
Dynamic Memory Model based Framework for Optimization of IP Address
Lookup Algorithms

Gene Cheung and Steven McCanne
University of California, Berkeley

Abstract

The design of software-based algorithms for fast IP ad-
dress lookup targeted for general purpose processors has
received tremendous attention in recent years due to its low
cost implementation and flexibility. However, all work to
date fails to account for the hierarchical memory structure
of the processor when designing algorithms. In this work,
we propose a dynamic memory model that captures data
movement between hierarchical memories and the memory
access cost. Using the model, we formulate the design of
IP address lookup algorithms as a well-defined optimiza-
tion problem that minimizes an algorithm’s average lookup
time. We first show the problem is NP-hard. We then present
an optimization framework and associated algorithm based
on Lagrange multipliers that terminates in a bounded-error
solution. Simulation shows the synthesized algorithm has
noticeable performance gain over existing techniques.

1 Introduction

In the Internet Protocol (IP) architecture,hosts commu-
nicate with each other by exchanging packetized messages
or packets through a fabric of interconnected forwarding el-
ements calledrouters. Each router consists of input inter-
faces, output interfaces, a forwarding engine, and a routing
table. When an IP packet arrives on an input interface, the
forwarding engine performs aroute lookup — among the
set of prefixes in the routing table, it locates the longest pre-
fix that matches the destination address of the IP packet.
The entry corresponding to the longest matched prefix de-
termines the output interface through which to forward the
packet towards its ultimate destination.

If forwarding performance within a router were infinitely
fast, then the overall performance of the network would be
determined solely by the physical constraints — i.e., bit
rate, delay, and error rate — of the underlying communica-
tion links. In practice, however, building high-speed routers
is a hard problem and as physical-layer link speeds continue
to increase, the route lookup step in the router can easily be-

come the bottleneck in network performance. Thus, to opti-
mize network performance, we must not only optimize the
speed of the physical-layer transmission media but also the
forwarding performance of the routers. This is the heart of
the IP address lookup problem; namely, finding the longest
prefix match of an IP address among a finite set of prefixes
in a fast and efficient manner.

The existing art in this problem domain falls roughly
into two categories: i) system approaches where static data
structures and algorithms have been designed and tested for
a typical set of prefixes at a typical router [1], [2]; and, ii)
dynamic optimizations where the performance is enhanced
by the particulars of a prefix set [3], [4], [5], [10]. Clearly
prefix-set dependent optimizations benefit from data depen-
dent information that is not exploited by data independent
techniques, and thus if the dynamic optimizations are not
too costly, we should perform such optimizations.

Our work falls into the latter category, but unlike pre-
vious work, we exploitmachine dependent information as
well. In particular, we have developed an optimization
framework that captures the hierarchical memory charac-
teristics of the underlying processor, and when given a pre-
fix set from a routing table, finds and automatically gen-
erates a near-optimal algorithm. By optimal, we mean a
prefix decoding algorithm, one that uses a combination of
chosen decoding tools, has the minimum average decoding
time with respect to our proposed prefix Markov model and
machine model. Decoding tools are decoding techniques,
such as table lookups and programmed logic, that in com-
bination classify an IP address into one of many classes.
Our framework is flexible in two regards: i) in the context
of IP address lookup, its generality permits easy adaptation
of new decoding tools into the framework; and, ii) IP ad-
dress lookup can be viewed as a particular instantiation of
the framework; other computational optimization problems
such as packet classification [6], can potentially be cast as
instantiations of the framework.

In section 2, we first discuss two proposed models: a
machine model that models the hierarchical memories of a
general purpose processor, and a Markov model that models
the correlation between prefixes of consecutive IP packets.

c(cmp) = Q
P

M

M 2

1

T

T

1

21S

S2

2

S

T

T

T(S)

S1

1

a) Dynamic Memory Modelb) Memory Access Cost
Function

Figure 1. Dynamic Memory Model for General
Purpose Processor

In section 3, we first discuss a common representation of
a prefix set, and then formalize the optimization problem
based on the two models. In section 4, we show the op-
timization problem is NP-hard. We present our proposed
optimization framework and an associated approximation
approach based on Lagrange multipliers in section 5. We
discuss specific implementation issues and results in section
6. Finally, we conclude in section 7.

2 Machine and Prefix Modeling

Unlike previous works, our optimization framework op-
timizes the resulting implementation in amachine depen-
dent manner, i.e. the optimal design of the algorithm de-
pends heavily on the characteristics of the underlying pro-
cessor. To provide a vehicle for optimization, we propose
to use an abstract machine model, whose parameters are
exploited during optimization; we will first present such a
model. Many authors have claimed in the literature that al-
gorithms can benefit from the correlation of destination IP
addresses of consecutive packets given the inherent caching
mechanism of a general purpose processor. To accurately
capture this correlation, we present a simple prefix Markov
model.

