
Coding and Replication Co-Design for
Interactive Multiview Video Streaming

Huan Huang Bo Zhang S.-H. Gary Chan
Dept. of Comp. Sci. & Eng.

The Hong Kong University of

Science and Technology

Clear Water Bay, Hong Kong

{huangzunhuan, zhangbo, gchan}@cse.ust.hk

Gene Cheung
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku

Tokyo, Japan 101-8430

cheung@nii.ac.jp

Pascal Frossard
École Polytechnique

Fédérale de Lausanne

EPFL-STI-IEL-LTS4, Station 11

CH-1015 Lausanne, Switzerland

pascal.frossard@epfl.ch

Abstract—Multiview video refers to the simultaneous
capturing of multiple video views with an array of closely
spaced cameras. In an interactive multiview video streaming
(IMVS) system, a client can play back the content in time in a
single view, and may observe a scene of interest by switching
to different viewpoints. Users independently choose their
own view navigation paths through the high-dimensional
multiview data. Distributed servers are deployed to collab-
oratively replicate video content in order to support user
scalability. Such a system typically presents challenges in
both coding and content replication. In coding, the multiview
video must be encoded in order to support efficient view-
switching and distributed replication. In content replication,
it is important to decide which data blocks to store at each
server to facilitate view-switches at any time.

In this paper, we co-design a coding structure and a
distributed content replication strategy. First, we propose
a coding structure based on redundant P-frames and dis-
tributed source coding (DSC) frames to achieve efficiency
in coding, view switches and content replication. We then
propose a heuristic-based distributed and cooperative repli-
cation strategy to take advantage of the correlation between
the multiple views for resource-effective content delivery.
Simulation results show that our coding and replication co-
design is cost-effective in supporting IMVS services.

I. Introduction

Multiview video refers to the simultaneous capturing
of multiple videos of the same scene of interest by a
large array of closely spaced cameras from different
viewpoints [1]. In interactive multiview video streaming
(IMVS) services [2], a client can play back the captured
multiview video content in time in a single view, and
may switch at any time to new views in order to
observe a scene of interest from different viewing angles.
Active selection of viewpoints by a client can engender
a depth perception in the observed 3D scene [3]. It
also represents a fundamental departure from traditional
single-view video streaming, where media interaction is

This work was supported, in part, by the General Research Fund
from the Research Grant Council of the Hong Kong Special Admin-
istrative Region, China (611209) and Proof-of-Concept Fund at the
HKUST (PCF.005.09/10 & PCFX05-15C00610/11ONA).

limited to basic and relatively infrequently used opera-
tions along the time dimension: pause, play, fast forward
and rewind. Due to its compelling visual experience,
multiview video has wide applications in education,
entertainment, surveillance, health care, etc.

In order to serve distributed users and reduce access
costs, a distributed servers architecture may be used [4].
In such a network, local servers are set up close to
user pools. A remote repository with limited bandwidth
stores the entire original pre-encoded multiview data.
A client1 is associated with a local server, and sends
interactive requests to the server. The server serves it
directly if the requested data has been stored; otherwise,
it identifies a remote server or repository to supply the
missing data (with some cost).

The design of cost-effective IVMS systems relies on
appropriate coding and data replication strategies. In
coding, the multiview video content must be pre-encoded
at generation time, so that at streaming time, pre-
encoded frames corresponding to clients’ chosen view-
points can be efficiently extracted for decoding and
display. A simple (but naive) way to support view-
switching at streaming time is to encode images of
different viewpoints as independently coded I-frames; in
this case, selected views can be transmitted and decoded
in any order. However, because I-frames are not coding-
efficient, this results in high bandwidth requirements
during interactive view switches. Due to the high corre-
lation among adjacent viewpoint images (because of the
spatial proximity of capturing cameras), more efficient
encoding can be proposed for good compression ratio
and decoding flexibility.

In content replication, because each IMVS client inde-
pendently selects only a small subset of frames out of the
very large multiview video content during his view nav-
igation, it is not possible to store a priori all the possible
requests in the local servers. If the server deploys a naı̈ve
replication strategy of storing only the most popular

1In this work, we use ”client” and ”user” interchangeably.

multiview data, the hit ratio will be low and the network
would not be efficient, because view navigation paths are
typically unique and non-overlapping..

