
Optimal Routing Table Design for IP Address Lookups Under Memory Constraints

Gene Cheung and Steve McCanne
Department of EECS

University of California, Berkeley
Berkeley, CA 94720

Absrract-The design of lookup tables for fast IP address lookup algo-
rithms using a general processor is formalized as an optimization prob-
lem. A cost model that models the access times and sizes of the hierarchical
memory structure of the processor is formulated. Two algorithms, using
dynamic programming and Lagrange multipliers, solve the optimization
problem optimally and approximately respectively. Experimental results
show our algorithms have visible improvements over existing ones in the
literature.

I. INTRODUCTION

In the Internet Protocol (IP) architecture, hosts communicate
with each other by exchanging packetized messages or packets
through a fabric of interconnected forwarding elements called
routers. Each router consists of input interfaces, output inter-
faces, a forwarding engine, and a routing table. When an IP
packet arrives on an input interface, the forwarding engine per-
forms a route lookup - it locates an entry from the routing ta-
ble based on the contents of the packet’s IP header (typically the
destination address) and uses this entry to determine the output
interface through which to forward the packet toward its ulti-
mate destination.

If forwarding performance within a router were infinitely fast,
then the overall performance of the network would be deter-
mined solely by the physical constraints - i.e. bit rate, delay,
and error rate - of the underlying communication links. How-
ever, in practice, building high-speed routers is a hard problem
and as physical-layer link speeds continue to increase, the for-
warding path of the router can easily become the bottleneck in
network performance. This is especially true for routers situated
deep within the backbone of the network, where very high traffic
volumes require very high-speed processing. Thus, to optimize
network performance, we must not only optimize the speed of
the physical-layer transmission media but also the forwarding
performance of the routers.

While the forwarding path in a high-speed router consists of
many important stages, each posing a potential bottleneck, the
route lookup stage, in particular, poses a unique challenge be-
cause its performance is sensitive to the size of the routing ta-
ble. And as IP networks like the Internet scale to very large
and interesting sizes, the routing tables in the backbone routers
can become large and thus pose a serious performance problem.
That is, as the number of potential destinations known to a router
grows, the complexity of managing this state and of forwarding
packets against this state increases.

Fortunately, the Internet design anticipates this scaling prob-
lem and consequently imposes hierarchy onto the IP address
space. Because of this, every router need not have a routing table
entry for every possible network destination. Instead, address-
space hierarchy can be exploited to achieve address aggregation
whereby a large collection of hosts can be addressed as a sin-

gle entity via a variable length network address [3]. For exam-
ple, all of the hosts at U.C. Berkeley can be referred to sim-
ply as 128.32116 because they all have the same 16-bit prefix of
“128.32”. As a result, routers have much smaller routing tables
and the problem of searching this table for a given route on a
per-packet basis is simplified.

While on the one hand, a smaller routing table theoretically
simplifies the problem of searching for a given route, on the
other, the variable width of network addresses adds complexity
to the lookup algorithm. Though the lookup rule is relatively
straightforward - the route that matches the longest prefix of
the destination address is chosen - very fast algorithms that
implement this rule are not at all obvious nor are they straight-
forward to implement. In light of this, a growing body of work
has addressed the problem of fast IP route lookup [11, [2], [4],
[5], [6], [7]. [4] is an early well-known implementation of ad-
dress lookup, which uses PATRICIA Tree [l 11. [6] discussed
a hardware implementation of address lookup. [7] proposed
a novel adaptation of binary search for address lookup. The
other papers discussed implementations of address lookup that
use lookup tables - this is the approach we pursue in this paper.

Conceptually, a route lookup can be cast as a table lookup,
where a single table is indexed by the destination address to
yield the routing entry. Since a lookup operation takes constant
time, this simple algorithm has complexity O(1). However, the
sheer size of the IP address space precludes a single table ap-
proach since such large memories are impractical, expensive and
slow. Alternatively, we can represent the routing table as a bi-
nary tree and decode the address one bit at a time. But this is
inefficient as it requires iterative, sequential processing of the
address bits.

Recent work combines the tree representation with table-
driven lookups to enhance performance [l], [2]. The idea is
to compute a representation of the tree as a set of tables where
forwarding is accomplished by traversing the routing table tree
via multiple table lookups. The challenge then is to devise an
algorithm when given a set of routes, produces a “good” set of
tables. If the tables are not chosen intelligently, performance
can suffer - when tables are too large, they cannot fit into small,
fast, memories, and when too small, the algorithm must perform
extra lookups.

To choose the tables layouts intelligently, we have developed
a model for table-driven route lookup and cast the table design
problem as an optimization within this model. Suppose we have
three types of hierarchical memories, with memory size and ac-
cess speed (SI, TI), (S2, T2) and (S3, T3) respectively. Suppose
each prefix j has an associated probability p j . Assuming inde-
pendent IP packet arrival, the average prefix retrieval time is:

C = C p j (a j T 1 + bjT2 + cjT3) (1)
j

0-7803-541 7-61991$10.00 0 1 999 IEEE. 1437

Prefix 1 Interface number I Probability
111 I 5 I .2

01
00 :lo I .3 I :

Fig. 1. Example of a set of Prefixes
ii) path-compressed Uie

i S
i) binary tree

n

where aj is the number of type 1 memory access needed to re-
trieve prefix j, bj is the number of type 2 memory access needed,
cj is the number of type 3 memory access needed. aj is basi-
cally the number of lookup tables residing in type l memory
used in the retrieval process of prefix j. (1) is correct only if the
tables assigned to each type of memory do not exceed the ca-
pacity of that type of memory. The problem is how to structure
a set of tables that minimizes (1) while satisfying the memory
size constraints.