2.1 Dynamic Memory Model

Modern general-purpose processors use hierarchical
memories to enhance performance, where small, fast mem-
ories are located near the CPU and larger, slower memo-
ries are situated further away. Consequently, the execution
speed of a machine instruction that accesses memory de-
pends on the level of memory referenced. A machine model
that reflect this characteristic is shown in Figure 1a. If the
processorP accesses a datum residing in level 1 memory
M1 (level 2 memoryM2), it incurs memory access timeT1
(T2). If the instruction does not involve memory access,
then the execution time depends on the complexity of the

q3

1 2 3

q2

p p p

0

q1

1-p

Figure 2. Markov Model for Address Prefixes

instruction itself. In Figure 1a, we denote the cost of a logi-
cal comparison (cmp) as Q. For the chosen machine model,
the size of the level 1 memory is S1, and the size of the level
2 memory is S2 =1

1.
Now suppose the size of the data structures of an algo-

rithm in memory, S, is less than or equal S1. Then the
memory access time of a desired datum, T (S), is always
T1, since all the data structures can be loaded into level 1
memory. If S > S1, then the desired datum may not be
in level 1 memory. We estimate the memory access time
in this case as follow: a size S1 portion of the S memory
will be in level 1 memory at any given time. If all pieces
of data are equally likely to be in the level 1 memory, then
with probability S1

S
we will find the data in level 1 memory,

and with probability S�S1
S

we will find the data in level 2
memory. Using this approximation, the memory access cost
as a function of the size of the data structures in memory is:

T (S) =

�
T1 if S � S1

(S1
S
)T1 + (S�S1

S
)T2 otherwise

(1)

This function is shown in Figure 1b. If a datum is retrieved
multiple times consecutively, then after the first retrieval,
the datum will be relocated to level 1 memory, and therefore
the subsequent retrieval time is T1.

2.2 Markov Model for Packet Prefixes

During a typical TCP connection, a burst of packets are
sent back-to-back along the same route to the same destina-
tion. The result is a sequence of packets with the same desti-
nation IP address, and therefore the same longest prefix that
requires lookup at the router. To model this dependency, we
have constructed the simple Markov model shown in Figure
2. Each prefix in a routing table is represented by a state,
say state 1, 2, 3 in the figure. In addition, there is an ini-
tial state 0. Starting at the initial state, we enter state i with
probability qi. This represents a packet with longest prefix
i has arrived at the router. With probability p, we return to
the same state, representing the case when the next packet
also has longest prefix i. With probability 1� p, we return
to initial state 0, and a new prefix is selected. The expected
number of packets persisting in the same state is 1=(1� p).

1We can easily extend the model to capture memory access cost of more
than two levels of hierarchical memories. The extension is trivial and thus
omitted.

Here is a simple example of how the two models can be
used to estimate the prefix retrieval time. Suppose that in
order to decode prefix i, we need to first access datum x
followed by datum y. Suppose further that the size of the
data structures of the algorithm in memory is S > S1. The
initial prefix decoding time will be twice the quantity in (1),
since we need to retrieve two pieces of data. However, on
average the next p

1�p
packets will have the same longest

prefix according to the prefix Markov model. The decoding
time for these packets, however, is 2T1 each, since the data
x, y have been fetched into level 1 memory 2. The cost of
this sequence of packets for prefix i is then:

c(i) = 2
h
(
S1

S
)T1 + (

S � S1

S
)T2

i
+ 2(

p

1� p
)(T1) (2)

We could in fact lump the terms together by introducing a
new variable T 0:

T
0 = (

S1

S
)T1 + (

S � S1

S
)T2 + (

p

1� p
)(T1) (3)

Now c(i) = 2T 0. Notice the new variable T 0 depends only
on the size of the data structures in memory, S, and is the
same for all prefixes. In general, we can lump the initial
prefix retrieval cost with the recurring prefix retrieval cost
together by using similar introductions of new variables.

3 Problem Formulation

Using the two models described above, we now formu-
late the prefix decoding design problem (PDD) as a well-
defined optimization problem. We first discuss a common
representation of a prefix set that we will use throughout the
paper, trie, in section 3.1. We then present the formal defi-
nitions of two classes of prefix decoding tools, programmed
logic and hash functions, in section 3.2. In section 3.3,
we present examples of prefix decoding algorithms, then
present a formal definition of the optimization problem.

3.1 Prefix Representation

A common representation of a prefix set is a trie [8]. A
trie is a tree-based data structure, where each node has one
or more children, and edges to each one correspond to dif-
ferent bit sequences; in so doing, the path from the root to a
particular node reveals the unique bit sequence of the node.
If each node has at most two children, then the trie is a bi-
nary trie; a PATRICIA-tree [7], which has been widely used
for software-based route lookups [3], is a special case of
binary trie where a sequence of nodes with one child only
is compressed into one node. (It is called path-compressed
trie in [4].) Figure 3a shows an example of a routing table

2In order to avoid thrashing, the event when one datum pushes the other
out repeatedly, a careful data layout scheme, such as memory block color-
ing, has to be used. We will assume such a scheme is employed.

prefix

001
10

j k

11

0 c

i

000

i

l

a) routing table

c) leaf-pushed,level-compressed trieb) binary trie

a

l

b
d
e

action

0

ba

0 1
e

00

dc

01

11

10

d e

ba

0 0 1

0

1

1

c

Figure 3. Representation of a Prefix Set

containing a prefix set and a set of corresponding actions.
Figure 3b shows a binary trie that represents the prefix set.
In its full generality, different tries can represent the same
prefix set. For example, the same prefix set can be repre-
sented by a different trie in Figure 3c. In this case, prefix 0
is first expanded to prefix 01, since address with prefix 01
would indicate it has a longest prefix of 0 in the prefix set.
This is called leaf pushing in [5]. We then eliminated nodes
j and k in Figure 3b by looking at 2 bits at a time. This is
called level compression in [4]. See [10] for a more detailed
discussion of representations of a prefix set.

Notice the trie in Figure 3c looks quite different from
the one in Figure 3b, yet nevertheless represents the same
prefix set. In fact, we will use different trie representations
of a same prefix set to represent different prefix decoding
algorithms discussed in later sections.

