
JOINTLY OPTIMAL REFERENCE FRAME & QUALITY OF SERVICE SELECTION FOR
H.26L VIDEO CODING OVER LOSSY NETWORKS

Gene Cheung Connie Chan

Hewlett-Packard Laboratories, Japan

ABSTRACT

In new video coding standards such as H.26L, predicted frame
has the flexibility to select its reference frame from a number of
previous frames for motion prediction. In this paper, we pro-
pose an optimization algorithm using dynamic programming that
jointly exploits this flexibility with available network QoS for op-
timal streaming performance. A rounding technique is employed
to scale the complexity of the algorithm down at the expense of
gracefully degrading solution quality. Results show significant
streaming quality improvement over an ad-hoc scheme.

1. INTRODUCTION
This paper is concerned with the problem of optimal transport of
standard-compliant video stream over lossy networks for real-time
playback. In particular, we consider the scenario where the appli-
cation is very delay-jitter sensitive, to the extent that it cannot tol-
erate even one end-to-end packet retransmission. One reason can
be that a small initial playback buffer is employed at the client side,
meaning any retransmitted packet upon client request will miss its
playback deadline and hence be rendered useless. For quality of
service (QoS) enabled networks [1], the conventional approach for
this streaming scenario is to designate more important frames to
better network service classes. (For example, designate I-frames
to a better service class than P-frames.) For networks without QoS,
end hosts can mimic a QoS network by applying forward error cor-
rection (FEC) of different strengths to different frames. We con-
sider both cases under the same formulation in the paper.

The video coding standard we are focusing on is H.26L [2], a
new standard that offers many coding flexibilities for better coding
and streaming performance. One of these flexibilities is the multi-
frame prediction support, where each P-frame can choose among a
number of frames for motion prediction. At the cost of coding effi-
ciency, using a frame further in the past for motion prediction can
potentially avoid error propagation due to packet loss. Given the
described streaming scenario and the chosen video coding stan-
dard, the research problem we are investigating is: what is the
jointly optimal selection of reference frame and quality of service
for optimal performance? After discussing related work in section
2, we formulate it as a formal optimization problem in section 3.
Given the problem is NP-hard (proof in section 7.1), we present
an approximate algorithm in section 4. Results and conclusion are
presented in section 5 and 6 respectively.

2. PREVIOUS WORK

Streaming media is a well studied topic, and we refer readers to
[3] [4] and their exhaustive references for general background. We
instead focus on a few selected aspects in this section.

H.26L [2] is a new video coding standard that has demonstrat-
ably superior coding performance over existing standards such as

MPEG-4 and H.263 over a range of bit rates. As part of the new
standard definition is the flexibility of using any arbitrary frame
to perform motion-prediction, originally introduced as Annex N in
H.263+ and later as Annex U in H.263++. Early work on optimiz-
ing streaming quality using reference frame selection includes [3]
[5]. We differ from these work in that we jointly optimize stream-
ing using both reference frame (RF) and quality of service (QoS).

Unlike many previous rate-distortion optimization algorithms
[4] [6] which rely on the use of Lagrange multipliers, our optimiza-
tion is unique in that we use a rounding technique which trades off
complexity with the quality of the obtained solution, relieving us
of the necessity to find a suitable Lagrange multiplier.

3. PROBLEM FORMULATION

We formally formulate the RF / QoS selection problem as an opti-
mization problem in this section. We first discuss the source model
used for the encoded video stream, then the network model for
QoS networks in our streaming scenario.

3.1. Source Model

We model the decoding dependencies of the encoded media source
using a directed acyclic graph (DAG) model � � ��� �� with
vertex set � and edge set � , similar to one used in [4]. More
concretely, the streaming media is represented by a collection of
frames, ��, � � ��� � � � � ����. Each frame ��, represented by a
node � in �, has a set of outgoing edges ���� � � to nodes �’s,
representing the possible RFs �� ’s from which �� can choose. We
designate a 0-1 variable ���� to be 1 if �� uses �� as RF:

���� �

�
� if �� is selected as RF for ��
� otherwise

(1)

Because each P-frame �� can only have one RF, we have the fol-
lowing RF constraint:

�
��������

���� � � �� � � (2)

We assume that only frames in the past are used for reference,
i.e. ����� � � � � � �. We also assume only frame 1 is intra-coded,
and hence � ����� � � . An example of a DAG model of a 4-frame
sequence is shown in Figure 1.