Although previous works on fast IP route lookup propose ele-
gant designs for their table lookup schemes, no approach me-
thodically attempts to design an optimal strategy along these
lines [l], [2]. A notable exception is more recent work by Srini-
vasan and Varghese [5], but this work optimizes the worst case
rather than the average case.

In this paper, we present a general framework for generat-
ing optimal tables for table-driven IP routing. We first present
a brief introduction to the data structures used in IP address
lookups. We then present a pseudo-polynomial time algorithm
that gives the optimal table design given our model. One can
prove that finding the optimal set of tables is an NP-complete
problem [8], and thus we devised an approximate algorithm that
runs in polynomial time and provides performance within a con-
stant bound of the optimal. Next, we present performance re-
sults of our algorithm. Finally, we discuss directions for future
work and conclude.

11. OVERVIEW OF DATA STRUCTURE

Many efforts have been made in an attempt to speed up IP
route lookups, and the key distinguishing factor across these
various approaches is the data structure employed to represent
the routing table. In this section, we give a brief introduction
to these structures, and describe in depth the structure we use
- generalized level-compressed trie. Based on our generalized
data structure, we then formalize our optimization problem to
provide the context for the algorithms presented in later sections.

A. Binary Tree, R e , PATRICIA Tree, and Complete Prefir Tree

A Binary tree is one of the simplest representation of a set of
prefixes. Each prefix is represented by a node in the tree, usually
a leaf, and the path from the root to that node reveals the asso-
ciated bit pattern of the prefix. For example, Figure 1 shows a
set of prefixes and their associated interface numbers and prob-
abilities, and Figure 2(i) shows the binary tree representation of
this set. Each node of the tree has at most two children, hence
binary. A trie [121 is a more general data structure, where each
node can have any number of children. A binary tree then, also
called binary trie, is a special case of trie. The implementation

iii) complete prefix tree iv) level-compressed tne

Fig. 2. Example of Prefix Data Structures

of binary tree involves bit-by-bit manipulation, which is ineffi-
cient for long prefixes.

A path-compressed trie is a trie where certain sequences
of input bits may be skipped over before arriving at the next
node. Compression is evident when a long sequence of one-
child nodes needs to be traversed before arriving at a sub-trie
of prefixes. Figure 2(ii), for instance, shows a path-compressed
trie version of the same set of prefixes. Path-compressed binary
trie, also known as PATRICIA Tree [111, is used by many early
implementations of IP route lookups [4] and provides reason-
able performance. A problem with path compression is that if
the skipped bits do not match the assumed path, then backtrack-
ing is required to retreat back to the pre-path-compressed node,
thereby incurring computational overhead. To eliminate back-
tracking, a binary tree can be first converted to a complete prefix
tree [l], which is a tree where each node has either two chil-
dren or none. Intuitively, a complete prefix tree contains a set of
prefixes that are prefi-free, i.e. no prefix is a prefix of another.
When traversing a complete prefix tree to retrieve a prefix, only
a leaf terminates a search, and so no backtracking is needed. A
binary tree of prefixes can always be converted to a complete
prefix tree using techniques in [l] or [5]. For example, Figure
2(iii) shows the complete prefix tree representation of our set of
prefixes.

A level-compressed trie [2] is a trie in which each complete
subtree of height h is collapsed into a subtree of height 1 with 2h
children. For example, starting at node i, if there are exactly 2h
descendent nodes at level h, then all the intermediate nodes from
level 1 to level h - 1 can be replaced by 2h branches originated
directly from node i. Figure 2(iv) shows a level-compressed trie
version of the set of prefixes from the complete prefix tree in
Figure 2(iii). A level-compressed trie can be implemented using
lookup tables, where for each table, a length h bit sequence is
extracted and used as index. h is called the stride of the trie.

B. Generalized Level-Compressed Trie

Intuitively, a section of the tree needs not be full to be level-
compressed. For example, a set of prefixes {00,01,1} can be
expanded to {00,01,10,11} with prefixes 10 and 11 contain-
ing the same information as the original prefix 1. Then a trie
of stride 2 can be used, implemented as a 2-bit indexed lookup
table. This technique is called prejix expansion in [5]. It is also

1438

10 0 0

00 0 0

b) memory assignment parameters

T2 01 0 0

4 5
a) generalized level-compressed m e

Fig. 3. Example of a Configuration

used as a part of the data structure introduced in [l], although
[13 took a more implementational approach instead and did not
formulate it as an optimization problem. This notion of gener-
alized level compression provides an extra degree of freedom in
creating lookup tables.

For our lookup table data structure, we make the follow-
ing design decisions: Given a set of prefixes represented by
a binary tree, stuge 1 transforms it to a complete prefix tree.
Then from the complete prefix tree, stage 2 transforms it to
a generalized level-compressed trie structure, which we im-
plement using lookup tables. The approach is advantageous
for two reasons: first, the transformation to complete prefix
tree avoids costly backtracking; second, although both level-
compressed tries and generalized level-compressed tries can be
efficiently implemented as a lookup table tree, generalized level-
compressed tries are more general and therefore more flexi-
ble than level-compressed tries. The stage 1 transformation is
straightforward using techniques in [l] or [5]. The stage 2 trans-
formation, however, affects the lookup speed of prefixes directly
and must be done carefully; this is the focus of our optimization
problem.