3.2 Prefix Decoding Tools

In this section, we discuss two classes of general pre-
fix decoding techniques: programmed logic and hash func-
tions. Note that many common decoding techniques, such
as table lookups, are members of these two classes.

3.2.1 Programmed Logic

Looking at the trie representation of the prefix set, a
straight-forward decoding technique is to test the bit se-
quence of the input against the branch labels and follow
the corresponding branch in the trie. We called this sim-
ple technique programmed logic, and as shown in Figure 4,
is implemented using if ...else statements. Note that
in general any number of bits can be examined at a time and
in any order. To estimate the computational complexity of
an if statement, we can assign a cost of Qi for each test
involving i contiguous bits. A natural question to ask is:

b) 2-bit logic

i
0 1

ba

else
 a

 b

if (nextBit == 0) a
if (next2Bits == 00)

 b
else if (next2Bits == 10)

else if ...

a) 1-bit logic

i

c d

1001
00 11

ba

Figure 4. Sequential Programmed Logic for 1
and 2 bit Cases

given a prefix set and associated probabilities, what is the
optimal logic design, for a vector of computational costs,
Q = [Q1; Q2; : : : ; Ql], where l is the length of the longest
prefix? We denote this problem as the optimal logic design
problem (LD). This is clearly a subset of the larger PDD
problem, since we are restricting ourselves to logic-only al-
gorithms.

It turns out the LD problem alone is NP-hard. We will
prove this by showing the corresponding decision problem
of the LD problem — Is there a logic design with cost� K?
— includes the binary decision tree problem [9] as a special
case. The binary decision tree problem is the following:
given a set of of objects X of size jX j = n and a collection
of binary tests T = fT1; T2; :::; Tmg, each of form Ti : X

! f0; 1g, does there exist a binary decision tree such that
the expected number of tests required to identify an object
is � K? We now state the previous NP-hard claim as a
theorem and state a formal proof.

Theorem 3.1 The LD problem is NP-hard.

Proof 3.1 We will show the corresponding decision problem of
the LD problem is NP-complete via a reduction from the decision
tree problem. We can represent the instance of the binary decision
tree problem as a matrix A; for each object x 2 X , we represent
the results of the test set T on x as a row in the matrix. A is of size
n �m:

A =

2
64

1 1 0 � � � 0
...
0 1 1 � � � 1

3
75 (4)

For each object i, we construct a prefix i that corresponds to the
object’s row of ones and zeros. Note that a necessary condition
for every object to be distinguishable from others is that no two
rows are identical. As a consequence, each prefix is unique, and
successful prefix decoding also means successful object identifica-
tion. We let Q1 = 1, and Qi = 1; 8i � 2, thereby restricting
ourselves to use one-bit test only. Now if we find a logic design that
decodes this prefix set in cost � K, then there also is a decision
tree such that cost � K. Since the decision tree problem is NP-
complete, the decision LD problem is also NP-complete. There-
fore, the corresponding optimal LD problem is NP-hard. 2

a11

a c da

01 10
00

index action

00
01
10
11

a

c
d

i

10
11

c d

f(x) = floor(0.67 x)

index action

f(00)=0

f(11)=2
f(10)=1
f(01)=0

d
c

a
00/01

a

i

a) simple lookup table b) hash function

Figure 5. Two Examples of Hash Functions

Given the optimal LD problem alone is NP-hard, the op-
timal PDD problem, a generalization, is also NP-hard. The
main cause of the difficulty is the fact that we can decode in-
put bits in any order. So instead, we will restrict the search
space of algorithms to a smaller subspace where prefixes
must be decoded in a FIFO (first in first out) manner, i.e.
contiguously from left to right. This is nevertheless reason-
able, since all prefixes, no matter what length, start with the
left-most bit. Many existing works [1, 3, 4, 5] also implic-
itly make this restriction in their search space of algorithms.

For our implementation, we further restrict the search
space of programmed logic to one where programmed logic
must test h bits at a time, i.e., an h-bit programmed logic
at node i of a binary trie decodes the section of trie nodes
rooted at i down to and including nodes of level h from i.
How the logic is structured to decode this section of the trie
will depend on available logic decoding techniques; exam-
ples of such techniques are optimal sequential decoding and
optimal binary search. This essentially limits our set of de-
coding tools to a small set3.

Formally, a set of programmed logic decoding tools is
specified as follow: Q = fG1; : : : ; GN ;Qg, where Gn is
a particular logic technique, and Q is the logic cost vec-
tor as discussed previously; we will denote optimal sequen-
tial decoding as G1. Figure 4a shows a logic design where
1 bit is decoded sequentially, and Figure 4b shows one
where 2 bits are decoded sequentially. The cost of the 1-
bit programmed logic is (q0 + q1)Q1, while the cost of the
2-bit programmed logic is [q00 + 2q01 + 3(q10 + q11)]Q2,
where qi is the probability of event i, and Qj is the cost
of testing j contiguous bits. Note that when performing
� 1 bit optimal sequential programmed logic, we should
test the most likely event first, followed by the next most
likely event and so on. So in the above cost calculation, we
assume q00 � q01 � q10 � q11.

3.2.2 Hash Functions

A hash function is defined as a many-to-few mapping rule:
f : X ! Y , where jX j � jYj. In particular, we are in-
terested in a subset of all possible hash functions where
X = f0; 1; : : : ; 2h�1g andY = f0; 1; : : : ;K�1g; this cor-
responds to a mapping of h input bits to an index of an array
of size K. Note that an h-bit table lookup is a special case
of hash functions where f(x) = x and jX j = jYj = 2h.
Two examples of such hash functions are shown in Fig-
ure 5. The first example is a 2-bit table lookup, where
jX j = jYj = 4. In the second example, f(x) = b0:67(x)c

and jX j = 4; jYj = 3. Notice while the execution time of
the first hash function is faster (since f(x) = x is a direct
mapping and has execution time 0), it requires more mem-
ory than the second one. In general, hash functions may
also result in collision, in which case there must be mecha-
nisms to resolve it — this again results in a speed-memory
tradeoff. The design of good hash functions is a rich prob-
lem and has been studied extensively; it is not the topic of
this paper.

