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ABSTRACT
Recent research has exploited the multi-homing property (one ter-
minal with multiple network interfaces) of modern devices to im-
prove communication performance in wireless networks. Coopera-
tive Peer-to-peer Repair (CPR) is one example where given simulta-
neous connections to both a Wireless Wide Area Network (WWAN)
and an ad-hoc Wireless Local Area Network (WLAN), peers receiv-
ing different subsets of WWAN broadcast packets can exchange re-
ceived WWAN packets with their ad-hoc WLAN peers for local re-
covery. In our previous work, we have shown that by using Net-
work Coding (NC) to linearly combine received packets into new
CPR packets for local exchanges, packet recovery can be improved.
Moreover, by imposing Structure on Network Coding (SNC) when
encoding a CPR packet, decoding of at least the important pack-
ets becomes possible in the event when insufficient number of CPR
packets were received for full recovery.

Given SNC is used during CPR, the key decision for each peer
is to determine which SNC type to encode a repair packet at each
WLAN transmission opportunity. The decision is further com-
plicated by the observation that peers in general receive different
numbers of CPR packets from neighbors due to varying amount of
WLAN link contentions and interference experienced. In this paper,
we propose a novel counter-based deterministic SNC type selection
scheme. Using this approach, we show that a simple local opti-
mization procedure, taking advantage of available neighbors’ state
information, can be easily implemented to further improved CPR
performance. Simulation results show that our proposed scheme
outperformed our previous randomized SNC type selection scheme
by up to 1.87dB.

Index Terms— WWAN video broadcast, cooperative peer-to-
peer repair, structured network coding

1. INTRODUCTION
It is now common for wireless devices to be equipped with mul-
tiple network interfaces, capable of connecting simultaneously to
Wireless Wide Area Network (WWAN) and Wireless Local Area
Network (WLAN). Exploiting this multi-homed property, recent re-
search on cooperative ad-hoc groups [1, 2] has showed that new
transmission paradigms can be constructed. [1] showed that aggre-
gation of an ad-hoc group’s WWAN bandwidths can speed up in-
dividual peers’ infrequent but bursty large content downloads. [2]
showed that smart striping of FEC-protected (Forward Error Correc-
tion) time-sensitive media packets across WWAN links can alleviate
single-channel burst losses, while avoiding interleaving delay expe-
rienced in a typical single-channel FEC interleaver.

Another paradigm exploiting local users’ multi-homed capa-
bility is Cooperative Peer-to-peer Repair (CPR) [3], where multi-
homed peers, listening to the same WWAN video broadcast and
connected to each other via ad-hoc WLAN, can exchange received
WWAN packets locally via WLAN to repair WWAN losses. Instead
of exchanging original received WWAN packets, we have shown
that by linearly combining received packets into a CPR packet for
exchange using network coding (NC) [4], repair performance can be
improved. Furthermore, by imposing structure on network coding
(SNC) when encoding a CPR packet, decoding of at least the impor-
tant packets becomes possible in the event when insufficient number

of NC packets were received for full recovery [3]. Experiments
showed that peers with SNC can achieve up to 14dB gain in video
quality over peers without CPR, and up to 5dB gain over peers with
NC and CPR but SNC is not used.

In a CPR network where SNC is enabled, the crucial decision for
a peer is which SNC type—each corresponding to a particular subset
of video frames in a Group of Picture (GOP)—should a CPR packet
be encoded in, when given a local WLAN transmission opportunity.
In our previous work [3], a simple randomized approach was em-
ployed where peers decide the SNC type randomly based on glob-
ally pre-determined weights assigned to each SNC type. While this
approach is effective in enforcing globally the desired proportions of
SNC types as dictated by the pre-determined weights, it does not lo-
cally distribute CPR packets in a sensible order; i.e., packets of more
important SNC types are transmitted first before less important ones.
This is of particular importance when the number of received CPR
packets per peer varies largely due to different amount of WLAN
transmission contention and interference experienced. In such case,
poor peers receiving few CPR packets should receive large portions
of SNC packets of more important types, not the globally weighted
distribution of SNC types as other peers.