The problem can now be formalized as follows: given a com-
plete prefix binary tree, what is the form of generalized level-
compressed trie, so that when cast onto hierarchical memories,
minimizes the average lookup time per prefix, defined in (l)?
We will tackle this problem in the next two sections.

As an example of generalized level-compressed tries, con-
sider the set of prefixes in Figure 1 and the memory constraints:
(S i ,T i) = (4,1), (5’2,T2) = (4,2) and (5’3,T3) = (10015).
A conJgurution, defined as a particular instance of generalized
level-compressed trie complete with table assignments to mem-
ory types, is shown in Figure 3. The configuration has two
lookup tables: one of height 2 and size 4, another of height 1
and size 2. They are assigned to memory type 1 and type 2 re-
spectively. The corresponding set of parameters, a’s, b’s, c’s,
are shown in Figure 3b. Notice the memory size constraints are
satisfied. The cost of this configuration is 1.6. Using this con-
figuration, we can rewrite (1) as the following:

c = (P1 + P2 + P3 + P4 + p 5) T l + (P4 + P 5) T 2

= utiTi+wz‘Tz (2)

where w1 = p l + . . . + p5 is defined as the weight of the first
table, and 202 = p4 + p5 is the weight of the second table. wi
is basically the probability mass of subtree rooted at i. In short,
we can write the cost function as a linear sum of scaled weights
of the configured lookup tables. The terminology will become
useful in the algorithm development sections.

111. DYNAMIC PROGRAMMING ALGORITHM
Having defined the optimization problem, we now present

two algorithms that solve this problem. In this section, we

develop a pseudo-polynomial algorithm that finds the optimal
solution using dynamic programming. However, because our
problem can be reduced to the 3D matching problem, it is NP-
complete [SI. Thus in the next section, we present an approxi-
mate solution that runs in polynomial time.

Out optimal algorithm will bear much resemblance to the
knapsack dynamic programming algorithm [101. We consider
the problem with two memory types; a generalization to three
memory types is straightforward and thus omitted. In section
111-A, we discuss the development of this algorithm, and in sec-
tion 111-B, detail its performance bound.

A. Development of Algorithm

Recall the optimization problem is: given a complete binary
tree, what is the optimal generalized level-compression trans-
formation performed on the tree that minimizes average prefix
lookup time, expressed in (l)? The overview of our algorithm
is the following. We first need to decide how many levels to
compress from the root of the tree. Knowing the number of
compression levels, we create a lookup table and decide if this
table should go in type 1 (fast) or type 2 (slow) memory. If we
put this table in type 1 memory, then there will be less type 1
memory left for the descendent sub-trees at the bottom of this
table. In either case, however, we must decide how to divvy up
the remaining type 1 memory among the descendent sub-trees.
The optimal solution is the one that yields the minimum average
lookup time among all these decisions.

Let TPl(i , S I) be a recursive “tree-packing’’ cost function
that returns the minimum cost of packing a tree rooted at node i
into type 1 memory of size SI, and type 2 memory of size infi-
nite. Rooted at i, a table of height h will have weight wi and size
2h. We have two choices regarding this table. We can either put
it in type 1 memory, resulting in cost wiT1 and s1 - 2h remain-
ing type 1 memory space for the rest of the tree. Alternatively,
we can put it in type 2 memory, resulting in cost wiT2 and si
remaining type 1 memory space. TPl(i , sl) is the minimum of
these two choices, for all possible height h. We can formalize
this logic recursively as follows:

T P i (i , s l) = min { min[zu;Tl +TP2(Lh,j , S I - 2h) ,
l < h < H ;

wiT2 +TP2(Lh, i , SI)]} (3)

where Hi is the height of tree rooted at node i, Lh,i is the
set of internal nodes at height h of tree rooted at node i, and
TP2(L, S I) is a sister “tree-packing” cost function that returns
the minimum cost of packing a set of trees of root nodes {i E L }
into type 1 memory of size S I . To complete the analysis, we will
also need the following base cases:

TP1(. ,-) = C O , TP2(., -) = ca
TP2({} , .) = 0 (4)

The first base case says if the memory constraint is violated, i.e.
a negative value as the second argument, then this configuration
is not valid and cost is infinite. The second base case says if the
first argument is the empty set, then the cost is zero.

Note that in (3), TP1 calls TP2, a function with possibly mul-
tiple node argument, Lh,i; we need to provide a mean to solve
TP2. If the set of nodes L contains only one node, then by def-
inition TP2 is the same as TPl. If the set has more than one
node, we first split up the set L into two disjoint subsets, L1 and

1439

a) node labeling on complete pre-
fix tree

Tpi(4, .)
TPi(1, .)

1.6
0.8 0.4 0.4

T P i (3 , .)
TPi(2, .)

TP2({1,3},.)