Instead, we will assume we are given a set of hash func-
tions, F = ff0; f1; : : : ; fMg, where f0 denote simple table
lookup, from which we can construct a prefix decoding al-
gorithm using a combination of them in conjunction with
programmed logic decoding tools. For each hash function
fi, we must specify its associated mapping fi : X ! Y

and its execution cost c(fi). The number of input bits for fi
and the memory required is implicitly specified in jX j and
jYj. In addition, we must specify a collision cost P for each
collision resolution. For table lookup, such mapping and
execution cost specifications are not necessary; they are un-
derstood from the definition of an h-bit table lookup.

3.3 Examples and Problem Definition

Consider the set of prefixes in Figure 3. Using only 1-
bit logic sequential decoding and simple table lookup as
our prefix decoding tools, two prefix decoding algorithms
are constructed in Figure 6: a) a 1-bit programmed logic
is followed by either a 2-bit table lookup or another 1-bit
programmed logic; b) a two-bit table lookup is followed
possibly by a programmed logic. Graphically, we denote a
programmed logic at a node with dark branch arrows, and
hash function by shading the node. To determine the aver-
age decoding time of these algorithms, we first note that the
size of data structures in memory for both algorithms is 4
(one 2-bit lookup table). We can now write the execution
time of the first algorithm b1, denoted as H(b1; T (4)), as
follow:

H(b1; T (4)) = (qa + qb + qc)

h
Q+ T (4) + (

p

1� p
)(Q+ T1)

i
3We can generalize the set of programmed logic to one that includes

logic covering section of binary trie rooted at i of any shape. This will in-
crease the computational cost of the optimization algorithm to be discussed
in section 6, however.

j k

l

a

11

0 1

0 1

00
d e

b c c

01 10

i

l

e

ba

0 1

00 11
1001

c d

a) prefix decoding alg. 1 b) prefix decoding alg. 2

Figure 6. Examples of Prefix Decoding using
1-bit Logic and Table Lookup

+(qd + qe)

h
2Q+ (

p

1� p
)2Q

i
= (qa + qb + qc)(Q

0 + T 0) + (qd + qe)(2Q
0) (5)

where T 0 = T (4) + (
p

1�p
)T1, and Q0 = (1

1�p
)Q. We can

rewrite cost in terms of the probability flow of the internal
nodes; for example, probability flow of node j is wj = qa+
qb + qc. We can now write H(b1) as:

H(b1; T (4)) = wlQ
0 + wjT

0 + wkQ
0 (6)

Similarly, the execution cost of the second algorithm, b2
will be: H(b2; T (4)) = wlT

0 + wiQ
0.

In general, to find the cost of an algorithm b, we first
find the size of data structures in memory of b, denoted as
R(b). Then we find the memory access cost T (R(b)), from
which we can compute cost of b, H(b). We are now ready
to formalize the optimal PDD problem as follow:

Prefix Decoding Design (PDD) Problem: Given:

1. Parameters of the machine model: S1; T1; T2

2. A prefix set and associated parameters of the prefix Markov
model: qi 8i; p

3. Programmed logic decoding tools Q = fG1; : : : ; GN ;Qg

and hash function decoding toolsF = ff0; f1; : : : ; fMg and
collision cost P

What is the optimal algorithm so that the average decoding time is
minimized? Mathematically, we write:

min
b2B

fH(b; T (R(b)))g (7)

whereB is the set of algorithms that are combinations of available
decoding tools.

Using a similar proof to the one shown in [11], one
can show that even for the case of using only simple table
lookup and optimal sequential logic decoding, this problem
is NP-hard. We will outline such a proof in the next sec-
tion, then turn our attention to an optimization framework
that uses Lagrange multipliers to speed up the computation
of the optimal algorithm with only a minor impact on opti-
mality.

x2 x1 x0 y2 y1 y0 z2 z1 z0
a0 1 0 0 1 0 0 1 0 0
a1 0 0 1 0 0 1 0 0 1
a2 0 0 1 1 0 0 0 1 0
a3 0 1 0 0 1 0 0 1 0
K 1 1 1 1 1 1 1 1 1

Figure 7. Corresponding Partial Sum Problem
of 3D Matching Problem: N = 3, M = 4

4 NP-Completeness Proof

We first rephrase the optimal PPD problem as a deci-
sion problem: given a set of prefixes with associated prob-
abilities, does there exist an algorithm, using only simple
lookup tables F = ff0g and sequential programmed logic
Q = fG1;Qg, that has an average lookup cost below a
target cost �C? We will show the decision problem is NP-
complete, and as a consequence, the corresponding opti-
mization problem is NP-hard.

4.1 3D Matching Problem

The proof is by reduction from a version of the “3D
matching problem” [13]. This well-known NP-complete
problem assumes the input is categorized into three dis-
tinct groups, say men, women and pets, each of size N .
A list of 3-tuples of size M > N specifies all possible
matches of men, women and pets. For example, tuple m,
(xm; ym; zm), specifies man xm, woman ym and pet zm is
a possible match. The decision problem is: given a list of
3-tuples, is there a subsetN ofM matches such that each of
N men, women and pets is uniquely assigned to one match.