In this work, we propose a novel counter-based deterministic
SNC packet selection scheme with local optimization for CPR net-
work. Our deterministic selection scheme ensures the important
SNC types are always transmitted before less important ones in a
local region. Moreover, by imposing a deterministic order when se-
lecting SNC types, it is amenable to simple local optimizations that
exploit exchanged neighbor state information for further gain. In
particular, our contributions are as follows:

1. We first propose to divide CPR peers into sub-classes to accu-
rately capture variance in CPR packet recovery capabilities.

2. We then propose a counter-based deterministic SNC selection
scheme for each peer to select SNC types at WLAN transmis-
sion opportunities.

3. We propose a local optimization procedure, given the counter-
based deterministic SNC selection scheme, that utilizes lim-
ited (and possibly stale) available neighbor state information
to make more locally optimal SNC selections.

4. We derive accurate formulas to track the performance of our
proposed SNC selection scheme.

Simulation results showed that using our deterministic approach,
CPR sub-classes and local optimization, we achieved up to 1.87dB
gain over our previously proposed randomized scheme.

Our paper is organized as follows. Section 2 describes the video
source and network models and overviews our previously proposed
SNC. We then present our CPR optimization framework and discuss
in detail our proposals on CPR sub-classes, deterministic SNC se-
lection and local optimization in Section 3. We report simulation
studies in Section 4 and conclude in Section 5.

2. VIDEO MULTICAST SYSTEM AND COOPERATIVE
PEER-TO-PEER REPAIR

In this section, we discuss our chosen video source and network
model, and overview our previously proposed Structured Network
Coding (SNC) for CPR.
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2.1. Video Source Model & Assumptions
We use H.264 codec for video encoding. A H.264 video stream is
a series of GOPs, each containing an I-frame and M − 1 P-frames.
Each P-frame Fi uses its previous frame Fi−1 for motion compen-
sation. A GOP forms a dependency chain. A frame Fi is correctly
decoded if it is correctly received, and the frame it referenced, Fi−1,
is correctly decoded. Each video frame Fi is encoded from original
picture F o

i with source coding rate ris. ris is subsequently divided

into Ri
s =

⌈
ris

Spkt

⌉
packets, Pi = {pi,1, pi,2, ..., pi,Ri

s
}, for trans-

mission, where Spkt is the packet size. If Fi is correctly decoded,
the resulting distortion reduction is di.

2.2. Network Model & Assumptions
We assume that a group or collective of N peers are listening to the
same WWAN video broadcast, and are locally connected in an ad-
hoc WLAN network where WLAN broadcast mode is enabled (each
WLAN transmission can be received by multiple neighboring peers
within range). After the media source transmits a GOP of M frames
via WWAN to the CPR collective in time duration T (one epoch),
peers perform CPR; i.e, they exchange NC-encoded CPR packets
via WLAN broadcast to repair this GOP in time T during WWAN
transmission of the next GOP. The initial playback buffer delay is
thus 2T .

We assume peers listening to the same WWAN broadcast chan-
nel experience independent and identically-distributed (iid) losses
from WWAN base station, resulting in different subsets of received
WWAN packets. For WLAN, though raw transmission rate is rel-
atively large, peers need to contend for the shared medium. In this
work, we rely on the underlying 802.11 MAC layer scheduling pro-
tocol to resolve potential contention; we assume that MAC layer
will prompt the application layer when a transmission opportunity
is available. Note the MAC-controlled scheduling is completely dis-
tributed for all the peers. We assume that peer n receives a random
variable number Rn of CPR packets in time T , and the mean of Rn

is R. The main question at the application layer is: what CPR packet
should peer n send to its neighbors when given a transmission op-
portunity? This is discussed in Sections 3.3 and 3.4.