Fig. 4. Example of Dynamic Programming

1.2 1.2 0.6
0.6 0.3 0.3
2 1.6 1.4

Lz. We then have to answer two questions: i) given s1 available
type 1 memory space, how do we best divvy up the memory
space between the two subsets, ii) given the division of mein-
ory space, how do we perform generalized level-compression
on the two subsets of nodes to yield the overall optimal solution.
The optimality principle states that a globally optimal solution
must also be a locally optimal solution. So if we give s mem-
ory space to set L1, to be locally optimal, optimal generalized
level-compression must be performed on that set, returning a
minimum cost of TP2(L1, s). That leaves s1 - s memory space
for L2, with minimum cost of TPz(L2, s1 - s) . The globally
optimal solution is the minimum of all locally optimal solutions,
i.e. the minimum of all possible value of s. We can express this
idea in the following equation:

TP2(L,Sl) = T P l (i , S l) if ILI = 1, L = {i}
TP2(L,s1) = min {TP2(L1, s) +TP2(L2, SI - s))

O < S < S l

s.t. L1 n L2 = {}, L1 U Lz = L (5)

There are many ways to split up the set L into subsets L1 and
Lz. For efficiency reason soon to be discussed, we will divide
in such a way that all nodes in L1 has a common ancestor, all
nodes in L2 has a common ancestor, and that the two ancestors
of the two sets are distinct (if possible) and on the same level of
the tree.

A. 1 Dynamic Programming Table

We argue that TPl (TP2) can be computed using a dynamic
programming algorithm because its structure leads to overlap-
ping subproblems. Each time the function TP1 (TPz) is called
with argument (a, b) , the algorithm can check the (a, b) entry
of a dynamic programming table to see if this subproblem has
been solved before. If it has, the function returns the value from
the table. If not, it solves it using (3) and (5) , inserts the value
in the table and returns the value. This way, a given subproblem
is solved only once. The reason for the method of dividing set
L in (5) is now clear: it maximizes the number of overlapping
subproblems. As an example, our complete prefix tree, repro-
duced in Figure 4(a) with node labels, is used as input to this
algorithm. Assuming (&,TI) = (4 , l) and (5 ' 2 , T z) = (CO, 2) ,
the resulting dynamic programming table (DP table), resulted
from call to T P to root node 4 as argument is shown in Figure
4(b). Note the overlapping subproblem in this case: for node
4, TP1(4,4) calls TPl(2,O) when h = 2. However, TPl(2,O)
has been solved from previous call to TP1(3,2) when h = 1
already.

B. Analysis of Algorithm

We now show the running time of the algorithm is
O (H n S l 2) , where H is the height of the complete binary tree,
n is the number of nodes, and SI is the size of type 1 memory.

Fig. 5. Counting Rows of DP table for Full Tree Case

The algorithm runs in pseudo-polynomial time, i.e. although the
complexity of the algorithm looks polynomial, its running time
is actually exponential in the size of the input.

Since this is a dynamic programming algorithm, the running
time is the amount of time it takes to construct the DP table.
Suppose we label the rows of the table using the first argument
of the T P functions, as illustrated in Figure 4(b). There are two
types of row labels: single-node labels and multiple-node labels.
The number of single-node labeled rows is simply the number
of nodes, n. The number of columns is at most S I , and therefore
the size of the half of the table with single-node labeled rows is
O(nS1). To solve each entry in this half of the table, we use (3)
and need at most Hi comparisons. Let the height of the complete
prefix tree be H . (Since IPv4 address is 32 bits long, height of
the tree is at most 32.) Therefore the running time for this half
of the table is O(HnS1).

To account for the half of the table with multiple-node labeled
rows, we need to bound the number of these rows. The tree that
maximizes the number of multiple-node rows in a DP table for
a fixed number of nodes is a full tree, since each call from (3)
to its children nodes at height h will result in a multiple-node
argument. We will count the number of multiple-node rows for
full tree as follows. Let f(h) be a function that returns the num-
ber of multiple-node labeled rows in DP table for a full tree of
height h. Suppose node i is the root of that full tree, with chil-
dren nodes j and I C , as shown in Figure 5. Since node j and k
have height 1 less than i, they will each contribute f (h - 1) to
the multiple-node labeled rows of DP table. In addition, as the
call to TPl(i , SI) swings h from 1 to Hi - 1, each new call to
TPz with root node argument Lh,i creates a new row. Therefore
the total number of multiple-node labeled rows is:

f(h) = 2 * f (h - l) + h - 1
f(1) = 0 (6)

After rewriting (6), we get:

h-1

(7) f (h) = 2h-' 3
i=l

Notice the summation in (7) converges for any h and can be
bounded above by 2. Therefore the number of multiple-node
labeled rows is 0 (2 h) . Since the tree is full, h = [log, nl.
Therefore the number of multiple-node labeled rows for a full
tree is 0 (2 ' " 9 2 ") = O(n) . The size of this half of the table
is again O(nS1), and each entry takes at most SI comparisons
using (5). So the running time of a full tree, for the half of the
table with multiple-node labeled rows, is O(nS12). Since this
is the worst case, the general tree with n nodes will also have
running time O(nS1') for this half of the table. Combining with
the part of the table with single node labeled rows, the running
time is O (H ~ S ~ ') .

1440

IV. LAGRANGE APPROXIMATION ALGORITHM

For non-trivial type 1 memory sizes, the DP algorithm given
above may be impractical. Thus, to improve on the executing
time, we developed an approximate algorithm with bounded er-
ror that runs in polynomial time. In section IV-A, we present
a high-level description of the algorithm, and in section IV-B,
discuss the performance bound of the algorithm. Proofs of cor-
rectness of the Lagrange approximate algorithm is provided in
the Appendix.

A. Development of Algorithm

Our algorithm is based on an application of Lagrange multi-
pliers to discrete optimization problems with constraints, sim-
ilarly done in [9] for bit allocation problems. Instead of solv-
ing the original constrained table lookup problem, we solve
the dual of the problem, which is unconstrained. The uncon-
strained problem is in general much easier to solve, but it needs
to be solved multiple times, each time with a different multi-
plier value. The multiplier value is adjusted for each iteration
until the constraint of the original problem is met.