The same problem can be reformulated as the par-
tial sum problem as follow. For each tuple in the list
of 3-tuples, we transform it, (xm; ym; zm), to a number
am = (M + 1)2N+xm + (M + 1)N+ym + (M + 1)zm ,
8xm; ym; zm 2 f0:::N � 1g. We now have a set A of M
numbers in numeric base M + 1, each with 3N digits. No-
tice each number has exactly three 1’s in three digit posi-
tions and the rest of the digits are zeroes. Note further that
overflow in any digit position is avoided for any subset of
numbers by selecting the numeric base to be M + 1. Now,
the decision problem is: does there exist a subset A0 � A

such that
P

am2A0 am = K, where K is a number with
ones in all 3N digit positions. An example of the partial
sum version is shown in Figure 7 for N = 3 and M = 4.
We see that the numbers in the subset A0 = fa0; a1; a3g

add up to K. This version of the 3D matching problem is
equivalent to the original version discussed earlier.

3,0

...

h

h

h

1,0

w

H

r

2,0

q1,0

q3,0

q

r rM-10

2,0

2,m

2,mq

q1,m

q

rm

h = 4

h = 2
h = 3

1,m

3,m

3,m

a) Construction Overview b) Gadget Construction

Figure 8. Proof Constructs used in the NP-
complete Proof of PDD Problem

4.2 Overview of Proof

For each instance of the partial sum version of the 3D
matching problem, we create a corresponding instance of
the PDD problem as follow. First, we change the base of
the numbers am’s to be 2B , where B = dlog(M + 1)e.
We create a full binary trie of height H rooted at node r,
where H = dlogMe + 1. We first attach a “heavy” leaf
w, with probability qw, at the right bottom of the trie, as
shown in Figure 8a. Then for each am 2 A, we construct
a sub-trie with root rm and attach it to the full binary trie
at height H . The sub-tries are the “gadgets” necessary to
map the numbers am’s in the 3D matching problem to the
PDD problem. Each sub-trie m is a concatenation of three
mini-tries of height h1;m, h2;m and h3;m, where h1;m =

2N+xm, h2;m = N+ym, h3;m = zm, and has a single leaf
with non-zero probability q1;m, q2;m and q3;m respectively.
Mini-trie 2 and 3 are single sided, and mini-trie 1 has three
branches of the same height h1;m, with non-zero probability
leaf in the middle branch and concatenations to mini-trie 2
and 3 at the other branches. See Figure 8b for an example
of a sub-trie m.

Given the construction, we first find the cost of a default
prefix decoding algorithm, which is one that uses a H-bit
lookup table at node r, then uses (h1;m+h2;m)-bit sequen-
tial programmed logic of height for sub-trie m. The corre-
sponding decision problem to the 3D matching problem is
as follows: does there exist a prefix decoding algorithm that
can reduce the cost by at leastK, when compared to the cost
of the default algorithm? Our claim is that there exists such
an algorithm if and only if there also exists a subsetA0 � A

such that
P

am2A0 am = K. Such an algorithm must have
the following construction: an H-bit lookup table at node r,
a subset of sub-tries in 3-� configuration, and the rest of the
sub-tries in sequential programmed logic as the default. By
3-� configuration, we mean a decoding strategy for a sub-
trie where it uses three lookup tables, one for each mini-trie.
Note that the total size of the three lookup tables is exactly
am. By setting the parameters q1;m, q2;m and q3;m care-
fully, the lookup cost reduction at each sub-trie m of 3-�
over default is also am. Moreover, any other lookup strate-
gies at the sub-trie will either have higher cost than default,

Variable Value
Qi 8i 1
T1 0:75
T2 1

S1 2H +K
p 0

qw 1 +
P

M�1

i=0
ai

q1 1
q2 2
q3 4

 4am

Figure 9. Parameters for Corresponding In-
stance of PDD Problem

or have worse cost-reduction to size-increase ratio than 3-�
configuration. A set of parameters that works for this claim
is in Figure 9.

5 Optimization Framework

The general optimization problem (7) is a difficult prob-
lem for two reasons: i) the problem is combinatorial; ii) the
problem is non-linear due to the dependence on the non-
linear function T (R(b)). To attack this problem, we pro-
pose to first remove the non-linearity of the problem by a
mathematical manipulation, then solve the simplified linear
combinatorial problem in an efficient manner.

Suppose we know a priori the size of the data structures
of the optimal algorithm b� in memory is exactly S�. Then
the memory access cost is T (S�). To find the optimal al-
gorithm, we need only search among all algorithms whose
data structures has size exactly S�. If we define HT (S)(b)
as the cost function where the memory access cost is fixed
at T (S), then the PDD problem can be written as:

min
b2B

fH(b; T (R(b)))g = min
b2B

�
HT (S�)(b)

	
s.t. R(b) = S

�

(8)
SolvingHT (S�)(b) seems easier, since the non-linearity has
been removed. The problem, of course, is that we do not
know S� a priori. So to find the optimal value, we need to
search through all possible value of S:

min
b2B

fH(b; T (R(b)))g = min
S1�S�Smax

�
H
0(S)

	
(9)

where H 0(S) is the optimal value of the simplified combi-
natorial optimization problem:

H
0(S) = min

b2B

�
HT (S)(b)

	
s.t. R(b) = S (10)

Searching through all possible S in (9) is an enormous bur-
den, and in the next section, we propose an efficient alter-
native. In the meantime, we will focus on solving (10).