2.3. Structured Network Coding
We now overview our previously proposed SNC [3]. Given M

frames in a GOP, F = {F1, . . . , FM}, we first denote P∗ as the
set of native packets in the GOP, i.e., P∗ = {P1, . . . ,PM}. Rather
than using raw received packets from source, we have shown [3] that
NC-encoding a CPR packet, qn, as a randomized linear combination
of raw received native packets Gn from source and CPR packetsQn

from neighbors, can improve packet recovery performance:

qn =
∑

pi,j∈Gn

ai,jpi,j +
∑

qm∈Qn

bmqm (1)

where ai,j’s and bm’s are coefficients for the received native and
CPR packets, respectively. We call this approach Unstructured Net-
work Coding (UNC). The advantage of UNC is that any set of |P∗|
received innovative1 packets can lead to full recovery of all packets
in the GOP. The shortcoming of UNC is that if a peer receives fewer
than |P∗| innovative packets, then this peer cannot recover any na-
tive packets using the received CPR packets.

To address UNC’s shortcoming, we impose structure in the co-
efficients ai,j’s and bm’s in (1) when encoding a CPR packet, so
that partial recovery of important frames in the GOP at a peer when
fewer than |P∗| innovative packets are received is possible. Specifi-
cally, we define X SNC groups, Θ1, . . . ,ΘX , where each Θx covers

1A new packet is innovative for a peer if it cannot be written as a linear
combination of previously received packets by the peer.

a different subset of frames in the GOP and Θ1 ⊂ . . . ⊂ ΘX = F .
Θ1 is the most important SNC group, followed by Θ2, etc. Corre-
sponding to each SNC group Θx is a SNC packet type x. Further,
let g(j) be index of the smallest SNC group that includes frame Fj .
As an example, in Fig.1 frame F1, F2 are in SNC group Θ1 and
F1, . . . , F4 are in SNC group Θ2. The smallest SNC group that in-
cludes F3, F4 is Θ2 with index 2 = g(3) = g(4).

Fig. 1. Example SNC structures Θx and transmission weights γx.

A CPR packet qn(x) of type x can now be generated as follows:

qn(x)=
∑

pi,j∈Gn

U(g(i) ≤ x) ai,jpi,j+
∑

qm∈Qn

U(Φ(qm) ≤ x) bmqm (2)

whereΦ(qm) returns the SNC type of packet qm, andU(c) evaluates
to 1 if clause c is true, and 0 otherwise. In words, (2) states that
a CPR packet qn(x) of type x is a random linear combination of
received native packets of frames in SNC group Θx and received
CPR packets of type ≤ x. Using (2) to generate CPR packets, a
peer can now recover frames in SNC group Θx when |Θx| < |P∗|
innovative packets have been received.

3. COUNTER-BASED DETERMINISTIC SNC SELECTION
FOR CPR OPTIMIZATION

In this section, we first introduce our CPR optimization frame-
work: our chosen objective function and how SNC structures are
optimized. We then present in detail our proposed optimization
techniques: i) CPR sub-class modeling that captures variance in
peers’ CPR capability, ii) counter-based deterministic SNC type
selection scheme, and iii) local optimization enabled by our deter-
ministic SNC selection scheme. Formulas that accurately capture
the performance of our proposed scheme are derived at the end of
this section.

3.1. CPR Optimization Framework
CPR optimization framework determines the globally optimal SNC
structure that minimizes the visual distortion for a given CPR collec-
tive. We first define segment sx as the set of frames in SNC group
Θx but not Θx−1; for example s2 in Fig. 1 has frames F3, F4. We
can now write the expected distortion of a GOP for a peer in a CPR
collective, given X SNC groups Θx’s, as:

D = Dinit −

X∑
x=1

⎛
⎝ ∑

Fj∈sx

dj(r
j
s, r

j−1
s )

⎞
⎠α(sx), (3)

where Dinit is the distortion if no packets are received at a peer,
di(r

i
s, r

i−1
s ) is the distortion reduction for Fi given Fi and previ-

ous frame Fi−1 are encoded with rates ris and ri−1
s respectively,

and α(sx) is the recovery probability of segment sx after CPR is
performed.

