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Absrract-The design of lookup tables for fast IP address lookup algo- 
rithms using a general processor is formalized as an optimization prob- 
lem. A cost model that models the access times and sizes of the hierarchical 
memory structure of the processor is formulated. Two algorithms, using 
dynamic programming and Lagrange multipliers, solve the optimization 
problem optimally and approximately respectively. Experimental results 
show our algorithms have visible improvements over existing ones in the 
literature. 

I. INTRODUCTION 

In the Internet Protocol (IP) architecture, hosts communicate 
with each other by exchanging packetized messages or packets 
through a fabric of interconnected forwarding elements called 
routers. Each router consists of input interfaces, output inter- 
faces, a forwarding engine, and a routing table. When an IP 
packet arrives on an input interface, the forwarding engine per- 
forms a route lookup - it locates an entry from the routing ta- 
ble based on the contents of the packet’s IP header (typically the 
destination address) and uses this entry to determine the output 
interface through which to forward the packet toward its ulti- 
mate destination. 

If forwarding performance within a router were infinitely fast, 
then the overall performance of the network would be deter- 
mined solely by the physical constraints - i.e. bit rate, delay, 
and error rate - of the underlying communication links. How- 
ever, in practice, building high-speed routers is a hard problem 
and as physical-layer link speeds continue to increase, the for- 
warding path of the router can easily become the bottleneck in 
network performance. This is especially true for routers situated 
deep within the backbone of the network, where very high traffic 
volumes require very high-speed processing. Thus, to optimize 
network performance, we must not only optimize the speed of 
the physical-layer transmission media but also the forwarding 
performance of the routers. 

While the forwarding path in a high-speed router consists of 
many important stages, each posing a potential bottleneck, the 
route lookup stage, in particular, poses a unique challenge be- 
cause its performance is sensitive to the size of the routing ta- 
ble. And as IP networks like the Internet scale to very large 
and interesting sizes, the routing tables in the backbone routers 
can become large and thus pose a serious performance problem. 
That is, as the number of potential destinations known to a router 
grows, the complexity of managing this state and of forwarding 
packets against this state increases. 

Fortunately, the Internet design anticipates this scaling prob- 
lem and consequently imposes hierarchy onto the IP address 
space. Because of this, every router need not have a routing table 
entry for every possible network destination. Instead, address- 
space hierarchy can be exploited to achieve address aggregation 
whereby a large collection of hosts can be addressed as a sin- 

gle entity via a variable length network address [3]. For exam- 
ple, all of the hosts at U.C. Berkeley can be referred to sim- 
ply as 128.32116 because they all have the same 16-bit prefix of 
“128.32”. As a result, routers have much smaller routing tables 
and the problem of searching this table for a given route on a 
per-packet basis is simplified. 

While on the one hand, a smaller routing table theoretically 
simplifies the problem of searching for a given route, on the 
other, the variable width of network addresses adds complexity 
to the lookup algorithm. Though the lookup rule is relatively 
straightforward - the route that matches the longest prefix of 
the destination address is chosen - very fast algorithms that 
implement this rule are not at all obvious nor are they straight- 
forward to implement. In light of this, a growing body of work 
has addressed the problem of fast IP route lookup [ 11, [2], [4], 
[5], [6], [7]. [4] is an early well-known implementation of ad- 
dress lookup, which uses PATRICIA Tree [l 11. [6] discussed 
a hardware implementation of address lookup. [7] proposed 
a novel adaptation of binary search for address lookup. The 
other papers discussed implementations of address lookup that 
use lookup tables - this is the approach we pursue in this paper. 

Conceptually, a route lookup can be cast as a table lookup, 
where a single table is indexed by the destination address to 
yield the routing entry. Since a lookup operation takes constant 
time, this simple algorithm has complexity O( 1). However, the 
sheer size of the IP address space precludes a single table ap- 
proach since such large memories are impractical, expensive and 
slow. Alternatively, we can represent the routing table as a bi- 
nary tree and decode the address one bit at a time. But this is 
inefficient as it requires iterative, sequential processing of the 
address bits. 

Recent work combines the tree representation with table- 
driven lookups to enhance performance [l], [2]. The idea is 
to compute a representation of the tree as a set of tables where 
forwarding is accomplished by traversing the routing table tree 
via multiple table lookups. The challenge then is to devise an 
algorithm when given a set of routes, produces a “good” set of 
tables. If the tables are not chosen intelligently, performance 
can suffer - when tables are too large, they cannot fit into small, 
fast, memories, and when too small, the algorithm must perform 
extra lookups. 

To choose the tables layouts intelligently, we have developed 
a model for table-driven route lookup and cast the table design 
problem as an optimization within this model. Suppose we have 
three types of hierarchical memories, with memory size and ac- 
cess speed (SI, TI), (S2, T2) and (S3, T3) respectively. Suppose 
each prefix j has an associated probability p j .  Assuming inde- 
pendent IP packet arrival, the average prefix retrieval time is: 

C = C p j ( a j T 1  + bjT2 + cjT3) (1) 
j 
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where aj is the number of type 1 memory access needed to re- 
trieve prefix j, bj is the number of type 2 memory access needed, 
cj is the number of type 3 memory access needed. aj is basi- 
cally the number of lookup tables residing in type l memory 
used in the retrieval process of prefix j. (1) is correct only if the 
tables assigned to each type of memory do not exceed the ca- 
pacity of that type of memory. The problem is how to structure 
a set of tables that minimizes (1) while satisfying the memory 
size constraints. 