5.1 Lagrange Approximation

Using a similar proof to the one in section 4, one can
show that solving (10) given S is still NP-hard. So in a way,

i

singular value
search

constraint shift

o

R0

R(b)

λ2λ1

R1

R2

λλ0

S

Figure 10. Size Constraint as Function of Mul-
tiplier Value

we have not simplified the problem at all. But it turns out for
some particular values of S, (10) can be solved efficiently.
To realize this, we first define the corresponding Lagrangian
problem to (10) as follow:

min
b2B

�
HT (S)(b) + �R(b)

	
(11)

The following theorem, similar to one in [12], relates the
two problems for particular values of S.

Theorem 5.1 Let bo be the optimal solution to (11) for a
particular multiplier �. Suppose further that R(bo) = S.
Then bo is also the optimal solution to (10).

Proof 5.1 By optimality of bo to (11):

HT (S)(b
o) + �R(bo) � HT (S)(b) + �R(b) 8b 2 B

HT (S)(b
o) � HT (S)(b)� � [R(bo)�R(b)] (12)

In particular, this is also true for subset B0 � B, where B0 =
fb 2 BjR(b) = Sg. Since R(bo) = S, we get:

HT (S)(b
o) � HT (S)(b) 8b 2 B

0 (13)

We can conclude that bo is an optimal solution to (10). 2

In general, solving (11) is easier than (10), since the
problem is now unconstrained. The problem is that given
S, there may not be multiplier value � such that the optimal
solution to (11), bo, has the property R(bo) = S. In that
case, we propose the following iterative algorithm that con-
verges to a size constraint value S and a multiplier value �
such that R(bo) = S:
Iterative Projection Method:

1. Let i := 1. Initialize S1.

2. Given Si, find the multiplier value �i such that the optimal
solution bo to (11) minimizesR(bo)�Si whileR(bo) � Si,
i.e. find � that is the argument of the following:

min
�1���1

�
R(bo)� S

i
	

s.t. R(bo) � S
i (14)

3. If R(bo) = Si. Done. Else, let i := i + 1, and let Si :=
R(bo). Goto step 2.

An efficient algorithm for this problem, inspired by the clas-
sic result in [12], is presented in [11] where (14) is solved
efficiently, and we only provide a brief outline here. The
basic idea is the following: in general, R(bo) as a function
of multiplier � is a non-increasing function, since � acts as
a weight parameter in the penalty function �R(b) in (11). If
the search space is discrete, then R(bo) is a non-increasing
step function as shown in Figure 10. Observe that there is
a finite set of multiplier values where the drops occur in
the step function, e.g. f�0; �1; �2; : : :g in Figure 10. These
multiplier values are called singular values in [12]; at each
singular value, there are multiple solutions that are simulta-
neously optimal. By iteratively stepping through these sin-
gular values towards the size constraint Si, say from �1 to
�2 in the figure, we will eventually arrive at a drop in R(bo)
where the drop spans Si, e.g. S1

2 [R1; R2] in the figure.
At this point, we have arrived at the closest R(bo) value to
Si, i.e. the solution to (14), which is R1 in the figure. This
procedure is called Singular Value Search.

5.2 Lagrangian Sampling

Instead of searching for all possible values S in (9), by
finding solutions to the dual (11) using the iterative pro-
jection method, we are actually only sampling a relatively
small number of points on H 0(S), since the method con-
verges to a small subset of points no matter what S1 is ini-
tialized to. We call this phenomenon Lagrangian sampling,
since each sample point is a solution to the Lagrangian (11).
By sampling, however, we may not be able to find the op-
timal solution H 0(S�). We present the following theorem
that bounds the error of a neighboring sample point from a
local minimum point.

Theorem 5.2 Let there be a locally optimal solution to (7),
b�, such that S� = R(b�) 2 [S1; S2], where H 0(S1),
H 0(S2) are the two neighboring points during construction
of function H 0(S). During singular value search for (11)
for S = S1, we can find an optimal solution to (11), bB,
such that one of the Bounding Conditions is satisfied:

1. (R(bB) � S2) and (� � 0)

2. (R(bB) � S1) and (� < 0)

3. � = 0

The locally optimal solution b� is lower bounded by bB , i.e.:
H 0(S�) = HT (S�)(b

�) � HT (S1)(b
B).

We can now locally bound the error of a neighboring pair
of sample points, as shown in Figure 11. The global error
bound is the difference between the best performance sam-
ple point and the best performance bound of all pairs.

Proof 5.2 We first note that at least one of the following three
cases must be true: i) case I: vertical drop 4 of R(bo) at S2 and

4Same argument works if it is a plane instead of a drop at S2.

B

S

T

S1

2

Smax

H’ (S)

S S2 1

1T

T(S)

T(S1)H (b)

Figure 11. Lookup Cost vs. Memory Usage

S1

B

bBbB

λ

R(b)o

S2

λ

R(b)o

S2

a) case I c) case IIIb) case II

S1

λ

S2

R(b)o

S1

b

Figure 12. Three Cases for Theorem 2

horizontal plane of S1 both occur for � � 0, ii) case II: drop of
R(bo) at S2 and plane at S1 both occur for � < 0, iii) case III:
drop of R(bo) at S2 occurs at � � 0, a portion of plane of S1

occurs at � � 0. See Figure 12 for an illustration. It is clear that
for each case, there exists an optimal solution bB to (11) such that
one of the bounding conditions is satisfied. We now prove that if
one of the conditions is satisfied, then the error bound holds.

