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ABSTRACT

Depth map compression is important for efficient network trans-
mission of 3D visual data in texture-plus-depth format, where the
observer can synthesize an image of a freely chosen viewpoint via
depth-image-based rendering (DIBR) using received neighboring
texture and depth maps as anchors. Unlike texture maps, depth
maps exhibit unique characteristics like smooth interior surfaces and
sharp edges that can be exploited for coding gain. In this paper,
we propose a multi-resolution approach to depth map compression
using previously proposed graph-based transform (GBT). The key
idea is to treat smooth surfaces and sharp edges of large codeblocks
separately and encode them in different resolutions: encode edges
in original high resolution (HR) to preserve sharpness, andencode
smooth surfaces in low-pass-filtered and down-sampled low resolu-
tion (LR) to save coding bits. Because GBT does not filter across
edges, it produces small or zero high-frequency componentswhen
coding smooth-surface depth maps and leads to a compact represen-
tation in the transform domain. By encoding down-sampled surface
regions in LR GBT, we achieve representation compactness for a
large block without the high computation complexity associated
with an adaptive large-block GBT. At the decoder, encoded LRsur-
faces are up-sampled and interpolated while preserving encoded HR
edges. Experimental results show that our proposed multi-resolution
approach using GBT reduced bitrate by68% compared to native
H.264 intra with DCT encoding original HR depth maps, and by
55% compared to single-resolution GBT encoding small blocks.

Index Terms— Depth map coding, multi-resolution, graph-
based transform

1. INTRODUCTION

Among many proposed representations of 3D visual data in thelit-
erature istexture-plus-depthformat [1], where texture maps (RGB
images) and depth maps (per-pixel physical distances between cap-
tured objects in the 3D scene and the capturing camera) of multiple
closely spaced viewpoints are encoded and transmitted fromserver
to the observing client. The observer can in turn synthesizean im-
age of any freely chosen viewpoint via depth-image-based rendering
(DIBR) techniques like 3D warping [2], using received texture and
depth maps of neighboring viewpoints as anchors. Transmission of
multiple large texture and depth maps of different viewpoints, how-
ever, translates to a high bandwidth requirement and expensive net-
work costs. Thus, compression of 3D data in texture-plus-depth for-
mat is an important research problem.

While compression of texture maps is well studied, compression
of depth maps is relatively new, and has been the focus of manyre-
cent research efforts [3, 4, 5]. Typical depth maps exhibit unique
characteristics, such as sharp edges and smooth surfaces interior
to the sharp edges, that are quite different from texture maps, and

previous depth map compression algorithms have attempted to ex-
ploit these characteristics for coding gain. For example,graph-based
transform(GBT) [4] is an adaptive block-based transform (thus can
be easily integrated into block-based coding standards like H.264)
that avoids filtering across defined edges. For picewise-smooth sig-
nals like depth maps, GBT produces small or zero high-frequency
components and leads to a compact representation in the transform
domain. Because GBT is block-adaptive (defined using detected
edges in the code block), GBT must be computed on-the-fly via
eigen-decomposition, which is computationally expensivefor large
blocks (the computational complexity of eigen-decomposition for a
n × n matrix isO(n3) in practice). Thus, GBT was used only for
small blocks (4× 4 in [4]).

In this paper, to encode large blocks with GBT efficiently—
leading to potentially more coding gain for large smooth surfaces—
we propose a newmulti-resolutionapproach using GBT to code
piecewise-smooth 2D signals such as depth maps. The key obser-
vation is that to exploit the surface-smoothness prior in a large block
in a computation efficient manner—where by “smooth” we mean
the surfaces inside sharp edges have predominantly low-frequency
components—one can first down-sample the interior surface from
original high resolution (HR) to low resolution (LR) beforeencod-
ing in LR GBT for computation efficiency. The surface-smoothness
prior ensures us that high-frequencies lost (if any) duringlow-pass
filtering before down-sampling (to avoid aliasing) would bemini-
mal. On the other hand, to preserve sharpness (which greatlyaffects
DIBR-synthesized view quality for depth maps [5]), we should en-
code edges in original HR.

Specifically, we perform the following operations. Given a tar-
get down-sampling factorK and pixel block of sizeKn×Kn (here
n = 4), we first detect and encode prominent edges in the block
losslessly. Then, we perform low-pass-filtering in the pixel domain
for anti-aliasing purposes prior to down-sampling. We down-sample
the block ton× n, quantize and encode LR GBT coefficients of the
now smaller block for transmission. At decoder, then× n block is
reconstructed in pixel-domain, and interpolated back toKn × Kn

while respecting the losslessly encoded HR edges. That means a
missing pixel is interpolated using neighboring pixels on the same
side of HR edges, thus preserving edge sharpness. Experimental re-
sults show that our proposed multi-resolution approach using GBT
reduced bitrate by68% compared to native H.264 intra with DCT
encoding original HR depth maps, and by55% compared to single-
resolution GBT encoding small blocks.