∑
Fj∈sx

dj(r
j
s, r

j−1
s ) is the distortion reduction for seg-

ment sx.
α(sx) depends on both WWAN packet loss statistics and CPR

recovery probability Q(Ω, x), the probability that CPR recovers Ω
known WWAN lost packets in SNC group Θx. To impart intuition,
first suppose there is only one SNC group with Rs packets. α(s1)
can then be written simply as 1 − pgrp(Rs), where pgrp(Rs) is
the group loss probability that there were non-zero packet losses in
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WWAN broadcast to a peer, and CPR cannot recover all those losses
at the peer. Given iid WWAN losses, pgrp(Rs) can be written as2:

pgrp(Rs) =

Rs∑
i=1

(
Rs

i

)
liavg(1− lavg)

Rs−i × [1−Q(i, 1)] (4)

where lavg is the average WWAN loss rate and Q(i, 1) is the proba-
bility that CPR recovers i known WWAN lost packets in SNC group
Θ1. Since there is only one SNC group, Q(i, 1) = 1 when R ≥ i;
and 0 otherwise.

In general, there are X SNC groups, and we define γx as the
transmission weight associated with SNC group Θx; i.e., given R

expected number of CPR packets received by an average peer, the
expected number of CPR packets of type x is Rγx. In Fig. 1, the
three SNC groups have weights γ1, γ2 and γ3, and

∑3

x=1
γx = 1.

CPR recovery probability Q(Ω, x) depends on how SNC type
selection is performed at each peer to achieve desired proportions
γx’s; in Section 3.5, we derive Q(Ω, x) formally for our proposed
counter-based deterministic SNC selection scheme (to be discussed
in Section 3.3). α(sx)’s for X SNC groups can be derived from the
single SNC group case using Eq. (4) as the basis for Θ1 and recur-
sively considering larger groups Θx, x ≥ 2. We omit derivations for
α(sx)’s and refer readers to [5] for details.

With Eq. (3), our objective is to minimize the expected distortion
by finding the optimal SNC groupsΘx’s and their associated weights
γx’s as follows:

min
Θx,γx

D (5)

Note that SNC groups Θx’s and their associated weights γx’s
are both defined in a global sense; i.e., one set of SNC groups and
weights for all peers in the collective. In practice, we observe non-
negligible variance in the number of CPR packets received by a peer,
and simply applying Θx’s and γx’s to every peer would lead to very
poor performance for peers with very few received CPR packets.
This motivates us to propose the three optimization techniques de-
scribed below.

3.2. CPR Sub-Classes
To capture variance in Rn, we observed through simulations that
Rn follows a Gaussian distribution with mean R and variance σ2.
Given a Gaussian model, we propose to divide one CPR collective
into three equal-sized sub-classes with R−, R and R+ average num-
ber of CPR packets, where R− represents the poor peers who re-
ceive fewer CPR packets than average peers and R+ represents the
rich peers who receive more CPR packets. The three sub-class divi-
sions properly account for both poor and rich peers, while keeping
a representative middle class with average CPR capability and small
intra-class variance. Simulations show that using more sub-classes
reaped marginal improvement compared to the three sub-classes di-
visions, while the increase in computation complexity due to more
sub-classes is significant.