We first define two related optimization problems to (10) by
constraint relaxations:

H
0

�(S
�) = min

b2B

�
HT (S�)(b)

	
s.t. R(b) � S

� (15)

H
0

�(S
�) = min

b2B

�
HT (S�)(b)

	
s.t. R(b) � S

� (16)

Let b�
�

and b�
�

be the optimal solutions to (15) and (16) respec-
tively. Since the feasible spaces for both problems are both super-
sets of (10), it is clear that H 0

�
(S�) � H 0(S�) and H 0

�
(S�) �

H 0(S�). We now prove each of the three cases separately:
Case I: Given optimal solution bB to (11) for � � 0, and

R(bB) � S2. By optimality:

HT (S1)(b
B) + �R(bB) � HT (S1)(b) + �R(b) 8b 2 B (17)

�
�
R(bB)�R(b)

�
� HT (S1)(b)�HT (S1)(b

B) (18)

If we let b = b�
�

, given � � 0 and R(b�
�
) � S� � S2, term on

left is non-negative. Hence:

HT (S1)(b
B) � HT (S1)(b

�

�) � HT (S�)(b
�

�) (19)

� HT (S�)(b
�) = H

0(S�) (20)

where the second inequality of (19) is true because S1 �

S� implies T (S1) � T (S�), and therefore HT (S1)(b) �

HT (S�)(b) 8b 2 B. Therefore, error bound holds for case I.
Case II: Given optimal solution bB to (11) for � < 0, and

R(bB) � S1. Following the same optimality argument, we again
get (18). For b = b�

�
, we can again argue the left term is non-

negative, since the two products are strictly negative and non-
positive respectively. Hence:

HT (S1)(b
B) � HT (S1)(b

�

�
) � HT (S�)(b

�

�
) (21)

� HT (S�)(b
�) = H

0(S�) (22)

Therefore, error bound holds for case II.
Case III: Given bB is optimal solution to (11) for � = 0.

Following the optimality argument, we again get (18). Now with
� = 0, we get:

HT (S1)(b
B) � HT (S1)(b) 8b 2 B (23)

This is also true for the locally optimal solution b�. Hence:

HT (S1)(b
B) � HT (S1)(b

�)

� HT (S�)(b
�) = H

0(S�) (24)

Therefore, bound holds for case III. We have proven all cases, and
so the theorem is proven. 2

6 Implementations and Results

6.1 Implementation

We will now discuss specific implementation issues. In
particular, we will discuss how (11) is solved, i.e. given �,
how to find: minb2B

�
HT (S)b+ �R(b)

	
. We start with a

binary trie representation of the prefix set with root node
r. Let f�(i) be the minimum cost function that returns
the minimum Lagrangian cost for a binary trie rooted at
node i given �. At each node i, we have to decide which
decoding tool to use. Suppose we decide to use an h-bit
programmed logic technique Gn 2 Q at node i, i.e. pro-
grammed logic for the section of binary trie rooted at i down
to nodes of height h from i. We will denote this logic cost
as Gn(i; h). Then the cost is the sum of Gn(i; h) and the
recursive children costs. Suppose we decide to use a hash
function fm 2 F , with hm the number of input bits asso-
ciated with fm, and Ym the output mapping of fm. Then
the cost is sum of the hash function cost c(fm), the memory
access cost T (S), the penalty term �R(b) = �jYmj, and
recursive children costs. f�(i) is the minimum among all
these choices. Assuming no collisions, we can write:

f�(i) = min
�
fQ
�
(i); fF

�
(i)
	

fQ
�
(i) = min1�h�Hi

h
Gn(i; h) +

P
j2Lh;i

f�(j)

i
8Gn 2 Q

fF� (i) = wi [c(fm) + T (S)] + �jYmj

+
P

j2Lh;i
f�(j) 8fm 2 F

(25)

where Hi is the height of the binary trie rooted at i, and
Lh;i is the set of nodes at level h of trie rooted at i.

To look at a more concrete case, we consider the case
where we only have a one-bit sequential programmed logic
and simple table lookup as prefix decoding tools. This is an
abbreviated discussion to the one presented in [11]. f�(i) is
the minimum cost between the two choices: i) using logic
at node i, ii) using a lookup table at node i. Of course, the
lookup table can be of any height h up to Hi. For each
height of the lookup table, there will be a penalty �2h, that

10 20 30 40 50 60 70 80 90
2

2.05

2.1

2.15

2.2

2.25

Memory Usage S (kB)

Lo
ok

up
 C

os
t p

er
 P

ac
ke

t

Lookup Cost vs. Memory Usage
table, 4bit Seq
table only

Figure 13. Ave. Cost as Function of Memory

corresponds to �R(b) in (11). Mathematically, we summa-
rize the above analysis as follow:

f�(i) = min

(
wiQ+

P
j2L1;i

f�(j)

min1�h�Hi

h
wiT (S) + �2h +

P
j2Lh;i

f�(j)

i
(26)

Because there are overlapping subproblems, each time
f�(i) is solved, the value is copied to a dynamic program-
ming table F�[i] of size N � 1, where N is the number of
nodes in the binary trie. Next time f�(i) is called, algorithm
simply returns the value in F�[i]; this way, a subproblem is
solved only once. See [11] for more details.

6.2 Results

To demonstrate the efficacy of our optimization frame-
work, we obtained a routing table named PAIX from [14]
on 6/19/98; it has 2638 prefixes. We were unable to obtain
the statistics of these prefixes, however, and we will use two
prefix probability distributions for our simulation: i) Equal,
where all prefixes are equally probable; and, ii) Scaled,
where an h-bit prefix is twice as likely as an h+1-bit prefix
(so longer prefixes are less likely than shorter ones). We ad-
ditionally assume the recurring probability p in the Markov
model is 0:67, resulting in 3 consecutive packets on average
with the same longest matched prefix before another prefix
is randomly selected again. The implementation platform
is a Pentium II 266 MHz, with L1 cache 16kBytes and L2
cache 512kBytes. The machine model parameters we use
are (T1; T2; Q) = (2; 4; 3).