Although previous works on fast IP route lookup propose ele- 
gant designs for their table lookup schemes, no approach me- 
thodically attempts to design an optimal strategy along these 
lines [l], [2]. A notable exception is more recent work by Srini- 
vasan and Varghese [5], but this work optimizes the worst case 
rather than the average case. 

In this paper, we present a general framework for generat- 
ing optimal tables for table-driven IP routing. We first present 
a brief introduction to the data structures used in IP address 
lookups. We then present a pseudo-polynomial time algorithm 
that gives the optimal table design given our model. One can 
prove that finding the optimal set of tables is an NP-complete 
problem [8], and thus we devised an approximate algorithm that 
runs in polynomial time and provides performance within a con- 
stant bound of the optimal. Next, we present performance re- 
sults of our algorithm. Finally, we discuss directions for future 
work and conclude. 

11. OVERVIEW OF DATA STRUCTURE 

Many efforts have been made in an attempt to speed up IP 
route lookups, and the key distinguishing factor across these 
various approaches is the data structure employed to represent 
the routing table. In this section, we give a brief introduction 
to these structures, and describe in depth the structure we use 
- generalized level-compressed trie. Based on our generalized 
data structure, we then formalize our optimization problem to 
provide the context for the algorithms presented in later sections. 

A. Binary Tree, R e ,  PATRICIA Tree, and Complete Prefir Tree 

A Binary tree is one of the simplest representation of a set of 
prefixes. Each prefix is represented by a node in the tree, usually 
a leaf, and the path from the root to that node reveals the asso- 
ciated bit pattern of the prefix. For example, Figure 1 shows a 
set of prefixes and their associated interface numbers and prob- 
abilities, and Figure 2(i) shows the binary tree representation of 
this set. Each node of the tree has at most two children, hence 
binary. A trie [ 121 is a more general data structure, where each 
node can have any number of children. A binary tree then, also 
called binary trie, is a special case of trie. The implementation 

iii) complete prefix tree iv) level-compressed tne 

Fig. 2. Example of Prefix Data Structures 

of binary tree involves bit-by-bit manipulation, which is ineffi- 
cient for long prefixes. 

A path-compressed trie is a trie where certain sequences 
of input bits may be skipped over before arriving at the next 
node. Compression is evident when a long sequence of one- 
child nodes needs to be traversed before arriving at a sub-trie 
of prefixes. Figure 2(ii), for instance, shows a path-compressed 
trie version of the same set of prefixes. Path-compressed binary 
trie, also known as PATRICIA Tree [ 111, is used by many early 
implementations of IP route lookups [4] and provides reason- 
able performance. A problem with path compression is that if 
the skipped bits do not match the assumed path, then backtrack- 
ing is required to retreat back to the pre-path-compressed node, 
thereby incurring computational overhead. To eliminate back- 
tracking, a binary tree can be first converted to a complete prefix 
tree [l], which is a tree where each node has either two chil- 
dren or none. Intuitively, a complete prefix tree contains a set of 
prefixes that are prefi-free, i.e. no prefix is a prefix of another. 
When traversing a complete prefix tree to retrieve a prefix, only 
a leaf terminates a search, and so no backtracking is needed. A 
binary tree of prefixes can always be converted to a complete 
prefix tree using techniques in [l] or [5]. For example, Figure 
2(iii) shows the complete prefix tree representation of our set of 
prefixes. 

A level-compressed trie [2] is a trie in which each complete 
subtree of height h is collapsed into a subtree of height 1 with 2h 
children. For example, starting at node i, if there are exactly 2h 
descendent nodes at level h, then all the intermediate nodes from 
level 1 to level h - 1 can be replaced by 2h branches originated 
directly from node i. Figure 2(iv) shows a level-compressed trie 
version of the set of prefixes from the complete prefix tree in 
Figure 2(iii). A level-compressed trie can be implemented using 
lookup tables, where for each table, a length h bit sequence is 
extracted and used as index. h is called the stride of the trie. 

B. Generalized Level-Compressed Trie 

Intuitively, a section of the tree needs not be full to be level- 
compressed. For example, a set of prefixes {00,01,1} can be 
expanded to {00,01,10,11} with prefixes 10 and 11 contain- 
ing the same information as the original prefix 1. Then a trie 
of stride 2 can be used, implemented as a 2-bit indexed lookup 
table. This technique is called prejix expansion in [5]. It is also 
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used as a part of the data structure introduced in [l], although 
[ 13 took a more implementational approach instead and did not 
formulate it as an optimization problem. This notion of gener- 
alized level compression provides an extra degree of freedom in 
creating lookup tables. 

For our lookup table data structure, we make the follow- 
ing design decisions: Given a set of prefixes represented by 
a binary tree, stuge 1 transforms it to a complete prefix tree. 
Then from the complete prefix tree, stage 2 transforms it to 
a generalized level-compressed trie structure, which we im- 
plement using lookup tables. The approach is advantageous 
for two reasons: first, the transformation to complete prefix 
tree avoids costly backtracking; second, although both level- 
compressed tries and generalized level-compressed tries can be 
efficiently implemented as a lookup table tree, generalized level- 
compressed tries are more general and therefore more flexi- 
ble than level-compressed tries. The stage 1 transformation is 
straightforward using techniques in [ l ]  or [5]. The stage 2 trans- 
formation, however, affects the lookup speed of prefixes directly 
and must be done carefully; this is the focus of our optimization 
problem. 

