(i)
l−1

g
(i)
Γs

(γ)dγ, and we can approximate (21) to:

f
(i)
ARQ(d′) ≈

L∑
l=1

∫ b
(i)
l

b
(i)
l−1

g
(i)
Γs

(γ)dγ

[
(1− πi) + πif

(
d′ −DF − b

(i)
l

)]
(23)

Notice that the quantized (23) is much easier to solve, be-
cause the integral no longer includes the recursive call. Now
(23) can be solved recursively with dynamic programming
(DP). DP means that each time f(d′) is called, the solution
is stored in the d′th entry of the DP table F [ ], so that if a re-
peated recursive call f(d′) is made, the answer can simply
be looked up instead.

The complexity of solving f(d′) is bounded by the time
to solve each entry in the DP table, times the number of
entries in the table. Solving f(d′) involves m channels and
O(L) operations in (23) for each channel, and there are a
maximum of d′ filled entries in the DP table. Hence the
complexity of the algorithm is O(Lmd′).



Figure 6. Illustration of Quantization Scheme.

7 Deriving FEC Striping Algorithms

In this section, we derive FEC striping algorithms for a
set of m bandlimited, burst-loss channels with random de-
lays. We first derive an FEC-based algorithm in Section
7.1. We then discuss how to appropriately set the Lagrange
multiplier value, which controls the volume of parity pack-
ets entering the set of queues. Finally, we derive Hybrid
FEC/ARQ algorithm in Section 7.3.

7.1 FEC-based Algorithm

We will assume greedy algorithm greedy2 is always
used to find a sub-optimal but good FEC distribution g for
a given RS (n, k) to be deployed on a set of m burst-loss
channels. In general, we consider RS (n, k) while varying
n and k for different channel coding strengths and FEC en-
coding/decoding delays. Let fFEC(d′1), d

′
1 = d1− t, be the

probability that a packet with expiration d1 is timely deliv-
ered using FEC. To be precise, fFEC(d′1) affects all k data
packets in RS (n, k), and so we should maximize the aver-
age success probability of all k packets in the head of the
incoming packet queue. However, because we assume the
packets in the queue are ordered by expiring deadline, we
can lower-bound the decoding success probability fg

n,k(d′i)
of each of k packets with expiration time di with the FEC
decoding success probability of the first packet fg

n,k(d′1).
We can now write fFEC(d′1) as:

fFEC(d′
1) = max

(n,k)

[
1

k

k∑
i=1

f g

n,k(d′
i)− λ

(
n− k

k

)]
≈ max

(n,k)
f g

n,k(d′
1)− λ

(
n− k

k

)
(24)

where fFEC(d′1) is optimized over a range of n and k.
Notice there is a penalty term λ(n−k

k ) in (26). The rea-
son is that using RS (n, k) invariably increases the traffic
volume by (n − k)/k fraction more parity packets. Hence
a penalty term is used to regulate the packet volume so that

a) Convex Hull of FEC
b) Linear Regression of Lagrange
Multiplier

Figure 7. Method of Selecting Lagrange Mul-
tiplier Value

it does not lead to queue overflows. The proper selection of
λ is crucial to the performance of (24); this is the subject of
the following section.

fg
n,k(d′1) in (24) can be approximated as follows: it is the

PLR associated with the FEC distribution g of RS (n, k)
over m channels, multiplied by the probability Φg

n,k(d′1)
that each of the n FEC packets arrives at the receiver in
time duration d′1. Φg

n,k(a) is defined as follows:

Φg

n,k(a) =

m∏
i=1

ui+vi∏
j=1

∫ a−
(

li+j

µi

)
κi

g
(i)
Γs

(γ)dγ (25)

f
(i)
n,k(d′1) can now be written as:

f g

n,k(d′
1) ≈ [ 1− π(g) ] Φg

n,k(d′
1) (26)

7.2 Lagrange Multiplier Selection

At a high level, since the goal of the penalty function
λ

(
n−k

k

)
is to regulate the volume of packets in m queues,

it makes sense to select λ to be proportional to the total
amount of traffic currently in the m queues. So given packet
volume w, the question is how to select an appropriate slope
d and an y-intercept h in linear equation λ = dw + h?