As a frame �� uses a RF �� further in the past, the encoding
rate of �� is likely to increase since the temporal distance between
the predicted frame and RF has increased. We model this change in
encoding rate by scalar 	��� , denoting the encoding rate of �� if ��
is used as reference. 	��� denotes the rate of the starting I-frame.
We will assume a rate matrix � of size ��� 	 ��� is computed a
priori as input to the optimization algorithm. We will discuss how
� is generated in our experiment in section 5.1.
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Fig. 1. Directed Acyclic Graph Source Model

3.2. Network Model

We assume the network provides a set of quality services (QoS),
resulting in different packet loss rates. This can be achieved via
actual network infrastructure support [1] (network-level), or end
host induced such as applying different strengths of FEC (host-
level).

We henceforth assume a QoS set
 � ��� �� � � � 
� for stream-
ing media transport. Each frame �� can select a QoS level ��,
�� � 
, for packet loss protection. �� � � denotes the case when
�� is not transmitted at all.

For given observable network condition, QoS level �� and frame
size 	��� will entail a frame delivery success probability ����� 	����.
��� is dependent on 	��� because a large frame size will likely neg-
atively impact the delivery success probability of the entire frame
as more data is pushed through the network. While the opera-
tion and the optimality of our algorithm are independent of how
����� 	���� is defined, we will illustrate an example how ���� �� can
be evaluated in practice.

3.2.1. Example Evaluation of ����� 	����

Suppose the transport layer provides 3 QoS levels using �� ��
Reed-Solomon code (� � �  � ��  � �), mapping each data
unit � at the application level to �� � 
 � ��� �� �� ��. Given the
raw packet loss rate of the network currently is �, we can evaluate
the resulting packet loss rate given ��, �����, as follows:

����� � �

����
������

�
� �
�

�
�
���� ������� (3)

The frame delivery success probability ����� 	���� depends on how
many packets frame �� needs for delivery. Hence:

����� 	���� � ��� ������

� ����
���

�
(4)

where��� is the maximum network transport unit.

3.2.2. Network Resource Constraint

Like any resource allocation problems, we impose a constraint on
the amount of resource we can use, which in our case is the aggre-
gate ability to protect the ���-frame sequence from network losses
using QoS. Assume a QoS assignment �� results in a cost of �����
per byte, then the constraint is:

����
���

�
���������

���������	��� � �� (5)

In the case of network-level QoS, (5) represents a cost con-
straint, so that total cost to the user per ���-frame time does not

exceed �� units. In the case of host-level QoS, (5) represents a bit
rate constraint, where constraint parameter �� can be obtained us-
ing a congestion control algorithm like [7], so that the total output
bytes for ���-frame time does not exceed �� bytes.

3.3. Integer Programming Formulation

The objective function we selected is the expected number of cor-
rectly decoded frames at the decoder. Each frame �� is correctly
decoded iff �� and all frames �� ’s it depends on (��  �) are
delivered drop-free. Mathematically, we write it as:

��	
�����������

��
�

����
���

�
����

�
�	�������

���	 ���� � 	��	�

�	

 (6)

The problem is then: given pre-computed rate matrix �, deliv-
ery success probability function ����� 	���� and cost function �����,
find variables ������ and ���� that maximize (6) while satisfying
the integer constraint (1), the RF constraint (2) and the network re-
source constraint (5). This formally defined optimization is called
the RF / QoS selection problem.

4. DYNAMIC PROGRAMMING SOLUTION

Given the RF / QoS selection problem is NP-hard (proof in section
7.1), we first present a pseudo-polynomial algorithm that solves
the optimization problem optimally but in exponential time. We
then discuss how a rounding technique can be used to trade off
algorithm complexity with the quality of the resulting solution.

The optimization algorithm composes of two recursive func-
tions, called ������ �� and �	����� �� ��, and are shown in Fig-
ure 2 and 3 respectively. ������ �� returns the maximum sum of
products of sums in (6) for frames �� to �� given � network re-
source units are available. �	����� �� �� returns the inner product
of sums term in (6) for �� — probability that �� is decoded cor-
rectly — given � network resource units are optimally distributed
from �� to ��. A call to �������� ��� will yield the optimal so-
lution. We now examine ������ �� and �	����� �� closely.

4.1. Dissecting ������ ��

The recursive case (line 13-21) is essentially testing every combi-
nation of RF and QoS for �� for the maximum sum. The result
of this search is stored in the 
�� �� entry of the 3 dynamic pro-
gramming (DP) tables, �����
 �, ��
��
 � and ����
 �
(line 22-24). DP tables are used so that if the same subproblem is
called again, the already computed result can be simply returned
(line 1-2). The two base cases (line 3-12) are the following: i)
when the resource constraint is violated, in which case we return
�� to signal the violation; and, ii) when the root node (I-frame) is
reached. Because root node has no RF to choose from, the search
for optimal solution (line 6-10) is much simpler.