Given Rn is Gaussian-distributed and the three CPR sub-classes
are of equal size, one can locate the boundaries of the three sub-
classes as R−

n ≈ R − 3
√
2

10
σ and R−

n ≈ R + 3
√
2

10
σ. We can then

calculate the mean of the three sub-classes as R− ≈ R − σ and
R+ ≈ R + σ. With the CPR sub-class concept, expected distortion
for each sub-class can be obtained via Eq. (3), and total distortion D

is simply the sum of three sub-classes’s distortions.
Note that although we divide one CPR collective into three sub-

classes with three different mean values, the division is performed in

2We assume each native packet has been successfully delivered from
source via WWAN to at least one peer in a large collective, so that CPR
can attempt recovery of that packet to other peers locally via WLAN. See [5]
for more general settings when this assumption may not be true.

a statistical sense, and one cannot determine a priori exactly which
peer is in which CPR sub-class. Hence one set of SNC groups Θx’s
and associated weights γx’s returned in Eq. (5) is applied to all peers
in the CPR collective, and the variance in Rn is only captured sta-
tistically by the optimization process. In the following, we show
further local optimization can be performed by carefully selecting
proper SNC types for transmission in a local region.

3.3. Counter-based Deterministic SNC Selection
In Eq. (5), the optimization returns SNC structures Θx and associ-
ated weights γx’s without designating an implementation. We first
discuss how γx’s can be implemented such that CPR packets cor-
responding to important SNC groups are always transmitted before
packets of less important groups.

In our previous work [3], we proposed a randomized scheme
where a peer randomly selects a SNC type according to global
weights γx’s. While it enforces the desired packet proportions in
SNC groups, it does not conform to a logical order where small
(hence more important) SNC types are transmitted first. When there
is non-negligible variance in Rn, a logical transmission order en-
sures that poor peers receiving few CPR packets would get important
packets in larger proportions than indicated by the global weights
γx’s, ensuring a minimum satisfactory level of quality.

To impose a logical order, we propose a counter-based deter-
ministic SNC selection scheme for peer n to select the SNC type x.
Each peer keeps track of the number of received CPR packets thus
far and we denote it as Ro. When a transmission opportunity arises
for a peer, he transmits SNC type 1 if Ro ≤ Rγ1. A peer transmits
SNC type 2 when Ro > Rγ1 and Ro ≤ R(γ1 + γ2), and so on.
When Ro > R, peer n selects SNC type based on a timer instead;
i.e., if the current time is in-between T

∑j−1

i=1
γi and T

∑j

i=1
γi,

then the chosen SNC type is j. Using this method, one can enforce
proportions γx globally and yet maintain a logical order.

Note we use reception counter instead of transmission counter
to maintain the logical order. The reason is twofold. First, using
WLAN broadcast mode, the number of packets received by a col-
lective can far exceed the number of packets transmitted (each trans-
mitted packet is received by multiple listening peers). Hence using
transmission counter would mean too many packets of small types
if the number of packets transmitted per peer is small. Second, a
transmitted packet may not be correctly received in time by neigh-
bors due to in-air collision and interference. Hence reception counter
provides a more accurate estimate of neighbors’ current states.

Because of deterministic transmissions, packets of small SNC
types are always transmitted earlier than packets of large SNC types.
This property has three implications: 1) Peers receive packets of
more important SNC types earlier than less important SNC types;
2) If Rn is smaller than R, then n’s neighbors receive more packets
of more important SNC types than indicated by γx’s, which benefits
peer n’s poor neighbors; and 3) Peers can perform simple local opti-
mization based on the neighbor state information to further optimize
local SNC type selection, as will be discussed in Section 3.4.

3.4. Local Optimization given Deterministic SNC Selection
During CPR exchange, a peer can learn of their immediate neigh-
bors’ (possibly stale) state information, if state information is piggy-
backed on top of each exchanged CPR packet. Armed with neigh-
bors’ state information, a peer can now choose a smaller SNC type,
if the peer deduces that his neighbors have not fully recovered that
SNC type. Doing so means more important SNC types are more
likely to be recovered before peers can proceed to select larger SNC
types. Note that this simple local optimization is not possible with
a randomized SNC selection approach, where at any given time it
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is more difficult to deduce the appropriate SNC type to transmit to
a peer’s neighbors. Moreover, compared to the more complex RD-
based local optimization [3] for the randomized approach, our sim-
ple local optimization requires very small computation overhead.