A. 1 Lagrange Multipliers for the Table Lookup Problem

tion problem which we can recast as follows:
We formulate our original problem as a constrained optimiza-

m i n H (b) s.t. R(b) 5 S1
b E B

where B is the set of possible configurations, H (b) is the aver-
age lookup time for a particular configuration b, R(b) is the total
size of type 1 table sizes, and SI is the size of type 1 memory.
The corresponding dual problem is:

min H (b) + A R (b) (9)

Because the dual is unconstrained, solving the dual is signifi-
cantly easier than solving the original problem. However, there
is an additional step; we must adjust the multiplier value X so
that the constraint parameter, R(b), satisfies (8).

In (9), the multiplier-rate constraint product, XR(b), repre-
sents the penalty for placing a lookup table in type 1 memory,
and is linearly proportional to the size of the table. For each
A, we solve the dual problem, denoted as LP, as follows. For
each table rooted at node i and height h, we have two choices:
i) place it in type 1 memory with cost plus penalty wiT1 + 2hX;
or, ii) place it in type 2 memory with cost wiT2. The minimum
of these two costs plus the recursive cost of the children nodes
will be the cost of the function at node i for a particulx height.
The cost of the function at node i will then be the minimum cost
for all possible height, which we can express as follows:

L P ~ (~ , x) = min (L P Z (L ~ , ~ , A) + m i n [w i ~ I + ~ 2 ~ , w i ~ z] } (10)

where LPl and LP2 are sister functions defined similarly to
TP1 and TP2. Because we are optimizing with respect to X
which does not change for each iteration, for LP2 with multiple-
node argument, it is simply the sum of calls to LP1 of individual
nodes:

LP2(L, A) = L P l (j , A) (11)

b E B

lSh6H;

j € L

Similar to TP2, we can alternatively solve it using recursion:
LPZ(L,A) = LPl(i ,X) i f I L l = 1 , L = i
LPZ(L,A) = LP2(L1, A) + LPz(L2, A)

s.t. L~ n L~ = {}, L~ U L~ = L (12)

W*)
I

Fig. 6. Sum of Sizes of type 1 memory assigned Tables vs. Multiplier

After solving the dual problem using (IO) and (12), we have an
“optimal” configuration of tables from the prefix tree, denoted
by b’, that minimizes the dual problem for a particular multiplier
value. The sum of sizes of tables assigned to type 1 memory
will be denoted R(b*). If R(b*) = SI, then the optimal solution
to the dual is the same as the optimal solution to the original
problem. If R(b*) < 4, then the optimal solution to the dual
becomes an approximate solution with a bounded error - in
general, the closer R(b*) is to S I , the smaller the error is.

The crux of the algorithm is to find X such that the mem-
ory size constraint is met, i.e. R(b*) 5 SI. In general, for a
multiplier problem, the constraint variable, R(b*) in our case, is
inversely proportional to the multiplier A, as shown in Figure 6.
Therefore, a simple strategy is to search for the appropriate mul-
tiplier value using binary search on the real line to drive R(b*)
towards SI. As shown in Figure 6, the rate constraint-multiplier
function is a decreasing step function - a consequence of the
fact that the optimization problem we have is discrete, not con-
tinuous. For our implementation, we terminate the search for a
new multiplier when we reach a horizontal portion of the curve,
i.e. the new multiplier fails to yield a new rate R(b*).

B. Analysis of Algorithm

The actual running time of the algorithm depends on the data
set. However, we can estimate the average running time of the
algorithm by performing the following analysis.

We first estimate the execution time to solve (9 for each mul-
tiplier value A. This is again a dynamic programming problem,
where the DP table has only one column. Each entry i of the DP
table contains the value LPl(i, A) (LP2(L, A)). For single node
arguments, computing an entry i in the table needs at most Hi
operations using (lo). Let the height of the complete prefix tree
be H . (Again, for IPv4’s 32-bit address, H 5 32.) Since there
are n single nodes, it takes O (H n) for each multiplier value for
this half of the table. For multiplier node arguments, we know
the number of entries is O (n) from analysis from previous sec-
tion. In this case, computing each entry takes constant number
of operations using (12). Therefore it takes O (n) for this half of
the table. Combining the two halves, it takes O (H n) . Let A be
the number of iterations of binary search for multiplier values
needed to be performed. Then the complexity is O (H n A) . In
experimental results, A is found to be around 10. Considering
n is in the neighborhood of tens of thousands, and comparing
this complexity to the optimal algorithm, we see a substantial
improvement in execution time.

1441

V. IMPLEMENTATION

After we have obtained a configuration - a set of lookup tables
and the mapping of tables to different memories - from either
the optimal dynamic programming algorithm or the Lagrange
approximate algorithm, we need to implement the lookup al-
gorithm on the native platform. On architectures where cache
movements can be explicitly made by native code, we can map
tables directly to cache spaces via configuration's table assign-
ments. On architectures where such cache control is not avail-
able, then our cost model becomes an approximation, since
cache movements are less predictable. However, note that if our
optimization is done correctly, then the tables with the largest
weights will be assigned to faster memory. Correspondingly, ta-
bles with the largest weights will be most frequently accessed,
and therefore will most likely be in faster memory. Therefore
our cost model is still a good approximation. Nevertheless, we
make the following minor adjustments to our algorithms to bet-
ter approximate cache movements in such architectures.