The outline of the paper is as follows. We first discuss related
work in Section 2. We then overview fundamentals of GBT in Sec-
tion 3. We discuss our multi-resolution GBT encoder and decoder
in Section 4 and 5, respectively. Finally, results and conclusions are
presented in Section 6 and 7, respectively.



2. RELATED WORK

One line of attack for depth map coding is to exploit the observa-
tion that different depth pixels affect the synthesized view distortion
unequally during DIBR. For example, depth pixels close to anob-
ject edge are likely to affect synthesized view distortion more than
depth pixels interior to an object. Exploiting this observation, [6] op-
timized mode selection during H.264 coding of depth video, while
[5] manipulated unimportant depth pixels (without causingsevere
synthesized view distortion) towards a sparse representation of the
depth signal in the transform domain. In contrast, our work exploits
the unique characteristics of depth maps (sharp edges and smooth
interior surfaces) for coding gain.

Like edge-adaptive wavelets [3], block-based GBT [4] avoids
filtering across pre-defined edges, resulting in a compact transform
domain representation of the signal, even though lossless encoding
of the block edges entails an overhead for the adaptive transform.
[7] proposed directional transform to align transform withthe pre-
dominant direction in the block’s textural content. Unlikedirectional
transforms [7], GBT can handle more complicated edges such as the
“L”- or “V”-shaped. We extend work in [4] to efficient coding of
large depth blocks via a multi-resolution approach.

3. GRAPH-BASED TRANSFORM

We first overview the three-step construction procedure of GBT [4].
First, prominent edges in an × n pixel block are detected. Then,
a graph describing the pixel connectivity given the detected edges
(two neighboring pixels are connected except when divided by an
edge) is constructed. Finally, an adaptive transform is built based on
the connectivity graph.

In the first step, we detect edges in a block based on the differ-
ence between the neighboring pixel values using a simple threshold-
ing technique [4]. Because the transform is adaptive, the decoder
must have the edge information available to built the GBT, which
usually entails lossless encoding of the block edges.

In the second step, we treat each pixel in then × n block as a
node in a graphG, and connect it to its four or eight immediate neigh-
bors in the block, resulting in a 4- or 8-connectivity graph.Then, if
there is an edge between two neighboring pixels / nodes, we elimi-
nate their connection. Given the connectivity graph, we candefine an
adjacency matrixA, whereA(i, j) = A(j, i) = 1 if pixel positions
i andj are connected, and0 otherwise. We can similarly compute
the degree matrixD, whereD(i, i) is the number of connections for
nodei, andD(i, j) = 0 for all i 6= j.

In the third step, using computedA andD, we can compute the
Laplacian matrixL = D − A [8]. If we now project a signalx in
the graphG onto the eigenvectors of the LaplacianL, it becomes the
spectral decomposition of the signal; i.e., it provides a “frequency
domain” interpretation of signalx given graph supportG. Hence, we
can construct GBT transform using eigenvectors ofL. In particular,
we can stack pixels in then × n block into a length-n2 vector and
computey = Et · x, whereE is a matrix with eigenvectors ofL
as columns. GBT transform coefficients are theny, which we can
quantize and entropy-encode for compression & transmission.

4. MULTI-RESOLUTION GBT ENCODING

We propose a multi-resolution depth map compression schemeus-
ing GBT, exploiting depth maps’ unique characteristics of sharp
edges and smooth interior surfaces (piecewise-smooth) of large
code blocks. The key is to encode edges and surfaces in different
resolutions: encode edges in original HR version losslessly to pre-
serve sharpness, and encode smooth surfaces in low-pass-filtered

and down-sampled LR version in GBT domain to save coding bits
while reducing computation complexity. At the decoder, theLR
surfaces are up-sampled and interpolated while respectingthe loss-
lessly encoded HR edges. Further, because edge pixels have higher
synthesized view distortion sensitivity than smooth surfaces during
DIBR [5] (e.g., wrong edge pixels would lead to confusion of fore-
ground and background during view synthesis), our proposeddepth
map coding scheme results in better synthesized views.

Our proposed depth map compression scheme can be explained
step-by-step as follows. At encoder, for a target down-sampling fac-
tor K andKn × Kn pixel block, there are three steps: i) detect
edges in the block for losslessly encoding, and down-samplethem
to LR edges for definition of LR GBT of the down-sampledn × n

small block; ii) low-pass-filterKn×Kn block in the pixel domain
in an edge-adaptive way and down-sample the block ton × n; and
iii) perform LR GBT onn × n block, quantize the resulting trans-
form coefficients, then transmit both losslessly encoded HRedges
and quantized LR GBT coefficients to the decoder.