The problem can now be formalized as follows: given a com- 
plete prefix binary tree, what is the form of generalized level- 
compressed trie, so that when cast onto hierarchical memories, 
minimizes the average lookup time per prefix, defined in (l)? 
We will tackle this problem in the next two sections. 

As an example of generalized level-compressed tries, con- 
sider the set of prefixes in Figure 1 and the memory constraints: 
(S i ,T i )  = (4,1), (5’2,T2) = (4,2) and (5’3,T3) = (10015). 
A conJgurution, defined as a particular instance of generalized 
level-compressed trie complete with table assignments to mem- 
ory types, is shown in Figure 3. The configuration has two 
lookup tables: one of height 2 and size 4, another of height 1 
and size 2. They are assigned to memory type 1 and type 2 re- 
spectively. The corresponding set of parameters, a’s, b’s, c’s, 
are shown in Figure 3b. Notice the memory size constraints are 
satisfied. The cost of this configuration is 1.6. Using this con- 
figuration, we can rewrite (1) as the following: 

c = (P1  + P2 + P3 + P4 + p 5 ) T l  + (P4 + P 5 ) T 2  

= utiTi+wz‘Tz (2) 

where w1 = p l  + . . . + p5 is defined as the weight of the first 
table, and 202 = p4 + p5 is the weight of the second table. wi 
is basically the probability mass of subtree rooted at i. In short, 
we can write the cost function as a linear sum of scaled weights 
of the configured lookup tables. The terminology will become 
useful in the algorithm development sections. 

111. DYNAMIC PROGRAMMING ALGORITHM 
Having defined the optimization problem, we now present 

two algorithms that solve this problem. In this section, we 

develop a pseudo-polynomial algorithm that finds the optimal 
solution using dynamic programming. However, because our 
problem can be reduced to the 3D matching problem, it is NP- 
complete [SI. Thus in the next section, we present an approxi- 
mate solution that runs in polynomial time. 

Out optimal algorithm will bear much resemblance to the 
knapsack dynamic programming algorithm [ 101. We consider 
the problem with two memory types; a generalization to three 
memory types is straightforward and thus omitted. In section 
111-A, we discuss the development of this algorithm, and in sec- 
tion 111-B, detail its performance bound. 

A. Development of Algorithm 

Recall the optimization problem is: given a complete binary 
tree, what is the optimal generalized level-compression trans- 
formation performed on the tree that minimizes average prefix 
lookup time, expressed in (l)? The overview of our algorithm 
is the following. We first need to decide how many levels to 
compress from the root of the tree. Knowing the number of 
compression levels, we create a lookup table and decide if this 
table should go in type 1 (fast) or type 2 (slow) memory. If we 
put this table in type 1 memory, then there will be less type 1 
memory left for the descendent sub-trees at the bottom of this 
table. In either case, however, we must decide how to divvy up 
the remaining type 1 memory among the descendent sub-trees. 
The optimal solution is the one that yields the minimum average 
lookup time among all these decisions. 

Let TPl( i ,  S I )  be a recursive “tree-packing’’ cost function 
that returns the minimum cost of packing a tree rooted at node i 
into type 1 memory of size SI, and type 2 memory of size infi- 
nite. Rooted at i, a table of height h will have weight wi and size 
2h. We have two choices regarding this table. We can either put 
it in type 1 memory, resulting in cost wiT1 and s1 - 2h remain- 
ing type 1 memory space for the rest of the tree. Alternatively, 
we can put it in type 2 memory, resulting in cost wiT2 and si 
remaining type 1 memory space. TPl( i ,  sl) is the minimum of 
these two choices, for all possible height h. We can formalize 
this logic recursively as follows: 

T P i ( i , s l )  = min { min[zu;Tl +TP2(Lh,j ,  S I -  2h) ,  
l < h < H ;  

wiT2 +TP2(Lh, i ,  SI)]} (3) 

where Hi is the height of tree rooted at node i, Lh,i is the 
set of internal nodes at height h of tree rooted at node i, and 
TP2(L, S I )  is a sister “tree-packing” cost function that returns 
the minimum cost of packing a set of trees of root nodes {i E L }  
into type 1 memory of size S I .  To complete the analysis, we will 
also need the following base cases: 

TP1(. ,-)  = C O ,  TP2(., -) = ca 
TP2({} , . )  = 0 (4) 

The first base case says if the memory constraint is violated, i.e. 
a negative value as the second argument, then this configuration 
is not valid and cost is infinite. The second base case says if the 
first argument is the empty set, then the cost is zero. 

Note that in (3), TP1 calls TP2, a function with possibly mul- 
tiple node argument, Lh,i; we need to provide a mean to solve 
TP2. If the set of nodes L contains only one node, then by def- 
inition TP2 is the same as TPl.  If the set has more than one 
node, we first split up the set L into two disjoint subsets, L1 and 
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Lz.  We then have to answer two questions: i) given s1 available 
type 1 memory space, how do we best divvy up the memory 
space between the two subsets, ii) given the division of mein- 
ory space, how do we perform generalized level-compression 
on the two subsets of nodes to yield the overall optimal solution. 
The optimality principle states that a globally optimal solution 
must also be a locally optimal solution. So if we give s mem- 
ory space to set L1, to be locally optimal, optimal generalized 
level-compression must be performed on that set, returning a 
minimum cost of TP2(L1, s). That leaves s1 - s memory space 
for L2, with minimum cost of TPz(L2, s1 - s ) .  The globally 
optimal solution is the minimum of all locally optimal solutions, 
i.e. the minimum of all possible value of s. We can express this 
idea in the following equation: 

TP2(L,Sl)  = T P l ( i , S l )  if ILI = 1, L = {i} 
TP2(L,s1) = min {TP2(L1, s) +TP2(L2, SI - s ) )  

O < S < S l  

s.t. L1 n L2 = {}, L1 U Lz = L (5) 

There are many ways to split up the set L into subsets L1 and 
Lz.  For efficiency reason soon to be discussed, we will divide 
in such a way that all nodes in L1 has a common ancestor, all 
nodes in L2 has a common ancestor, and that the two ancestors 
of the two sets are distinct (if possible) and on the same level of 
the tree. 