A . LighUDark Entry of Lookup Tables

In general, a lookup table of size 2h may have many entries
that have zero or close to zero probability of being accessed.
The prefixes that correspond to those entries are prefixes of er-
roneously routed packets - packets with destination addresses
that the router does not know where to forward with the current
routing table. These packets are subsequently dropped. We de-
note these entries in the lookup tables as dark entries. On the
one hand, these entries must exist so that the router can recog-
nize them when they appear. On the other, their occurrences are
so infrequent that it would be unwise to include them in our opti-
mality calculation. In this section, we discuss a simple modifica-
tion to our developed algorithms to disregard these dark entries,
and consider only their counterpart, light entries.

A. 1 Reformulation of Algorithms

Suppose we create a table of height h from node i, with 2h
total entries. Because only the light entries are accessed fre-
quently, the size of the table that gets moved around in hierar-
chical memories will only be the number of the light entries,
while the dark entries reside in the slowest memory. Let d (i , h)
denote the dimension, or number of the light entries of a height h
table rooted at node i. In general, this number is upper bounded
by 2h and lower bounded by 0.

For our optimal dynamic programming algorithm, when we
are considering whether to place a table in type 1 or 2 memory,
the size of the table in question will be d (i , h) instead of 2h. The
modified equation will be the following:

wiT2 + TPz(Lh,i , 8 1) 1 } (13)

Similarly, for our Lagrange approximation algorithm, the
penalty for placing a table in type 1 memory is no longer X2h,
but instead Xd(i, h). The following modified equation is the re-
sult.

I l l interface #

[0 1 nbits I offset
26

Fig. 7. Array Element Layout

The questions that remains are: i) how to find d (i , h) efficiently;
and, ii) does the calculation of d (i , h) increase the order of com-
plexity of the algorithms. We will answer these questions next.

A.2 Tabulation of Light Entries
We will again find the number of light entries of tree rooted

at i and height h, d (i , h) , using a dynamic programming algo-
rithm. Let the left branch of node i represent the path to all pre-
fixes with 0 as left-most bit, and right branch represent the path
to prefixes with 1 as left-most bit. For the base case when h = 1,
the table has 2 total entries. We first check if the left branch has
probability greater than zero. If so, then this entry is light. Sim-
ilarly, we check the right branch. d (i , 1) is the sum of these two
checks. If h > 1, then we solve this recursively. If there is a left
child node, j ~ , then we recursively call d (j L , h - 1) to find the
number of light entries for the left side. If there is no left child
node, i.e. it is a leaf, then we check if the leaf has probability
greater than zero. If so, we scale it by 2h-' to account for the
prefix expansion of height h. A similar procedure is done for
the right side. The total number of light entries is the sum of
the left and the right side. Let l(c) be the indicator function that
returns 1 if clause c is true, and 0 otherwise. We can then use
the following equation to express this analysis:

l (P L > 0) + l (P R > 0)
d (j L , h - 1) + d (j R , h - 1)
d (j L , h - 1) f l (p R > 0) * Zh-'
l (p L > 0) * Zh-' + d (j R , h - 1)
1 (p L > 0) * zh-' + 1 (P R > 0) * z ~ - '

i f h = 1
i f h > 1 , 3 j ~ , j ~
if h > 1 , 3 j t , P ~ R
if h > 1, g j L , 3 j ~
i fh > 1. g j L , j R

d (2 , h) = { (15)
where j,, j~ are the left and right child node of node i, and

p ~ , p~ are the left and right branch probability of node i.
We now show that the tabulation of d (i , h) does not increase

the order of complexity of our algorithms. Each time the value
d (i , h) is needed, the function first checks if the value is in the
(i, h) entry of the dynamic programming table. If so, it simply
returns the value. If not, it tabulates it using (15), stores it in
the DP table, and returns it. We assume every entry of the DP
table maybe used, so the complexity is again the time required
to construct the entire DP table. The size of the DP table is
the number of nodes by the maximum height H , which is again
32 for IPv4 32-bit address. The time required to tabulate each
entry of the table, using (15), is a single addition. Therefore the
complexity is O (H n) . This clearly does not increase the order
of complexity of our algorithms.

B. Encoding of Table Entries

We now describe the mapping scheme of lookup tables to
memory, and the encoding scheme we use for each entry of the
lookup tables. We first define an array p , large enough to con-
tain all the elements in all the tables. For all the tables that are
assigned to first level memory, we map the tables onto the array
in breadth-first order, starting at the root of the tree. This will
ensure that all first level assigned tables are in contiguous mem-
ory, and that each first level assigned mother-child table pairs are

1442

d e f i n e match(A)
n b i t s = s t a r t N b i t s ;
pa = sp[OI;
w h i l e (t r u e) {

code = * (p a + (A >> (3 2 - n b i t s))) ;
i f (code < 0)

A <<= n b i t s ;
n b i t s = code >> 2 6 ;
pa = & P L O] + (code & ((1<<26) - 1));

break;

)
index = code L (1<<31) ;

algorithm
S & V, k=7
S & V, k=6

Fig. 8. main loop in C code

memory i.i.d. prefix scaled prefix
84.4 kB 1.020 mil. -
86.3 kB 1.156mil. -

closer together than other first level assigned tables. We then do
the same procedure for the second level assigned tables starting
at the root of the tree, and then the third level assigned tables.