Parameters d and h control the sensitivity of the penalty
function λ

(
n−k

k

)
to the volume of queue traffic. To de-

rive the appropriate sensitivity, we first trace out each mul-
tiplier value λi at which optimization (24) switches opti-
mal solutions RS (no

i , k
o
i ) to RS (no

i+1, k
o
i+1). As as ex-

ample, we see in Figure 7a that the performance of each
FEC RS (n, k), n ≤ 5, is plotted on a graph of PLR
vs. parity-to-data ratio r = (n − k)/k. As λ varies, the
FECs that are optimal solutions to (24) are traced out as
the convex hull of the graph. Any two consecutive convex
hull points, (PLRi, ri) and (PLRi+1, ri+1), will induce a
slope λi = (PLRi+1 − PLRi)/(ri − ri+1), which is the



value at which (24) will switch from solution (PLRi, ri)
to (PLRi+1, ri+1). If we now plot these slopes as a func-
tion of data-to-parity ratio 1/r = k/(n − k), as shown in
Figure 7b, we see an almost linear relationship. The line
essentially shows how drastically λ-value must change to
effect a corresponding change in data-to-parity ratio given
optimization (24) is used. This is the sensitivity we are
seeking for. The only task left is to find a line of best
fit that describes the relationship between λ and data-to-
parity ratio. To that end, we use a well-known linear regres-
sion technique in [16], where for a given set of data points
(x1, y1), (x2, y2), . . . , (xN , yN ), the parameters of line of
best fit y = dx + h are:

h =

∑
x2

i

∑
yi −

∑
xi

∑
xiyi

N
∑

x2
i −

(∑
xi

)2

d =
N

∑
xiyi −

∑
xi

∑
yi

N
∑

x2
i −

(∑
xi

)2
(27)

where each summation is taken from i = 1 to N . To sum-
marize, we find the parameters d and h of linear equation
λ = dw + h as follows:

1. Find performance data points (PLRi, ri) of PLR
vs. parity-to-data ratio for various candidate FECs,
RS (n, k).

2. Trace the convex hull of the performance graph.

3. Using convex hull points (λi, 1/ri)’s, derive appropri-
ate d and h using (27).

7.3 Hybrid FEC/ARQ Algorithm

We can combine the ARQ and FEC algorithms into one
hybrid algorithm. f(d′1) is then simply the larger value of
the two possible choices — (re)transmission or FEC:

f(d′
1) =

{
max [ fARQ(d′

1), fFEC(d′
1) ] if d′

1 ≥ 0
0 o.w.

(28)

Unlike (26), the FEC decoding success probability given
FEC distribution g, fg

n,k(d′1), is now defined recursively to
permit retransmission (reFEC) if initial FEC decoding fails:

f
g

n,k
(d′1) =

∫ d′1

0

[
(1− π(g)) + π(g)f(d′1 −DF − γ)

]
φ
g

n,k
(γ) dγ

(29)

where φg
n,k(γ) =

d Φ
g

n,k
(γ)

dγ is the probability that RS (n, k)
is ready for decoding after exactly γ time duration. As done
in Section 6.2 for the ARQ-based algorithm, in order to sep-
arate the integral from the recursion in (29), we need to first
divide the non-zero area under pdf φg

n,k(γ) into L quanti-
zation regions. We first define the largest queuing delay,

Table 2. Model Parameters for Experiment
chnl p q µ α λ κ

1 0.05 0.45 30ms/pkt 4 0.2 50
2 0.03 0.27 30ms/pkt 4 0.2 50
3 0.05 0.4 25ms/pkt 4 0.16 50

Dmax, experienced by any packet in RS (n, k) given FEC
distribution g:

Dmax = max
i=1,...,m

[
li + ui + vi

µi
+ κi

]
(30)

It is clear φ
g
n,k(γ) = 0 for γ < Dmax. The largest amount

of time permissible to transmit all packets is of course d′1.
Hence to quantize the area under φ

g
n,k(γ) into L regions,

each region l with boundaries [al−1, al), we get:

[ al−1, al ) =

[
l − 1

L
(d′1 −Dmax) + Dmax,

l

L
(d′1 −Dmax) + Dmax

)
(31)

To calculate
∫ al

al−1
φg

n,k(γ)dγ — the probability that
RS (n, k) is ready for decoding in interval [al−1, al), we
simply subtract the probability that all n packets arrive by
al−1, Φg

n,k(al−1), from the probability that all n packets
arrive by al, Φg

n,k(al). We can now write fg
n,k(d′1) as fol-

lows:

f
g

n,k
(d
′
1) ≈

L∑
l=1

[
(1− π(g)) + π(g)f(d

′
1 −DF − al)

] [
Φ

g

n,k
(al)− Φ

g

n,k
(al−1)

]
(32)

8 Results

To test the developed striping algorithms, we imple-
mented a network simulator in C running on linux. We
assumed input packet rate of 62.5pkt/s and network model
parameters as shown in Table 2. For each data point of PLR,
300, 000 packets were inputed for an averaging effect.

8.1 ARQ-based Algorithm

We first compare the performance our optimal ARQ
scheme opt-ARQ in (21) with weighted round-robin WRR,
which randomly assigns incoming input packets to chan-
nels with probabilities proportional to the relative sizes of
the channel bandwidths. Figure 8 shows the resulting PLR
of the two schemes as a function of packet end-to-end de-
lay tolerances in ms. In the experiment, we used quantiza-
tion L = 3 to solve (23). We see that opt-ARQ outper-
formed WRR for the entire range of packet tolerance delay,
with maximum difference being 4.2%.