Recall that to find the optimal algorithm, we first con-
struct the Lagrangian sampled function H 0(S) and find the
minimum sample point empirically. We will construct two
such functions, each has a different collection of decoding
tools available. For the first function, we use only one de-
coding tool — simple table lookup up to any height. This
is the top curve in Figure 13. For the second function, we
use an additional decoding tool — optimal sequential pro-
grammed logic of up to height 4. We see that the first func-

Srinivasan & Varghese [5] 3.902 mil. lookups/s
Cheung & McCanne 98 [10] 4.546 mil. lookups/s

Lookup Tables only 4.938 mil. lookups/s
Tables + 4bit Seq. Logic 5.000 mil. lookups/s

Figure 14. Results for Equal Prob. Prefixes

Srinivasan & Varghese [5] 3.961 mil. lookups/s
Cheung & McCanne 98 [10] 7.143 mil. lookups/s

Tables + 4bit Seq. Logic 7.273 mil. lookups/s

Figure 15. Results for Scaled Prob. Prefixes

tion is above the second one for all memory S; this agrees
with our intuition since the search space of the second func-
tion includes the search space of the first one.

To test the generated algorithms using our proposed op-
timization framework, we compare the performance of our
algorithms against two other algorithms in the literature: i)
a lookup table design algorithm known as controlled prefix
expansion presented in [5] which minimizes worst case in-
stead of average case, and ii) an optimization algorithm that
minimizes the average case using a static memory model in
[10]. Using the PAIX prefix set and the two probability dis-
tributions as previously discussed, we simulated 10 million
IP addresses using the Markov model discussed in section
2. For each algorithm, we decoded the addresses 40 times
to find the average decoding speed. In Figure 14, we see
our proposed algorithm outperforms Srinivasan & Vargh-
ese by 28:2%, and Cheung & McCanne 98 by 10:0%.
Note again that the optimal algorithm of the second func-
tion, “Tables + 4bit Seq. Logic” , is faster than the optimal
algorithm of the first function.

For prefixes with the scaled probability distribution, the
optimal algorithm of the second function outperforms Srini-
vasan & Varghese by 83:6%, and Cheung & McCanne
98 by 1:82%. The reason for the dramatic improvement
over Srinivasan & Varghese is that since the statistics are
very skewed, the worst-case optimal solution is far from the
average-case optimal solution.

7 Conclusion

In this paper, we formalized the IP address lookup algo-
rithm as an optimization problem, where optimality is de-
fined with respect to a machine model and a prefix Markov
model. We have shown the problem is NP-hard, and pre-
sented an optimization framework and an associated ap-
proximate algorithm using Lagrange multipliers. We have
shown that our proposed algorithm has noticeable improve-
ment over existing algorithms in the literature. Finally, we
note that although the framework and Lagrangian approx-

imation approach is presented in the context of IP address
lookup, it can potentially be used for other computational
optimization problems that involve tradeoffs between de-
coding steps and memory usage, such as packet classifica-
tion.

References

[1] M.Degermark, A.brodnik, S.Carlsson, S.Pink, “Small For-
warding Tables for Fast Routing Lookups,” SIGCOMM 97,
pp.3-13, 1997.

[2] M.Waldvogel, G.Varghese, J.Turner, B.Platter, “Scalable
High Speed IP Routing Lookups,” SIGCOMM 97, 1997.

[3] Keith Sklower, “A Tree-based Routing Table for Berkeley
UNIX” . Technical Report, University of California, Berke-
ley.

[4] S.Nilsson and G. Karlsson, “Fast Address Lookup for Inter-
net Routers,” International Conference on Broadband Com-
munication”, April 1998.

[5] V.Srinivasan and G.Varghese, “Faster IP Lookups using Con-
trolled Prefix Expansion,” ACM Sigmetrics 98.

[6] A.Begel, S.McCanne, S.Graham, “BPF+: Exploiting Global
Data-flow Optimization in a Generalized Packet Filter Archi-
tecture,” to appear in SIGCOMM 99.

[7] D.Morrison, “PATRICIA- Practical Algorithm To Retrieve
Information Coded in Alphanumeric,” Journal of the ACM,
vol.15, No.4, pp.514-534, October 1968.

[8] E.Fredkin, “Trie memory,” Communications of the ACM,
3:490-500, 1960.

[9] L.Hyafil and R.Rivest, “constructing Optimal Binary Deci-
sion Trees is NP-Complete,” Information Processing Letters,
vol.5, no.1, May 1976.

[10] G.Cheung and S.McCanne, “Optimal Routing Table Design
for IP Address Lookups Under Memory Constraints,” INFO-
COM 99, 1999.

[11] G.Cheung, S.McCanne, C.Papadimitriou, “Software Synthe-
sis of Variable-length Code Decoder using a Mixture of Pro-
grammed Logic and Table Lookups,” DCC 99, pp.121-130,
1999.

[12] Y.Shoham and A.Gersho, “Efficient Bit Allocation for an
Arbitrary Set of Quantizers,” IEEE Trans. ASSP, vol.36,
pp.1445-1453, September 1988.

[13] Garey and Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, pp.247, 1979.

[14] http://www.merit.edu/ipma