Each element of the tables contains the following informa-
tion. As shown in Figure 7, if the associated index points to a
leaf of the tree, then its most significant bit (MSB) is 1, and the
next 3 1 bits will contain the interface number. If the associated
index points to another table, i.e. there is at least another table
before we reach a leaf, then MSB is 0. The next 5 bits encodes
the number of bits needed to index the next table, or simply, the
height of the next table. The last 26 bits contains the offset in
memory location of the next table relative to the first element of
the array p . Given this encoding, we can perform a route lookup
with a simple coded loop that parses an address against our table
data structures. Prototype code to do so is shown in Figure 8.

S & V, k=5
S & V, k=4
S & V, k=3
S &V,k=2
Lagrange

VI. RESULTS
In order to have meaningful comparisons for the obtained re-

sults, we compare our algorithm to the one in [5], as this is the
other contemporary work that carries out deliberate optimiza-
tion of lookup table designs. We begin with a brief overview of
their algorithm.

A. Controlled Prejix Expansion
In [5], the authors present a series of techniques for a range

of data structures; one of the data structures is optimal trie us-
ing varying strides - this is equivalent to our generalized level-
compressed trie. The particular technique used for this structure
is controlled prejix expansion. Its objective is to find a set of
tables with minimum total size, such that no single prefix will
require more than k lookups. k is selected by the designer to
yield a worst case lookup time of kTz, where TZ is the type 2
memory access time, with the assumption that all the tables will
fit in the type 2 memory space. The following “minimize size”
function, called initially on the root node i, performs this opti-
mization:

r 1

93.6 kB 1.259 mil. -
115.0 kB 1.399 mil. -
202.5 kB 1.626 mil. 1.695 mil.
748.5kB - -

2.202/1.221 MB 1.770 mil. 2.198 mil.

(16)
Each function call to a node i requires at most Hi operations.

Again, let the height of the complete prefix tree be H , which is
again 32 for IPv4 address. Since the function is called on every
node, the order of complexity is O (n * H) = O(Hn) . If the
total size of table does not fit in the secondary cache, however, k
needs to be increased and the optimization be performed again.
Let B be the number of times the optimization needs to be re-

performed until the total size of tables fit in type 2 memory. The
complexity is then O (H n B) .

B. Comparison

We first note that the order of complexity of the Srinivasan &
Varghese algorithm, O (H n B) , is comparable to the complexity
of our Lagrange approximate algorithm, O(HnA) . Experiment
shows that B for minimum size algorithm is about 3, while A
for Lagrange algorithm is about 10. To compare performance
between the S&V algorithm and the Lagrange algorithm, we
use the two algorithms to generate sets of lookup tables sepa-
rately. Our testing environment is a Pentium I1 266MHz proces-
sor, with L1 data cache 16kF3 and L2 cache 512kB. We assume
L1 cache access speed is 1 clock cycle, L2 cache is 3 clock cy-
cles, and third level memory is 10 clock cycles. We first used
the “PAIX’ routing table as input, down-loaded from Merit Inc
[13] on 6/19/98. It is a small size routing table with 2638 pre-
fixes. Because we were unable to collect real statistics from a
trace at a router, we assume two possible probability distribu-
tions of prefixes: i) each prefix is independent and identically
distributed; and, ii) each prefix is exponentially scaled accord-
ing to its length - for example, prefix of length 8 is twice as
likely as prefix of length 9.

For each above mentioned probability distribution, we gener-
ate 10 million IP addresses and store them to a file on the local
disk. We decode each of the 10 million addresses in the follow-
ing manner: first extract the 32 bit quantity (IP address) from
the file, then perform the sequential table lookups described by
the S&V algorithm (Lagrange algorithm). We decode the 10
million IP address file 20 times, record the execution time of
the entire decoding process, and find the average lookup time
per address. Note that the average lookup time obtained in this
manner includes the local disk access time, execution time of
the table lookup operations, and the hierarchical memory access
time.

In Figure 9, we see the results of our Lagrange algorithm and
the minimum size algorithm of [SI, for various values of k’s.
We first note that IC = 3 case is the chosen implementation for
minimum size algorithm, since k = 2 case is too large to fit
in the secondary cache. From the table, for the i.i.d. prefix
case, we see a 8.9% increase in speed of our algorithm over
minimum size algorithm of k = 3. For the scaled prefix case, we
see a 29.7% increase in speed. We also compared performance
for a much larger “AADS” routing table, with 23,068 prefixes.
Again, without available statistics, we assume the prefixes are
distributed in the above mentioned two cases. The comparative
results are shown in Figure 10. Notice that in this case, k = 4
is the chosen implementation since this is the smallest value of
IC such that the set of tables fit in L2 cache. For the i.i.d. prefix

1443

algorithm
S & V, k=7
S & V, k=6
S & V, k=5
S & V, k=4
S & V, k=3
Lagrange

Fig. 10. Performance Comparison for AADS: speed in lookups per second

case, we see a 25.4% increase in speed of our algorithm over
minimum size algorithm of 5 = 4. For the scaled prefix case,
we see a 11.2% improvements.

VII. CONCLUSION

In this paper, we take a theoretical approach to solve the rout-
ing table design problem to minimize the average lookup time
per prefix. We develop an optimal and an approximate algorithm
that solve the optimization problem based on our cost model.
The complexity of our approximate algorithm is comparable to
the ones in the literature. Experimental results show our ap-
proximate algorithm has visible improvements over an existing
algorithm in the literature, for both the i.i.d. prefix distribution
case and the scaled prefix distribution case.