The complexity of �������� ��� is bounded by the time re-
quired to construct the DP table of size ��� 	 �. To fill each en-
try, we call function ������ �� as shown in Figure 2, which has
complexity ������
�� to account for the two for loops from line
14-21 in the recursive case. Therefore we can conclude the com-
plexity of ������ �� is ���������
����.

4.2. Dissecting �	����� �� ��

From line 16-17 of Figure 2, we see that �	����� �� �� is called
after ������ �� has been called, so we will assume entry 
�� �� of
the DP tables are available during execution of �	����� �� ��.
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function ������ ��
1. if (�������� �� is filled) // Note: DP case
2. � return �������� ��; �
3. if (� � �) // Note: base case 1
4. � return ��; �
5. if (� � �) // Note: base case 2
6. � �	
� := �;
7. for each � � �,
8. � if (� � �������)
9. � �	
� := ��	 ��	
�� ���� ������; �
10. �
11. return �	
� ;
12. �
13. �	
� := �; // Note: recursive case
14. for each � such that ���� � � ,
15. � for each � � �,
16. � ���� � ����� � �� �� ��������;
17. ���� += ���� ����� ������� �� �� �� ��������;
18. if (���� � �	
� )
19. � ��	
���	
���	
�� := ������ �� ��; �
20. �
21. �
22. store �	
� in �������� ��;
23. store �	
� in �������� ��;
24. store �	
� in �������� ��;
25. return �	
� ;

Fig. 2. Defining ������ ��

function ������� �� ��
1. if (� � �) // Note: base case 1
2. � return �; �
3. if (� � � � �) // Note: base case 2
4. � return �������� ��; �
5. �� := �������� ��;
6. �� := �������� ��;
7. if (� � �) // Note: recursive case
8. � �	� := ������� �� �� �� ��������� �; �
9. else // Note: j = i
10. � �	� := ����� ����� �;
11. �	� := �	� � �������� � � �� �� ��������� �;
12. �
13. return �	�;

Fig. 3. Defining �	����� �� ��

The recursive case has two sub-cases: i) when �  �, in
which case we recurse on �	����� � � �� �� given we know re-
source ���
�	��	� is optimally used for node �; and, ii) when � � �,
in which case we know term � of the product term — ���
� 	��	��.
The maximum product will be this times the recursive term
�	����
� � � �� � � ���
�	��	��. The two base cases are similar
to the two base cases for ������ ��.

4.3. Trading off Complexity with Solution Quality

As previously derived, the complexity of �������� ��� is
���������
����, which is pseudo-polynomial1 . Instead of solv-
ing the original RF / QoS selection problem instance � for optimal
solution �, we solve a modified problem instance �	 for solution �	

with complexity reduced by a factor of ! at the cost of decreas-
ing solution quality. To accomplish that, we simply rewrite the
network resource constraint by dividing and rounding up each rate
term 	��� by factor ! and dividing and rounding down the con-
straint parameter �� by the same !. The new network constraint

1This essentially means the complexity looks polynomial but is not.
In this case, because �� is encoded in ����� ��� bits as input, ����� is
exponential in the size of the input parameters.

becomes:

����
���

�
��������

���������
�	���
!

�
�


��

!

�
(7)

Using the same ������ �� and �	����� �� ��, the complexity of
� 	 is now ���������
��	

�
�.

It can be easily shown (See section 7.2) that �	 is feasible in
� . Moreover, we can bound the performance difference between �	

and � by first obtaining a super-optimal solution �		 in a new prob-
lem instance �		, where the network resource constraint is now:

����
���

�
��������

���������
�
	���

!

�
�

�
��

!

�
(8)

After obtaining optimal solution �		 to � 		, we can bound our
approximate solution �	 from the optimal � in original problem
instance � as follows:��obj���� obj��	�

�� � ��obj��		�� obj��	�
�� (9)

where obj��� is the objective function using solution �. The proof
of this bound is in section 7.2.

5. EXPERIMENTAL RESULTS
5.1. Experimental Setup
To test the performance of the proposed optimization algorithm
for the RF / QoS selection problem, we selected network simula-
tor 2 (ns-2 [8]) as our testing environment. We constructed three
independent paths from streaming source to client with three dif-
ferent loss rates to emulate three classes of network service. Class
C has a packet loss rate of �, and class B and A employs Reed
Solomon code of strength ���� �� and ���� � respectively, result-
ing in smaller packet loss rates computed using (3).