A. 1 Dynamic Programming Table 

We argue that TPl (TP2) can be computed using a dynamic 
programming algorithm because its structure leads to overlap- 
ping subproblems. Each time the function TP1 (TPz) is called 
with argument (a, b ) ,  the algorithm can check the (a, b )  entry 
of a dynamic programming table to see if this subproblem has 
been solved before. If it has, the function returns the value from 
the table. If not, it solves it using (3) and (5 ) ,  inserts the value 
in the table and returns the value. This way, a given subproblem 
is solved only once. The reason for the method of dividing set 
L in (5) is now clear: it maximizes the number of overlapping 
subproblems. As an example, our complete prefix tree, repro- 
duced in Figure 4(a) with node labels, is used as input to this 
algorithm. Assuming (&,TI)  = ( 4 , l )  and ( 5 ' 2 ,  T z )  = (CO, 2 ) ,  
the resulting dynamic programming table (DP table), resulted 
from call to T P  to root node 4 as argument is shown in Figure 
4(b). Note the overlapping subproblem in this case: for node 
4, TP1(4,4) calls TPl(2,O) when h = 2. However, TPl(2,O) 
has been solved from previous call to TP1(3,2) when h = 1 
already. 

B. Analysis of Algorithm 

We now show the running time of the algorithm is 
O ( H n S l 2 ) ,  where H is the height of the complete binary tree, 
n is the number of nodes, and SI is the size of type 1 memory. 

Fig. 5. Counting Rows of DP table for Full Tree Case 

The algorithm runs in pseudo-polynomial time, i.e. although the 
complexity of the algorithm looks polynomial, its running time 
is actually exponential in the size of the input. 

Since this is a dynamic programming algorithm, the running 
time is the amount of time it takes to construct the DP table. 
Suppose we label the rows of the table using the first argument 
of the T P  functions, as illustrated in Figure 4(b). There are two 
types of row labels: single-node labels and multiple-node labels. 
The number of single-node labeled rows is simply the number 
of nodes, n. The number of columns is at most S I ,  and therefore 
the size of the half of the table with single-node labeled rows is 
O(nS1). To solve each entry in this half of the table, we use (3) 
and need at most Hi comparisons. Let the height of the complete 
prefix tree be H .  (Since IPv4 address is 32 bits long, height of 
the tree is at most 32.) Therefore the running time for this half 
of the table is O(HnS1).  

To account for the half of the table with multiple-node labeled 
rows, we need to bound the number of these rows. The tree that 
maximizes the number of multiple-node rows in a DP table for 
a fixed number of nodes is a full tree, since each call from (3) 
to its children nodes at height h will result in a multiple-node 
argument. We will count the number of multiple-node rows for 
full tree as follows. Let f(h) be a function that returns the num- 
ber of multiple-node labeled rows in DP table for a full tree of 
height h. Suppose node i is the root of that full tree, with chil- 
dren nodes j and I C ,  as shown in Figure 5. Since node j and k 
have height 1 less than i, they will each contribute f ( h  - 1 )  to 
the multiple-node labeled rows of DP table. In addition, as the 
call to TPl(i ,  SI) swings h from 1 to Hi - 1, each new call to 
TPz with root node argument Lh,i creates a new row. Therefore 
the total number of multiple-node labeled rows is: 

f(h) = 2 * f ( h -  l ) + h - 1  
f(1) = 0 (6) 

After rewriting (6), we get: 

h-1 

(7) f (h )  = 2h-' 3 
i=l 

Notice the summation in (7) converges for any h and can be 
bounded above by 2. Therefore the number of multiple-node 
labeled rows is 0 ( 2 h ) .  Since the tree is full, h = [log, nl. 
Therefore the number of multiple-node labeled rows for a full 
tree is 0 ( 2 ' " 9 2  ") = O(n) .  The size of this half of the table 
is again O(nS1), and each entry takes at most SI comparisons 
using (5). So the running time of a full tree, for the half of the 
table with multiple-node labeled rows, is O(nS12). Since this 
is the worst case, the general tree with n nodes will also have 
running time O(nS1') for this half of the table. Combining with 
the part of the table with single node labeled rows, the running 
time is O ( H ~ S ~ ' ) .  
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IV. LAGRANGE APPROXIMATION ALGORITHM 

For non-trivial type 1 memory sizes, the DP algorithm given 
above may be impractical. Thus, to improve on the executing 
time, we developed an approximate algorithm with bounded er- 
ror that runs in polynomial time. In section IV-A, we present 
a high-level description of the algorithm, and in section IV-B, 
discuss the performance bound of the algorithm. Proofs of cor- 
rectness of the Lagrange approximate algorithm is provided in 
the Appendix. 