In this work, we consider only lookup tables as a mean to de-
code prefixes of IP addresses. There are other methods we plan
to investigate in the future, such as logical operations (i f state-
ments). A lookup algorithm using a hybrid of logical operations
and lookup tables may be more optimal.

APPENDIX
We now prove our approximation algorithm terminates in a bounded error

solution. Our proofs are similar to ones stated in [9], and are included in here
for completeness. We will begin with the duality proof of Lagrange multipliers.

A. Theorem 1

Let our design problem be:

minH(b) s.t. R (b) 5 S1 (17)
b E B

where b is a configuration in all possible configurations in set B, H (b) is the
associated cost of using configuration b, R(b) is the total size of lookup tables
assigned to type 1 memory, and S is the available size of type 1 memory. Define
the dual problem to be:

min H (b) + XR(b) (18)
b E B

For every multiplier X 2 0, the corresponding optimal solution b* (A) to (18),
is also optimal solution to (17) with S1 = R(b* (A)).

A.l Proof 1
Suppose b * (X) = b’ is the optimal solution to (18) for a given A. That

means:
(19)

In particular, the above equation is also true for a subset of B, namely B1 C_ B
such that B1 = { b E B I R(b) 5 R(b’)}. Therefore:

H (b *) + X R (b *) 5 H (b) + XR(b) Vb E B

X [R (b *) - R (b)] 5 H (b) - H (b *)
0 5 H (b) - H (b ’) Vb E B1 (20)

Therefore b’ is also the optimal solution to (17) with SI = R (b *) . 0

multiplier A.

B. Lemma2

Suppose b; = b’(X1) is optimal solution to (18) for multiplier value XI,
and b; = b * (X z) is optimal solution to (18) for multiplier value XZ. Suppose
further that A 1 2 Xz. Then R (b ;) 5 R (b ;) .

We now prove the constraint parameter, R(b*), is inverse proportional to the

B.l Proof 2
By optimality of b; and b; for their respective multipliers:

H (b ;) + X l R (b ;) 5 H (b ;) + X I R (b $) (21)
H(b; l) + X 2 R (b ;) 5 H (b ;) + X z R (b ;) (22)

If we add the two equations and collect terms, we get:

(X I - X z) R (b ;) 5 (X I - X z) R (b ;) (23)

Since XI 2 A2 by assumption, therefore R (b ;) 5 R (b ;) . 0

bounded error.

C. Lenrnia 3
Suppose b; = b * (X 1) is optimal solution to (18) such that R (b ;) < SI.

Suppose b; = b*(X2) is optimal solution to (18) such that R (b ;) > SI. Sup-
pose further that b‘ is the true optimal solution to (17). Then the approximation
error of using b; as solution to (17) is:

Finally, we prove that our approximate solution from solving the dual has a

I H (b ;) - H (b *) l 5 IH(b7) - H(b;)l (24)

C.1 Proof 3
Since b; is optimal to (18) for XZ:

H (b ;) + X z R (b ;) 5 H (b *) + X z R (b *) 5 H (b *) + X z S i (25)

The last step is true since R (b *) 5 SI. Rewriting the above:

H (b ;) - H (b *) 5 Xz [S I - R (b ;)] 5 0 (26)

The last step follows since by assumption SI 5 R (b ;) . Lemma 3 follows from
the last equation. 0

REFERENCES
M.Degennark, Ahodnik, S.Carlsson, S.Pink, “Small Forwarding Tables
for Fast Routing Lookups,” SIGCOMM 97, pp.3-13, 1997.
S.Nilsson and G. Karlsson, “Fast Address Lookup for Intemet Routers,” to
appear in International Conference on Broadband Communication”, April
1998.
Y.Rechter and T.Li, An Architecture for IP Address Allocation with CIDR
RFC 1518. bttp://sunsite.auc.dFC/rfc/rfcl518.htmI~ 1993.
Keith Sklower, “A Tree-based Routing Table for Berkeley UNIX’. Tech-
nical Report, University of California, Berkeley.
VSrinivasan and G.Varghese, “Faster IP Lookups using Controlled Prefix
Expansion,” to appear in ACM Sigmetrics 98, 1998.
P.Gupta, S.Lin, N.McKeown, “Routing Lookups in Hardware at Memory
Access Speeds,” Infocom 98, vo1.3, pp.1240-7, 1998.
B.Lampson, V.Srinivasan, G.Varghese, “IP Lookups using Multiway and
Multicolumn Search,” Infocom 98, vo1.3, pp, 1248-56, 1998.
G.Cheung, S.McCanne, C.Papadimitriou, “Software Synthesis of
Variable-length Code Decoder using a Mixture of Programmed Logic and
Table Lookups,” submitted to DCC’99, November 1998.
Y.Shoham and A.Gersho, “Efficient Bit Allocation for an Arbitrary Set of
Quantizers,” IEEE Trans. ASSP, vo1.36, pp. 1445-1453, September 1988.
Garey and Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, pp.247, 1979.
D.Morrison, “PATRICIA- Practical Algorithm To Retrieve Information
Coded in Alphanumeric,” Journal of the ACM, ~01.15, No.4, pp.514-534,
October 1968.
E.Fredkin, “Trie memory,” Communications of the ACM, 3:490-500, 1960.
http://www. merit. eddipma

1444

http://www