At the decoder, we do the following two-step reconstructionpro-
cedure: i) perform inverse quantization and inverse LR GBT using
LR edges (down-sampled from the decoded HR edges) to reconstruct
n × n block; and ii) up-sample toKn ×Kn block and interpolate
missing pixels while respecting the losslessly encoded HR edge map.
The overall compression scheme is shown in Fig.1. We describe the
three-step encoding procedure in the following, and the two-step de-
coding procedure in Section 5.
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Fig. 1. Multi-resolution depth map coding scheme based on GBT.

4.1. Edge Detection & Down-sampling

In the first step, we detect edges in the originalKn×Kn block for
lossless encoding, and down-sample HR edges for definition of LR
GBT. We use the edge detection technique in [9], where the pres-
ence of edges between every pixel and its immediate four (or eight)
neighbors is provided by an edge map in full (or half)-pixel posi-
tions. The edges of the original depth map, which we refer to as the
HR edges, are then down-sampled to LR edges with the same down-
sampling rate as its corresponding pixel block, so that the LR edges
can be used for definition of LR GBT forn× n block. Fig. 2 shows
an example of a6 × 6 block with edges separating foreground and
background depth pixels, which is subsequently down-sampled to a
3× 3 block with corresponding LR edges.

The edge down-sampling is actually a process to decide if there
are edges between every pixel and its immediate neighbors onthe
LR pixel grid. Since the immediate neighbors on the LR pixel grid
are not directly adjacent on the HR pixel grid, while the HR edge
map only shows edge information among immediate neighbors,we



find the LR edge information by searching along a straight path con-
necting a pair of adjacent LR pixels on the HR pixel grid. If there
is no edge between any pair of adjacent pixels along this pathon the
HR pixel grid, we assume there is no edge between the two pixels
on the LR pixel grid.

4.2. Low-pass-filtering & Down-sampling
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Fig. 2. The proposed depth map down-sampling approach.

In the second step, we low-pass-filter and down-sample the
Kn × Kn block uniformly to an × n block. To avoid aliasing
caused by down-sampling, we perform low-pass filtering in the
pixel domain before down-sampling. Many designs of anti-aliasing
filters have been proposed, such as adaptive directional low-pass
filters in [10], where directional Gaussian low-pass filtersare used
according to edge direction. However, the filtering is performed
in four fixed directions, so pixels across edges in other directions
will be smeared. Since edges of depth maps are very important
to DIBR, we instead low-pass filter while respecting the original
edges. More specifically, a pixel is low-pass filtered by taking
average of its neighbors on the same side of HR edges within a
(2K − 1)× (2K − 1) window centering at the to-be-filtered pixel.
The advantage of this edge-adaptive low-pass filtering is that fil-
tering across edges will not occur, so pixels across edges will not
contaminate each other through filtering.

4.3. LR GBT Coding

In the third step, we perform LR GBT on the filteredn × n block
and quantize the resulting transform coefficients. Then, the encoded
quantized coefficients and HR edges are sent to the decoder. Note
that the HR edges will be losslessly encoded and transmittedinstead
of the LR edges, so that depth map interpolation after up-sampling
respecting the HR edges can be performed at the decoder. Further,
using the received HR edges, the decoder can mimic the edge down-
sampling process discussed in Section 4.1 to get the same LR edges
for construction of the LR GBT.

5. GBT DECODING & INTERPOLATION

At the decoder, we first perform inverse quantization and inverse LR
GBT to recover the LRn × n pixel block. To identify the correct
adaptive LR GBT transform used at encoder, we down-sample the
encoded HR edges to LR edges as done at the encoder. After re-
covering the LRn × n block, we up-sample it to the original HR
Kn × Kn block, and fill in missing pixels via image-basededge-
adaptive interpolationas follows.

We interpolate a pixelx by taking average of its nearest con-
nected LR pixels within a(2K − 1)× (2K − 1) window centering
at pixelx. By “connected” we mean that the LR pixels are on the
same side of losslessly encoded HR edges with the missing pixel,
so that pixels across edges will not contaminate the missingpixel

through interpolation. The equation below describes our interpola-
tion approach:

x =
∑

i∈W (x)

δiwiyi, (1)

where

δi =

{

1, if yi is connected tox
0, o.w.

(2)

andW (x) is the index set which corresponds to LR pixelsy within
the interpolation window of pixelx. wi is the weight parameter,
which is inversely proportional to the geometric distance betweenyi
andx.

Our interpolation method is effective in preserving the original
edges because missing pixels next to edges are interpolatedparallel
to the losslessly encoded HR edges. Further, the method is much
simpler than most methods in current super-resolution literature,
such as the super-resolution algorithm via TV-regularization [11].