A. Development of Algorithm 

Our algorithm is based on an application of Lagrange multi- 
pliers to discrete optimization problems with constraints, sim- 
ilarly done in [9] for bit allocation problems. Instead of solv- 
ing the original constrained table lookup problem, we solve 
the dual of the problem, which is unconstrained. The uncon- 
strained problem is in general much easier to solve, but it needs 
to be solved multiple times, each time with a different multi- 
plier value. The multiplier value is adjusted for each iteration 
until the constraint of the original problem is met. 

A. 1 Lagrange Multipliers for the Table Lookup Problem 

tion problem which we can recast as follows: 
We formulate our original problem as a constrained optimiza- 

m i n H ( b )  s.t. R(b) 5 S1 
b E B  

where B is the set of possible configurations, H ( b )  is the aver- 
age lookup time for a particular configuration b, R(b) is the total 
size of type 1 table sizes, and SI is the size of type 1 memory. 
The corresponding dual problem is: 

min H ( b )  + A R ( b )  (9) 

Because the dual is unconstrained, solving the dual is signifi- 
cantly easier than solving the original problem. However, there 
is an additional step; we must adjust the multiplier value X so 
that the constraint parameter, R(b), satisfies (8). 

In (9), the multiplier-rate constraint product, XR(b), repre- 
sents the penalty for placing a lookup table in type 1 memory, 
and is linearly proportional to the size of the table. For each 
A, we solve the dual problem, denoted as LP,  as follows. For 
each table rooted at node i and height h, we have two choices: 
i) place it in type 1 memory with cost plus penalty wiT1 + 2hX; 
or, ii) place it in type 2 memory with cost wiT2. The minimum 
of these two costs plus the recursive cost of the children nodes 
will be the cost of the function at node i for a particulx height. 
The cost of the function at node i will then be the minimum cost 
for all possible height, which we can express as follows: 

L P ~ ( ~ , x )  = min ( L P Z ( L ~ , ~ ,  A) + m i n [ w i ~ I +  ~ 2 ~ , w i ~ z ] }  (10) 

where LPl and LP2 are sister functions defined similarly to 
TP1 and TP2. Because we are optimizing with respect to X 
which does not change for each iteration, for LP2 with multiple- 
node argument, it is simply the sum of calls to LP1 of individual 
nodes: 

LP2(L,  A) = L P l  ( j ,  A) (11) 

b E B  

lSh6H;  

j € L  

Similar to TP2, we can alternatively solve it using recursion: 
LPZ(L,A) = LPl( i ,X)  i f I L l = 1 ,  L = i  
LPZ(L,A) = LP2(L1, A) + LPz(L2,  A) 

s.t. L~ n L~ = {}, L~ U L~ = L (12) 

W*) 
I 

Fig. 6.  Sum of Sizes of type 1 memory assigned Tables vs. Multiplier 

After solving the dual problem using (IO) and (12), we have an 
“optimal” configuration of tables from the prefix tree, denoted 
by b’, that minimizes the dual problem for a particular multiplier 
value. The sum of sizes of tables assigned to type 1 memory 
will be denoted R(b*). If R(b*) = SI, then the optimal solution 
to the dual is the same as the optimal solution to the original 
problem. If R(b*) < 4,  then the optimal solution to the dual 
becomes an approximate solution with a bounded error - in 
general, the closer R(b*) is to S I ,  the smaller the error is. 

The crux of the algorithm is to find X such that the mem- 
ory size constraint is met, i.e. R(b*) 5 SI. In general, for a 
multiplier problem, the constraint variable, R(b*) in our case, is 
inversely proportional to the multiplier A, as shown in Figure 6. 
Therefore, a simple strategy is to search for the appropriate mul- 
tiplier value using binary search on the real line to drive R(b*) 
towards SI. As shown in Figure 6, the rate constraint-multiplier 
function is a decreasing step function - a consequence of the 
fact that the optimization problem we have is discrete, not con- 
tinuous. For our implementation, we terminate the search for a 
new multiplier when we reach a horizontal portion of the curve, 
i.e. the new multiplier fails to yield a new rate R(b*). 

B. Analysis of Algorithm 

The actual running time of the algorithm depends on the data 
set. However, we can estimate the average running time of the 
algorithm by performing the following analysis. 

We first estimate the execution time to solve (9 for each mul- 
tiplier value A. This is again a dynamic programming problem, 
where the DP table has only one column. Each entry i of the DP 
table contains the value LPl(i, A) (LP2(L, A)). For single node 
arguments, computing an entry i in the table needs at most Hi 
operations using (lo). Let the height of the complete prefix tree 
be H .  (Again, for IPv4’s 32-bit address, H 5 32.) Since there 
are n single nodes, it takes O ( H n )  for each multiplier value for 
this half of the table. For multiplier node arguments, we know 
the number of entries is O ( n )  from analysis from previous sec- 
tion. In this case, computing each entry takes constant number 
of operations using (12). Therefore it takes O ( n )  for this half of 
the table. Combining the two halves, it takes O ( H n ) .  Let A be 
the number of iterations of binary search for multiplier values 
needed to be performed. Then the complexity is O ( H n A ) .  In 
experimental results, A is found to be around 10. Considering 
n is in the neighborhood of tens of thousands, and comparing 
this complexity to the optimal algorithm, we see a substantial 
improvement in execution time. 
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V. IMPLEMENTATION 