In this paper, we study how to co-design both the
coding structure and the replication strategy to support
efficient view-switching for IMVS services. First, in order
to facilitate view-switching and storage, we propose
a coding structure based on redundant P-frames and
distributed source coding (DSC) frames to help users
navigate among adjacent views [2], [5]. Given this novel
structure, we then propose an efficient and cooperative
heuristic called MVCR (Multiview Video Cooperative
Replication) to efficiently replicate views. MVCR is fully
distributed and guarantees convergence. In MVCR, even
if an exact requested video view in local servers is not
stored (i.e., direct hit), a different but correlated video
view can nonetheless be requested from neighboring
servers (indirect hit) so that access costs are reduced
compared to requesting views from the main server.
We show by simulation results that the proposed co-
design solution leads to interactive content delivery with
effective use of network resources.

The paper is organized as follows. After discussing
related work in Section II, we present in Section III the
IMVS network and coding structure to support efficient
view-switching. The MVCR algorithm is discussed in
Section IV. We present simulation results in Section V,
and conclude in Section VI.

II. RelatedWork

Research in multiview video coding (MVC) has been
mostly focused on compression of all captured frames,
exploiting both temporal and inter-view correlation to
achieve coding gain [6]. Though suitable for compact
storage of all multiview data (e.g., on a DVD disc), for
IMVS application [2] where only a single requested view
per client is needed at one time, complicated inter-frame
dependencies among coded frames across time and view
reduce the random decodability of the video stream. In
contrast, we propose an efficient frame structure where
an image can be encoded into multiple versions, so that
the appropriate version can be transmitted depending on
the available content in decoder’s buffer at stream time,
in order to reduce server transmission rate.

Optimal replication in a distributed video-on-demand
network is generally regarded as NP-hard (see, for ex-
ample, [7]). We propose and study an efficient heuristic
to address that. Previous work on replication in video
streaming has focused only on single view videos, where
there is no correlation among different streams [4], [8]–
[10]. Furthermore, the replication strategy in this body
of work has not considered the cooperation among
neighboring servers to achieve low access cost. Our
work differs from them by considering jointly the unique
coding structure to support static-view switching for

Scene of Interest
M cameras

static view−switching

user 1

user 2

user 3

K−frame segment

Fig. 1. In an IMVS scenario with static view-switching, different users
select different view trajectories in the high-dimensional media space.

IMVS, and how to optimally replicate the data blocks
to achieve low access costs.

III. IMVS System and Coding Structure

We first overview the IMVS system under consid-
eration, and then describe the type of media interac-
tion (static view-switching) we provide for each client.
We then propose a coding-efficient multiview frame
structure by exploiting the inter-view correlation among
neighboring viewpoints while enabling decoding flexi-
bility in an IMVS session.

Each client is connected to a local server which pro-
vides IMVS service to the client, i.e., the server transmits
multiview data corresponding to the client’s interac-
tively chosen view navigation path. If the requested data
has already been stored in the server, the server will
directly forward data to the client. If not, the server will
identify another server or remote repository to satisfy the
view request. Given the access popularity, each server
hence has to decide which video views of what time
instants to store given its limited storage in order to
achieve overall low access cost.

We consider that a user can play back video of the same
view for K consecutive frames in time; such K frames
of the same view is called a coding unit. At the first
frame or head of a coding unit, a user can interactively
select different views of the same time instant (first
frames of other coding units) before deciding on one
view to resume video playback. Because there is no
time progression during this interactivity, we call this
navigation of views of the same time instant static view-
switching (called frozen moment in [11]). See Fig. 1 where
users 1, 2 and 3 choose different view navigation paths
in a 5-camera multiview video sequence.

To support static view-switching while achieving good
compression efficiency, we propose the following frame
structure to pre-encode a given multiview video content.
The video sequence of view i, i = 1, . . . ,M, is encoded
into coding units, each K consecutive pictures long; i.e.,
a coding unit Bn,i of view i, n ≥ 0, contains the leading
picture FnK,i of instant nK of view i, and trailing K − 1
pictures FnK+1,i, . . . , F(n+1)K−1,i. The leading picture FnK,i

(head of coding unit Bn,i) serves for static view naviga-
tion and has a redundant representation, so that inter-view
correlations among adjacent viewpoints are exploited.

Fig. 2. Dependencies among coding units in proposed multiview
video frame structure. Arrows among heads indicate feasible view
switches using pre-encoded differentials.

Fig. 3. An implementation of a coding unit using I-, P- and DSC
frames (denoted by circle, squares, and diamonds, respectively).

Specifically, the head FnK,i has pre-encoded differentials
in the structure to heads FnK,i±1’s, so that a view-switch
from FnK,i to FnK,i±1 only requires transmission of the
differential. See Fig. 2 for an illustration of a multiview
video frame structure for M = 3.