The H.26L video software we use is version JM 4.2 and is
accessible at [2]. The video sequence we selected for experimen-
tation is the first 100 frames of the QCIF 176x144 news sequence,
sub-sampled in time by 2 (i.e. we encoded every other frame). The
quantization parameters are kept unchanged throughout at �� and
�� for I-frames and P-frames respectively. We forced an I-frame
into the sequence every 10 frames, meaning we optimize a group
of 1 I-frame plus 9 P-frames at a time. We assume a playback
speed of 10 frames per second at the client.

To generate the rate matrix �, we executed the encoder while
forcing all frames ��’s to select ����’s for RFs. The resulting
coding rates are entries 	�����’s. We repeated this procedure for
" � �� � � � � �.

5.2. Numerical Results
For the experiment, we assume a raw packet loss rate � � ��� and
round off factor ! � ���. We compare our optimization algo-
rithm to an ad-hoc water-filling algorithm which uses exclusively
previous frame �� � for motion prediction for frame �, and spends
network resources to increase protection for the earliest frames
in the sequence as much as possible until network resource runs
out. The results are shown in Figure 4 for a range of bandwidths.
The metric is the percentage of correctly decoded frames. We see
our proposed algorithm (line 1) constantly out-performs the ad-
hoc scheme (line 2) by a wide margin over the tested range of
bandwidth. This is particularly apparent when bandwidth is small,
where our algorithm results in more than ��� correctly decoded
frames over ad-hoc scheme.
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Fig. 4. Performance of Near-optimal vs. Ad-hoc Scheme

6. CONCLUSION

In this paper, we presented a novel video streaming optimization
by jointly optimizing reference frame and network QoS selection.
The solution is unique in that the complexity of the optimization
algorithm is bounded and can be traded off with the quality of the
obtained solution. Results show the obtained solution has as much
as ��� improvement in correctly decoded frames over an ad-hoc
reference frame / QoS selection scheme.

While the optimization algorithm was developed for a specific
streaming scenario in this paper, We conjecture that the rounding
technique — trading off complexity with quality of the obtained
solution — can be applied to a much wider range of resource al-
location problems in signal processing. This is an exciting avenue
for future research.

7. APPENDIX

7.1. Proof of NP-Completeness

In this section, we prove that the RF / QoS selection problem is NP-hard
by proving the corresponding binary decision problem — does there exist
a solution such that the objective value is larger than some constant �? —
is NP-complete. We accomplish that via a reduction from a well-known
NP-complete problem, Knapsack problem (pg.247 [9]). For completeness
sake, the Knapsack problem is repeated from [9] below:

INSTANCE: Finite set � , for each � � � a size ���� �
�� and a value ���� � ��, and positive integers � and
� .
QUESTION: Is there a subset �	 � � such that

�
�
� ���� �

� and
�

�
� ���� � �?

The problem remains NP-complete if ���� � ����.
For the reduction, we construct a corresponding RF / QoS selection

problem instance as follows. We construct a �����-frame sequence, each
frame ��, 	 
 �, having one possible RF, which is �� . Each frame ��
has a rate ���� � �������. We construct the QoS set to offer only two
services: � � 	�� �
. The resulting rate matrix � is:

� �

�
������

� �    �
����� �    �
����� �    �

...
����
�� �    �

�
������

(10)

The corresponding construction for a 5-frame sequence is shown in
Figure 5. The resulting RF / QoS selection problem under this construction

1s(u  )

2 3 4 51

s(u  ) s(u  )
s(u  )

2
3

4

Fig. 5. Construction for NP-Completeness Proof

mathematically becomes:

	
�
������

��
	

���

���

����
����

�

��
 s.t.

���

���

�������� � � (11)

where we set ���� ����� and �� in (6) to be ������ and � respectively.
The corresponding binary decision problem is: does there exist a RF / QoS
selection — ���� � 	�� �
 — such that the objective value is � �?

It is clear from (11) that the binary decision problem of the constructed
RF / QoS selection problem is equivalent to the original Knapsack problem
instance when ���� � ����. Hence the RF / QoS selection problem is as
least as hard as the Knapsack problem. Therefore the RF / QoS selection
problem is NP-hard.

7.2. Proof of Approximation Bound

We first show that �	 �
�
	�	���
� 	�

	
�

�

is feasible in � .

���

���



��������

�	������
	
��
� ����
�

�
� �

�
��

�

�
� (12)

���

���



��������

�	������
	
��
����

�
� �

��

�
� (13)

where (13) holds since
����
�

�
�
����
�

�
and �	

�
�
�
�	

�

�
. Using similar

argument, one can show that � is feasible in �		. By optimality of �		 in �		,
we have:

obj��		� � obj��� (14)

Subtract obj��	� from both side and we get (9).
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