After we have obtained a configuration - a set of lookup tables 
and the mapping of tables to different memories - from either 
the optimal dynamic programming algorithm or the Lagrange 
approximate algorithm, we need to implement the lookup al- 
gorithm on the native platform. On architectures where cache 
movements can be explicitly made by native code, we can map 
tables directly to cache spaces via configuration's table assign- 
ments. On architectures where such cache control is not avail- 
able, then our cost model becomes an approximation, since 
cache movements are less predictable. However, note that if our 
optimization is done correctly, then the tables with the largest 
weights will be assigned to faster memory. Correspondingly, ta- 
bles with the largest weights will be most frequently accessed, 
and therefore will most likely be in faster memory. Therefore 
our cost model is still a good approximation. Nevertheless, we 
make the following minor adjustments to our algorithms to bet- 
ter approximate cache movements in such architectures. 

A .  LighUDark Entry of Lookup Tables 

In general, a lookup table of size 2h may have many entries 
that have zero or close to zero probability of being accessed. 
The prefixes that correspond to those entries are prefixes of er- 
roneously routed packets - packets with destination addresses 
that the router does not know where to forward with the current 
routing table. These packets are subsequently dropped. We de- 
note these entries in the lookup tables as dark entries. On the 
one hand, these entries must exist so that the router can recog- 
nize them when they appear. On the other, their occurrences are 
so infrequent that it would be unwise to include them in our opti- 
mality calculation. In this section, we discuss a simple modifica- 
tion to our developed algorithms to disregard these dark entries, 
and consider only their counterpart, light entries. 

A. 1 Reformulation of Algorithms 

Suppose we create a table of height h from node i, with 2h 
total entries. Because only the light entries are accessed fre- 
quently, the size of the table that gets moved around in hierar- 
chical memories will only be the number of the light entries, 
while the dark entries reside in the slowest memory. Let d ( i ,  h )  
denote the dimension, or number of the light entries of a height h 
table rooted at node i. In general, this number is upper bounded 
by 2h and lower bounded by 0. 

For our optimal dynamic programming algorithm, when we 
are considering whether to place a table in type 1 or 2 memory, 
the size of the table in question will be d ( i ,  h) instead of 2h. The 
modified equation will be the following: 

wiT2 + TPz(Lh,i ,  8 1 )  1 } (13) 

Similarly, for our Lagrange approximation algorithm, the 
penalty for placing a table in type 1 memory is no longer X2h, 
but instead Xd(i,  h). The following modified equation is the re- 
sult. 

I l l  interface # 

[ 0 1 nbits I offset 
26 

Fig. 7. Array Element Layout 

The questions that remains are: i) how to find d ( i ,  h) efficiently; 
and, ii) does the calculation of d ( i ,  h )  increase the order of com- 
plexity of the algorithms. We will answer these questions next. 

A.2 Tabulation of Light Entries 
We will again find the number of light entries of tree rooted 

at i and height h, d ( i ,  h ) ,  using a dynamic programming algo- 
rithm. Let the left branch of node i represent the path to all pre- 
fixes with 0 as left-most bit, and right branch represent the path 
to prefixes with 1 as left-most bit. For the base case when h = 1, 
the table has 2 total entries. We first check if the left branch has 
probability greater than zero. If so, then this entry is light. Sim- 
ilarly, we check the right branch. d ( i ,  1) is the sum of these two 
checks. If h > 1, then we solve this recursively. If there is a left 
child node, j ~ ,  then we recursively call d ( j L ,  h - 1) to find the 
number of light entries for the left side. If there is no left child 
node, i.e. it is a leaf, then we check if the leaf has probability 
greater than zero. If so, we scale it by 2h-' to account for the 
prefix expansion of height h. A similar procedure is done for 
the right side. The total number of light entries is the sum of 
the left and the right side. Let l(c) be the indicator function that 
returns 1 if clause c is true, and 0 otherwise. We can then use 
the following equation to express this analysis: 

l ( P L  > 0) + l ( P R  > 0 )  
d ( j L ,  h - 1) + d ( j R ,  h - 1) 
d ( j L ,  h - 1) f l ( p R  > 0) * Zh-' 
l ( p L  > 0) * Zh-' + d ( j R ,  h - 1) 
1 ( p L  > 0) * zh-' + 1 ( P R  > 0 )  * z ~ - '  

i f h  = 1 
i f h  > 1 , 3 j ~ , j ~  
if h > 1 , 3 j t ,  P ~ R  
if h > 1, g j L ,  3 j ~  
i fh  > 1. g j L , j R  

d (2 ,  h)  = { (15) 
where j,, j~ are the left and right child node of node i, and 

p ~ ,  p~ are the left and right branch probability of node i. 
We now show that the tabulation of d ( i ,  h) does not increase 

the order of complexity of our algorithms. Each time the value 
d ( i ,  h) is needed, the function first checks if the value is in the 
(i, h) entry of the dynamic programming table. If so, it simply 
returns the value. If not, it tabulates it using (15), stores it in 
the DP table, and returns it. We assume every entry of the DP 
table maybe used, so the complexity is again the time required 
to construct the entire DP table. The size of the DP table is 
the number of nodes by the maximum height H ,  which is again 
32 for IPv4 32-bit address. The time required to tabulate each 
entry of the table, using (15), is a single addition. Therefore the 
complexity is O ( H n ) .  This clearly does not increase the order 
of complexity of our algorithms. 