Figure 8. Performance Comparison for ARQ
Schemes: PLR vs. Packet Delay Tolerance

Recall the performance of opt-ARQ depends on the
quantization level L. To investigate the relative perfor-
mance impact for changing L, we reran opt-ARQ for
L = 1 and L = 5 as well. The results are shown in Figure
9. We first notice that the performance for all three quan-
tization levels were quite similar. We next notice that the
PLR improvement as L increases is diminishing: the max-
imum difference between L = 1 and L = 3 is 0.51%,
while the maximum difference between L = 3 and L = 5
is 0.32%. Recalling that the complexity of (23) is propor-
tional to L, we decided that a good performance-complexity
tradeoff point is L = 3. This quantization level will be used
throughout the rest of the experiments. Support for retrans-
mission will be turned off for FEC-based algorithms.

8.2 FEC-based Algorithm

We next investigate the performance of FEC-based al-
gorithms. We limited the feasible FEC set to be the set of
RS(n, k)’s, k < n ≤ 5. Recall in FEC-based algorithm (24)
that the performance depends heavily on the selection of
the Lagrange multiplier λ, which determines the weight of
the penalty function λ

(
n−k

k

)
. To stress this point, we con-

structed Figure 10a, which shows the performance in PLR
as a function of λ, which for each data point was held con-
stant for the experimental run. We see that an inappropriate
λ value can result in a poorer PLR by 8%, demonstrating
the importance of a cleverly selected λ.

Using the linear regression method described in Section
7.2 to find the appropriate λ for given volume of pack-
ets in queues, we traced the performance of the optimal
opt-FEC of (24) and plotted in Figure 10b. For com-
parison, we plotted two other FEC schemes in addition.

Figure 9. Performance Comparison for ARQ
Schemes using different Quantization

a) PLR vs. Multiplier Value λ b) PLR vs. Packet Delay Tolerance

Figure 10. Performance Comparison for FEC
Schemes

uniFEC performs fixed channel coding RS(4, 3) on the
data packets and transmits over the single channel with
the highest delivery success probability given current queue
lengths and network conditions. fixFEC, like uniFEC,
performs fixed RS(4, 3) but strips over three channels using
greedy algorithm greedy2. Both uniFEC and fixFEC
will elect to send regular transmission if regular transmis-
sion has better delivery success probability due to delays
introduced by FEC.

Several observations can be made in Figure 10b. First,
performance benefits due to FEC for fixFEC kicked in ear-
lier than uniFEC. This is because striping across channels
typically has the benefit of reducing end-to-end FEC de-
coding delay. Second, even after FEC benefits of uniFEC
kicked in, PLR of fixFEC was still smaller than uniFEC.
This is because a single burst in a single channel cor-
rupts entire FEC block for uniFEC, while it only cor-
rupts a portion of FEC block for fixFEC. Finally, we see
that opt-FEC outperformed both uniFEC and fixFEC,



Figure 11. Performance Comparison among
Hybrid FEC/ARQ, ARQ-based and FEC-
based: PLR vs. Packet Delay Tolerance

demonstrating the value of dynamically controlling λ as the
volume of packets in queue varies.

8.3 Hybrid FEC/ARQ Algorithm

Finally, we investigate the performance of the hy-
brid FEC/ARQ algorithm hybrid FEC/ARQ in (28) and
(29). For comparison, the performance of opt-FEC and
opt-ARQ are also plotted in Figure 11. We see that the
performance of hybrid FEC/ARQ was at least as good
as both opt-FEC and opt-ARQ for all range of packet
delay tolerance.

9 Conclusion

With the advent of multi-homed devices with multiple
WWAN links, aggregation of multiple channels can effec-
tively address limited bandwidth issues. Packet striping in
such environment is difficult because of bursty losses and
random delays. In this paper we investigated and developed
near-optimal striping algorithms for delay-sensitive packets
over multiple burst-loss channels with random delays.

We first derived the packet loss ratio of an (n, k) Reed-
Solomon code on a burst-loss channel. We then analyzed
the performance of FEC over a set of bursty channels un-
der a particular mapping. Given the number of mappings
to a set of m channels is exponential, we derived a greedy
algorithm that constructs near-optimal FEC mappings in
linear time. We then extended our network loss model to
include random transmission delays and bandwidth con-
straints. We developed dynamic programming-based algo-
rithms that solve the striping problem for the ARQ-only

case, the FEC-only case, and the hybrid FEC/ARQ case.
Our simulation results show that our algorithm outperforms
naı̈ve algorithms such as weighted round-robin. Note that
our striping scheme operates on a per-packet basis and not
per-flow, and hence we can easily apply our developed tech-
niques to multiple flows sharing multiple channels.
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