In more details, the head of coding unit Bn,i is repre-
sented by multiple compressed versions of the same pic-
ture FnK,i: one independently coded I-frame InK,i, multiple
differentially coded P-frames PnK,i’s and one distributed
source coding (DSC) frame WnK,i. Each P-frame PnK,i(i± 1)
is predicted from a I-frame InK,i±1 of an adjacent view i±1.
With I-frame InK,i as coding target, DSC frame WnK,i uses
P-frames PnK,i’s as predictors; by DSC’s construction [5],
only one correctly decoded predictor frame is needed for
correct DSC decoding. Thus, by transmitting the DSC
frame WnK,i in combination with any one of the P-frames
PnK,i’s, WnK,i can be correctly decoded to reconstruct the
target frame InK,i. In essence, WnK,i is a merge operator
to reconciliate minor differences due to motion com-
pensation and quantization among all possible P-frames
PnK,i’s. Figure 3 shows an illustration of frame structure
for coding unit (1, 2).

IV. MVCR: Multiview Video Cooperative Replication

In this section, we consider that there is certain access
cost depending on data size between any pair of servers
(including repository). Given the coding structure, we
study which views to store in each server to coopera-
tively minimize the overall network access cost.

We consider that the coding units are replicated in-
dependently and focus on a static view-switching mo-
ment/instant when view interaction occurs (i.e., no time

dimension of the video is considered). In this case, it
suffices to focus on the replication of the head of the
unit of a certain view-switching instant. For simplicity,
we consider that servers store only I-frames (A server’s
decision to replicate view j means that it pulls I-frame
I j from the repository to its local storage a priori.) To
support efficient view browsing at an arbitrary view-
switching instant, each server allocates a certain repli-
cation capacity in terms of number of I-frames.

The view-switch cost has to be accounted for carefully.
This cost depends on which one of the following four
possible cases when a client at server x switches from
view i to j that is not stored locally in the server:

1) Direct hit: This is the case when a neighboring
server y has stored the exact view j, and hence the
view can be forwarded to x directly.

2) Differential transmission: This is the case when
the repository transmits pre-encoded differentially
coded P-frame P j(i).

3) Indirect hit: This is the case when a neighboring
server y has a correlated frame of view k, and hence
that frame is forwarded to x and the repository
transmits a differential P j(k) (as in the above case).

4) Content miss: This is the case when all the neighbor-
ing servers do not have exact or correlated frames,
and the repository transmits independently-coded
I-frame of view j to x.

At each server, users request view j with a certain
probability π j (view popularity). Given its limited ca-
pacity, each server replicates the views according to the
popularity so that the replication leads to good view
“locality” to support efficient switching with minimum
overall view access cost. (Note that the ”cost” is a general
term that may be bandwidth access cost, user interactive
delay, or combination of both.)

To address the replication problem, we propose an
efficient heuristic called MVCR (Multiview Video Co-
operative Replication) for each server to decide which
view to replicate and which neighbors to solicit help
upon a view switch. MVCR is fully distributed and guar-
antees convergence. It continuously reduces the overall
access cost through message exchanges with neighboring
servers.

In MVCR, each server adopts a probabilistic server se-
lection strategy as follows. Let Nx

j
be the set of neighbors

of server x that store view j. To reduce the access cost
for view j, the server x (without the view j) chooses a
server y with the view according to the access cost t

x,y

j

with a certain probability. This probability is given by

H
x,y

j
=

t
x,y

j
∑

y∈Nx
j
t
x,y

j

. (1)

To decide whether to replicate view j at server x, the
server needs to consider the two cases of direct and
indirect hit. In direct hit, the server x requests from

server y view j from server y with a probability H
x,y

j

given in Equation (1). Let Cx
j
(1) be the average cost to

access view j due to direct hit at server x. We have

Cx
j (1) =

∑

y∈Nx
j

H
x,y

j
t
x,y

j
π j. (2)

For indirect hit, the neighboring servers of server x
can supply view k while the repository supplies the pre-
encoded differential, provided that | j− k| ≤ 1. Let Cx

j
(3) be

the average cost to access view j from the neighboring
servers of server x due to indirect hit. We have

Cx
j (3) =

∑

k∈ j±1

πk

















∑

y∈Nx
k

H
x,y

k
t
x,y

k
+ tx,R

k, j

















. (3)

Let Cx
j

be the average cost to access view j at server

x, which is clearly

Cx
j = Cx

j (1) + Cx
j (3). (4)