B. Encoding of Table Entries 

We now describe the mapping scheme of lookup tables to 
memory, and the encoding scheme we use for each entry of the 
lookup tables. We first define an array p ,  large enough to con- 
tain all the elements in all the tables. For all the tables that are 
assigned to first level memory, we map the tables onto the array 
in breadth-first order, starting at the root of the tree. This will 
ensure that all first level assigned tables are in contiguous mem- 
ory, and that each first level assigned mother-child table pairs are 
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# d e f i n e  match(A) 
n b i t s  = s t a r t N b i t s ;  
pa = sp[OI; 
w h i l e  ( t r u e )  { 

code = * ( p a  + ( A  >> ( 3 2  - n b i t s ) ) ) ;  
i f  (code < 0 )  

A <<= n b i t s ;  
n b i t s  = code >> 2 6 ;  
pa = & P L O ]  + (code & ((1<<26) - 1)); 

break; 

) 
index = code L (1<<31) ; 

algorithm 
S & V, k=7 
S & V, k=6 

Fig. 8. main loop in C code 

memory i.i.d. prefix scaled prefix 
84.4 kB 1.020 mil. - 
86.3 kB 1.156mil. - 

closer together than other first level assigned tables. We then do 
the same procedure for the second level assigned tables starting 
at the root of the tree, and then the third level assigned tables. 

Each element of the tables contains the following informa- 
tion. As shown in Figure 7, if the associated index points to a 
leaf of the tree, then its most significant bit (MSB) is 1, and the 
next 3 1 bits will contain the interface number. If the associated 
index points to another table, i.e. there is at least another table 
before we reach a leaf, then MSB is 0. The next 5 bits encodes 
the number of bits needed to index the next table, or simply, the 
height of the next table. The last 26 bits contains the offset in 
memory location of the next table relative to the first element of 
the array p .  Given this encoding, we can perform a route lookup 
with a simple coded loop that parses an address against our table 
data structures. Prototype code to do so is shown in Figure 8. 

S & V, k=5 
S & V, k=4 
S & V, k=3 
S &V,k=2 
Lagrange 

VI. RESULTS 
In order to have meaningful comparisons for the obtained re- 

sults, we compare our algorithm to the one in [5], as this is the 
other contemporary work that carries out deliberate optimiza- 
tion of lookup table designs. We begin with a brief overview of 
their algorithm. 

A. Controlled Prejix Expansion 
In [5], the authors present a series of techniques for a range 

of data structures; one of the data structures is optimal trie us- 
ing varying strides - this is equivalent to our generalized level- 
compressed trie. The particular technique used for this structure 
is controlled prejix expansion. Its objective is to find a set of 
tables with minimum total size, such that no single prefix will 
require more than k lookups. k is selected by the designer to 
yield a worst case lookup time of kTz, where TZ is the type 2 
memory access time, with the assumption that all the tables will 
fit in the type 2 memory space. The following “minimize size” 
function, called initially on the root node i, performs this opti- 
mization: 

r 1 

93.6 kB 1.259 mil. - 
115.0 kB 1.399 mil. - 
202.5 kB 1.626 mil. 1.695 mil. 
748.5kB - - 

2.202/1.221 MB 1.770 mil. 2.198 mil. 

(16) 
Each function call to a node i requires at most Hi operations. 

Again, let the height of the complete prefix tree be H ,  which is 
again 32 for IPv4 address. Since the function is called on every 
node, the order of complexity is O ( n  * H )  = O(Hn) .  If the 
total size of table does not fit in the secondary cache, however, k 
needs to be increased and the optimization be performed again. 
Let B be the number of times the optimization needs to be re- 

performed until the total size of tables fit in type 2 memory. The 
complexity is then O ( H n B ) .  

B. Comparison 

We first note that the order of complexity of the Srinivasan & 
Varghese algorithm, O ( H n B ) ,  is comparable to the complexity 
of our Lagrange approximate algorithm, O(HnA) .  Experiment 
shows that B for minimum size algorithm is about 3, while A 
for Lagrange algorithm is about 10. To compare performance 
between the S&V algorithm and the Lagrange algorithm, we 
use the two algorithms to generate sets of lookup tables sepa- 
rately. Our testing environment is a Pentium I1 266MHz proces- 
sor, with L1 data cache 16kF3 and L2 cache 512kB. We assume 
L1 cache access speed is 1 clock cycle, L2 cache is 3 clock cy- 
cles, and third level memory is 10 clock cycles. We first used 
the “PAIX’ routing table as input, down-loaded from Merit Inc 
[13] on 6/19/98. It is a small size routing table with 2638 pre- 
fixes. Because we were unable to collect real statistics from a 
trace at a router, we assume two possible probability distribu- 
tions of prefixes: i) each prefix is independent and identically 
distributed; and, ii) each prefix is exponentially scaled accord- 
ing to its length - for example, prefix of length 8 is twice as 
likely as prefix of length 9. 

For each above mentioned probability distribution, we gener- 
ate 10 million IP addresses and store them to a file on the local 
disk. We decode each of the 10 million addresses in the follow- 
ing manner: first extract the 32 bit quantity (IP address) from 
the file, then perform the sequential table lookups described by 
the S&V algorithm (Lagrange algorithm). We decode the 10 
million IP address file 20 times, record the execution time of 
the entire decoding process, and find the average lookup time 
per address. Note that the average lookup time obtained in this 
manner includes the local disk access time, execution time of 
the table lookup operations, and the hierarchical memory access 
time. 