6. EXPERIMENTATION

6.1. Experimental Setup

We implemented our proposed multi-resolution depth map coding
scheme (MR-GBT) inside H.264/AVC Reference Software JM 17.11.
Depth edges are encoded using CABAC, as done in H.264/AVC.
Two Middlebury multiview image setsTeddy andDolls2 were
tested. We encoded and decoded the ground truth left and right depth
maps, and together with original left and right texture maps, we syn-
thesized the texture image of the middle view. Here, DIBR was
performed using a simple implementation of 3D warping [2]. Our
compression scheme was compared against three other schemes: (1)
H.264 intra with DCT encoding original HR depth maps (HR-DCT);
(2) H.264 intra using DCT encoding reduced resolution LR depth
maps with isotropic Gaussian low-pass filtering and Total Varia-
tion (TV)-regularized interpolation [11] (LR-DCT); and (3) single-
resolution GBT encoding original HR depth maps with4 × 4 code
blocks (HR-GBT). For all schemes, uniform quantization was used,
with fixed quantization parameter (QP) values of 24, 28, 32 and 36.

6.2. Experimental Results

Fig. 3 shows RD curves of the aforementioned four coding schemes,
where the synthesized view PSNR is calculated with respect to the
ground truth middle image and the down-sampling factor isK = 2
for LR-DCT andMR-GBT. We see that whileHR-GBT performed
better thanHR-DCT, MR-GBT reduced bit rate by40% and 55%
for Teddy andDolls respectively, compared toHR-GBT, and re-
duced by68% and65% compared toHR-DCT. It is expected that
better performance can be achieved with more efficient encoding of
the HR edge map (account for up to39% and48% of the bitrate at
coarse QP forTeddy andDolls, respectively).LR-DCT had the
worst RD performance; though bit rate was low, the TV-regularized
interpolation method produced noisy and blurred depth edges, lead-
ing to poor synthesized view quality. This shows that while coding
depth maps at LR can save bits, edges must be well preserved to
maintain high reconstruction quality, as done inMR-GBT.

The RD performance of our proposedMR-GBT using different
down-sampling factors is shown in Fig. 4 to test how far we can
down-sample the interior surfaces inside edges while keeping ac-
ceptable RD performance. With larger down-sampling factor, bit

1http://iphome.hhi.de/suehring/tml/
2http://cat.middlebury.edu/stereo/newdata.html
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Fig. 3. RD curves of different coding schemes forTeddy and
Dolls respectively. A down-sampling factorK = 2 in each di-
mension is used for bothLR-DCT and ourMR-GBT.

rate was further reduced forTeddywhile the RD performance wors-
ened forDolls. This is because the down-sampling limit is depen-
dent on the surface-smoothness prior, which determines theextent
of high-frequency lost during anti-aliasing low-pass filtering. In our
case, the piecewise-smooth prior was stronger (more smooth) for
Teddy thanDolls, resulting in difference in RD performance for
various down-sampling factors.
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Fig. 4. RD curves of ourMR-GBT using different down-sampling factors for
Teddy andDolls respectively.

Finally, Fig. 5 shows the subjective quality comparison of recon-
structed depth maps and resulting synthesized views forLR-DCT
andMR-GBT at comparable bitrate with the down-sampling factor
K = 2. We see that while there exist blocky artifacts in the in-
terior surfaces of bothLR-DCT andMR-GBT, the edges produced
byMR-GBT are much sharper and the surfaces are not contaminated
by noise. As a consequence, the synthesized view generated using
MR-GBT was also cleaner than one byLR-DCT.

Fig. 5. The reconstructed left depth maps and synthesized views ofTeddy
usingLR-DCT (first row) and ourMR-GBT (second row) respectively, with
code rate ofMR-GBT 7% less and the down-sampling factorK = 2.

7. CONCLUSION

In this paper, we propose a multi-resolution GBT based approach to
depth map compression. Taking advantage of the piecewise-smooth
characteristic of depth maps, we encode edges in original resolution
to preserve sharpness, and encode smooth surfaces in down-sampled
low resolution to save coding bits while achieving computation ef-
ficiency. GBT-based low-pass-filtering is proposed to avoidaliasing
prior to down-sampling, while edge-adaptive interpolation is pro-
posed to restore the decoded LR depth maps to the original resolu-
tion. Both methods preserve edges well, which along with down-
sampling leads to significant coding gain, with up to68% bit rate
reduction compared to native H.264 intra with DCT encoding origi-
nal HR depth maps, and55% bit rate reduction compared to single-
resolution GBT encoding original HR depth maps with small code
blocks. Better performance is expected with more efficient edge map
coding.
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