Let C
xy+

j
and C

xy−

j
be the average cost at server x to

access view j from server y with and without the view,

respectively (C
xy+

j
≤ C

xy−

j
). Let J

xy

j
be the change of such

costs, i.e.,

J
xy

j
= C

xy−

j
− C

xy+

j
. (5)

Equipped with the above notation, our MVCR replica-
tion strategy is finally stated as follows. When a server
x makes its replication decision for view k, it collects
from each of its neighbors, say server y, its cost change
J

yx

k
. It then sums these changes together and estimates

Ax
k
. Specifically, if Nx is the set of neighboring servers of

server x, the server x computes

Ax
k =
∑

y∈Nx

J
yx

k
. (6)

The server x then replaces view k with view k′ if (Ax
k
−

Ax
k′

)/
∑

k Ax
k

is larger than a certain threshold α (α < 1).

V. Simulation Environment and Illustrative Results

We study MVCR performance using simulation. We
use the well-known MPEG multiview video test se-
quence pantamime of resolution 1280 × 960. Views of
pantamime are coded into our proposed frame structure
using a H.263+ codec: I- and P-frames are coded using
conventional H.263+ tools, while DSC frames are coded
using codec in [5] that was built using H.263+ tools
with added modifications. The quantization parameter
is fixed at a constant for all frames for constant visual
quality. The view size is the size of the I-frame. We
conduct simulations on a real Internet topology taken
from [www.caida.org], which contains 1,747 nodes and
3,732 links each with a certain delay.

We consider user interactivity where view-switch re-
quests of a certain head may be modeled by a recurrent

1.2 2.4 3.6 4.8 6 7.2 8.4 9.6 10.8

0.5

1

1.5

2

View−change rate (requests/second)

A
c
c
e

s
s
 c

o
s
t

(s
e

c
o

n
d

s
)

MPF

LRU

MVCR

Fig. 4. Access delay versus request rate given different schemes.

DTMC (Discrete-time Markov chain). The state is repre-
sented by {1, 2, . . . ,M}, which is the view index browsed
by the user. There is an anchor or default view indexed
by m, from which a user may jump to any other view
with probability pm, j (j , m). For other states, a user may
jump back to the anchor view, or move up or down
a view with certain probabilities. In our simulations,
we use p1,m = 3/4, pi,i+1 = 1/4, pi,i−1 = 1/4, pM,m = 3/4,
pi,m = 1/2, and pm,m± j ∝ 1/ js (a Zipf distribution), where
j ≥ 1. Due to such transition probability, we consider
at steady state that each server experiences view-switch
requests according to a Poisson process with rate λ
(/second).

We define the transmission cost as the total user
interactive delay, which is the sum of the delay of all
the links that connect the two servers, with each link
delay modeled by M/M/1. If the request cannot be served
immediately because of a lack of available bandwidth, it
will wait till resources are sufficient. We further consider
that images are downloaded to the server completely
before they can be browsed (or played back).

Unless stated otherwise, we use the following baseline
(default) parameters in simulations: link bandwidth of 1
Gbits/s, number of servers equal to 30, number of views
set to 100, storage capacity of each server equal to 5,
s = 0.6, view downloading bitrate fixed at 5 Mbits/s, view
size of 500 kbytes, replicate and replacement interval of
4 minutes, λ = 6 requests/second.

The performance metrics that we are interested in is
the access cost (or delay) for all served requests, which
is defined as the delay from the time of request till
the time of downloading the view from a server or
from the repository. This delay is hence the sum of time
waiting for available network bandwidth and time for
downloading the view completely.

We compare MVCR with the following replication
schemes:

• LRU (Least Recently Used), where each server re-
places the least-recently used view with the most
recently requested one;

• MPF (Most Popular First), where each server repli-
cates the most popular views.

We plot in Figure 4 the access cost versus λ for

100 200 300 400 500 600 700
0

0.5

1

1.5

2

View size (kbytes)

A
c
c
e

s
s
 c

o
s
t

(s
e

c
o

n
d

s
)

MPF

LRU

MVCR

Fig. 5. Access cost versus view size given different schemes.

2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

Number of neighbors

A
c
c
e
s
s
 C

o
s
t

(s
e
c
o
n
d
s
)

MPF

LRU

MVCR

Fig. 6. Access cost versus number of neighbors size given different
schemes.

different schemes. The access cost increases with λ be-
cause of larger network traffic leading to congestion.
MVCR has the lowest access cost compared to the other
schemes. It balances the traffic in the network during
server selection and appropriate replication, leading to a
lower access cost and better server load balancing. Given
a certain cost constraint, MVCR can accommodate much
higher request rates. LRU does not perform well because
it continuously replaces its storage, leading to high
replacement traffic in the network. MPF performs the
worst because all the servers replicate only the hottest
views. This leads to poor collaboration between servers,
and hence high bandwidth and storage utilizations. Its
high access cost is due to congestion at the repository.
The figure shows that it is important to consider the cost
change due to replication of neighboring servers and
cooperative replication.