In Figure 9, we see the results of our Lagrange algorithm and 
the minimum size algorithm of [SI, for various values of k’s. 
We first note that IC = 3 case is the chosen implementation for 
minimum size algorithm, since k = 2 case is too large to fit 
in the secondary cache. From the table, for the i.i.d. prefix 
case, we see a 8.9% increase in speed of our algorithm over 
minimum size algorithm of k = 3. For the scaled prefix case, we 
see a 29.7% increase in speed. We also compared performance 
for a much larger “AADS” routing table, with 23,068 prefixes. 
Again, without available statistics, we assume the prefixes are 
distributed in the above mentioned two cases. The comparative 
results are shown in Figure 10. Notice that in this case, k = 4 
is the chosen implementation since this is the smallest value of 
IC such that the set of tables fit in L2 cache. For the i.i.d. prefix 
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algorithm 
S & V, k=7 
S & V, k=6 
S & V, k=5 
S & V, k=4 
S & V, k=3 
Lagrange 

Fig. 10. Performance Comparison for AADS: speed in lookups per second 

case, we see a 25.4% increase in speed of our algorithm over 
minimum size algorithm of 5 = 4. For the scaled prefix case, 
we see a 11.2% improvements. 

VII. CONCLUSION 

In this paper, we take a theoretical approach to solve the rout- 
ing table design problem to minimize the average lookup time 
per prefix. We develop an optimal and an approximate algorithm 
that solve the optimization problem based on our cost model. 
The complexity of our approximate algorithm is comparable to 
the ones in the literature. Experimental results show our ap- 
proximate algorithm has visible improvements over an existing 
algorithm in the literature, for both the i.i.d. prefix distribution 
case and the scaled prefix distribution case. 

In this work, we consider only lookup tables as a mean to de- 
code prefixes of IP addresses. There are other methods we plan 
to investigate in the future, such as logical operations ( i f  state- 
ments). A lookup algorithm using a hybrid of logical operations 
and lookup tables may be more optimal. 

APPENDIX 
We now prove our approximation algorithm terminates in a bounded error 

solution. Our proofs are similar to ones stated in [9], and are included in here 
for completeness. We will begin with the duality proof of Lagrange multipliers. 

A. Theorem 1 

Let our design problem be: 

minH(b) s.t. R ( b )  5 S1 (17) 
b E B  

where b is a configuration in all possible configurations in set B, H ( b )  is the 
associated cost of using configuration b, R( b)  is the total size of lookup tables 
assigned to type 1 memory, and S is the available size of type 1 memory. Define 
the dual problem to be: 

min  H ( b )  + XR(b)  (18) 
b E B  

For every multiplier X 2 0, the corresponding optimal solution b* ( A )  to (18), 
is also optimal solution to (17) with S1 = R(b* (A)). 

A.l Proof 1 
Suppose b * ( X )  = b’ is the optimal solution to (18) for a given A. That 

means: 
(19) 

In particular, the above equation is also true for a subset of B,  namely B1 C_ B 
such that B1 = { b E B I R( b)  5 R( b’ )}. Therefore: 

H ( b * )  + X R ( b * )  5 H ( b )  + XR(b)  Vb E B 

X [ R ( b * )  - R ( b ) ]  5 H ( b )  - H ( b * )  
0 5 H ( b )  - H ( b ’ )  Vb E B1 (20) 

Therefore b’ is also the optimal solution to (17) with SI = R ( b * ) .  0 

multiplier A. 

B. Lemma2 

Suppose b; = b’(X1) is optimal solution to (18) for multiplier value XI, 
and b; = b * ( X z )  is optimal solution to (18) for multiplier value XZ. Suppose 
further that A 1  2 Xz.  Then R ( b ; )  5 R ( b ; ) .  

We now prove the constraint parameter, R(b* ), is inverse proportional to the 

B.l  Proof 2 
By optimality of b; and b; for their respective multipliers: 

H ( b ; )  + X l R ( b ; )  5 H ( b ; )  + X I R ( b $ )  (21) 
H(b; l )  + X 2 R ( b ; )  5 H ( b ; )  + X z R ( b ; )  (22) 

If we add the two equations and collect terms, we get: 

( X I  - X z ) R ( b ; )  5 ( X I  - X z ) R ( b ; )  (23) 

Since XI 2 A2 by assumption, therefore R ( b ; )  5 R ( b ; ) .  0 

bounded error. 

C. Lenrnia 3 
Suppose b; = b * ( X 1 )  is optimal solution to (18) such that R ( b ; )  < SI. 

Suppose b; = b*(X2)  is optimal solution to (18) such that R ( b ; )  > SI. Sup- 
pose further that b‘ is the true optimal solution to (17). Then the approximation 
error of using b; as solution to (17) is: 

Finally, we prove that our approximate solution from solving the dual has a 

I H ( b ; )  - H ( b * ) l  5 IH(b7)  - H(b;)l (24) 

C.1 Proof 3 
Since b; is optimal to (18) for XZ: 

H ( b ; )  + X z R ( b ; )  5 H ( b * )  + X z R ( b * )  5 H ( b * )  + X z S i  (25) 

The last step is true since R ( b * )  5 SI. Rewriting the above: 

H ( b ; )  - H ( b * )  5 Xz [ S I  - R ( b ; ) ]  5 0 (26) 

The last step follows since by assumption SI 5 R ( b ; ) .  Lemma 3 follows from 
the last equation. 0 
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