Figure 5 plots the access cost versus the view size for
difference schemes. Access cost increases with the view
size due to higher downloading cost/time, and a longer
waiting time for bandwidth availability. MVCR has
much lower access cost as compared to other schemes.
Given a constraint on the access cost, MVCR can support
significantly larger view sizes. This leads to a much
higher view quality.

We show in Figure 6 the access cost versus the number
of neighboring servers. MPF is not so sensitive to the
number of neighbors, because all the neighbors cache
the same views and hence the server collaboration is
minimal. For the other schemes, the access cost decreases

with the number of servers because of higher better
server collaboration and better traffic spreading among
them. MVCR performs best because it attains higher
collaboration among neighboring servers through better
view replication.

VI. Conclusion

In this paper, we consider the coding and content
replication co-design problem for a network with dis-
tributed servers to support interactive multiview video
streaming services (IMVS). We present an efficient cod-
ing structure using redundant P-frames and distributed
source coding (DSC) frames that facilitates view switch-
ing and supports distributed replication. With this cod-
ing structure, we propose a novel cooperative replica-
tion scheme called MVCR (Multiview Video Cooperative
Replication) to effectively store views at each server.
MVCR is fully distributed, performs efficiently and guar-
antees convergence. We have conducted extensive sim-
ulations with a realistic Internet topology to study the
performance of MVCR. Our results show that MVCR
outperforms other schemes by a wide margin in terms
of access cost/delay.

References

[1] A. Kubota, A. Smolic, M. Magnor, M. Tanimoto, T. Chen, and
C. Zhang, “Multi-view imaging and 3DTV,” in IEEE Signal Pro-
cessing Magazine, vol. 24, no.6, November 2007.

[2] G. Cheung, A. Ortega, and N.-M. Cheung, “Interactive streaming
of stored multiview video using redundant frame structures,” in
IEEE Transactions on Image Processing, vol. 20, no.3, March 2011,
pp. 744–761.

[3] C. Zhang, Z. Yin, and D. Florencio, “Improving depth perception
with motion parallax and its application in teleconferencing,” in
IEEE International Workshop on Multimedia Signal Processing, Rio
de Jeneiro, Brazil, October 2009.

[4] S.-H. Chan and F. Tobagi, “Distributed servers architecture for
networked video services,” IEEE/ACM Transactions on Networking,
vol. 9, no. 2, pp. 125–136, Apr 2001.

[5] N.-M. Cheung, A. Ortega, and G. Cheung, “Distributed source
coding techniques for interactive multiview video streaming,” in
27th Picture Coding Symposium, Chicago, IL, May 2009.

[6] M. Flierl, A. Mavlankar, and B. Girod, “Motion and disparity
compensated coding for multiview video,” in IEEE Transactions on
Circuits and Systems for Video Technology, vol. 17, no.11, November
2007, pp. 1474–1484.

[7] A. Nimkar, C. Mandal, and C. Reade, “Video placement and
disk load balancing algorithm for VoD proxy server,” in Internet
Multimedia Services Architecture and Applications (IMSAA), 2009
IEEE International Conference on, Dec. 2009, pp. 1–6.

[8] Y. R. Choe, D. L. Schuff, J. M. Dyaberi, and V. S. Pai, “Improving
VoD server efficiency with bittorrent,” in Proceedings of the 15th
international conference on Multimedia, New York, NY, USA, 2007,
pp. 117–126.

[9] W.-P. K. Yiu, X. Jin, and S.-H. G. Chan, “VMesh: Distributed
segment storage for peer-to-peer interactive video streaming,”
IEEE Journal on Selected Areas in Communications (JSAC) special issue
on Advances in Peer-to-Peer Streaming Systems, vol. 25, no. 9, pp.
1717–31, Dec. 2007.

[10] S.-H. G. Chan, “Operation and cost optimization of a distributed
servers architecture for on-demand video services,” IEEE Commu-
nications Letters, vol. 5, no. 9, pp. 384–386, Sep. 2001.

[11] J.-G. Lou, H. Cai, and J. Li, “A real-time interactive multi-view
video system,” in ACM International Conference on Multimedia,
Singapore, November 2005.