Based on the discussion above, we piggyback SNC group recov-
ery status on top of each CPR packet. The status information reveals
how many packets the transmitting peer has for each SNC group.
Since there are at most M SNC types, and generally M is not a large
number (15 in our setup), this exchanged status information requires
minimum bit overhead. Based on the status information, peer n does
the following: 1) Before deciding which SNC type to encode, peer n
first checks whether its neighbors have recovered the previous SNC
group. If not, peer n continues to transmit packets of the previous
SNC type; 2) After making a decision on SNC type, peer n checks
whether its neighbors have recovered the decided SNC group. If so,
n moves on to check the next SNC type.

When peer n checks whether its neighbors have recovered SNC
group Θx, for each neighbor m, peer n first calculates the time
difference τ between the current time and the timestamp when the
neighbor information was received. The expected number of packets
m can receive during τ is τR

T
. If the expected number of received

packets is greater than the number of packets neighbor m needs to
recover SNC group Θx, then m is assumed to have recovered Θx;
otherwise peer n assumes that m still needs packets of type x.

3.5. CPR Packet Recovery Capability
In this section, we derive Q(Ω, x) given our proposed counter-based
deterministic SNC selection scheme. In particular, we derive recur-
sions that count the number of WWAN packet loss patterns, given
Θx’s and γx’s.

Suppose Ω WWAN packets are lost in SNC group x. The prob-
ability that CPR can help recover these lost packets is written as:

Q(Ω, x) =
LPR(s1, sx,Ω)

LPA(s1, sx,Ω)
(6)

where LPA(s1, sx,Ω) is the total number of all possible packet loss
patterns in segments s1 to sx in SNC group Θx. LPR(s1, sx,Ω) is
the number of packet loss patterns that are CPR recoverable within
the segment range. The ratio of the two is Q(Ω, x).

LPA(s1, sx,Ω) can be recursively obtained withLPA(sm, sx, ω),
the number of loss patterns starting from sm to sx with ω losses.

LPA(sm, sx, ω) =

{ ∑hi
i=lo LPA(sm+1, sx, ω − i) m < x

1, otherwise
(7)

lo and hi are the minimum and maximum number of lost packets
that can be in segment sm:

lo = max{0, ω −

x∑
j=m+1

∑
k∈sj

Rk
s}, hi = min{ω,

∑
k∈sm

Rk
s} (8)

LPR(s1, sx,Ω) can be similarly written as in Eq.(7). lo and hi

for LPR(s1, sx,Ω) are updated to reflect the number of recoverable
packets by replacing

∑
k∈sm

Rk
s in Eq.(8) with Nm, the number of

possible recoverable packets in segment sm:

Nm =

{ ∑
k∈sm

Rk
s , R

∑x
j=m γj ≥ Ω

min
{∑

k∈sm
Rk

s , �Rγm�
}
, otherwise

(9)

The first line in Eq. (9) is due to the definition of SNC groups that
CPR packets of a larger SNC group can help with previous SNC
groups. As long as R

∑x

j=m γj ≥ Ω, any number of the Ω lost
packets can fall in segment sm, and they can be recovered. When the
condition is not met, it implies that SNC group m cannot use help
from later SNC groups and might not be able to hold all the Ω lost
packets. Note the above analysis assumes the sub-class with average
R CPR packets in Eq. (9). It is valid for the other two sub-classes by
substituting R with R− and R+ respectively.

4. EXPERIMENTATION
Two test video sequences news and foreman were used for simu-
lations at CIF resolution (352 × 288). The GOP size was chosen at
15 frames: one I-frame followed by 14 P-frames.

We performed simulations using QualNet. The underlying CPR
scheduling was 802.11 MAC with broadcast enabled. We set up a
CPR network by uniformly placing 50 peers in a 1000 × 1000m2

area and the WLAN transmission range was set to 280m. Given one
GOP was 15 frames and video was encoded at 15fps, T was 1s.

100 300 500 700 900
20

25

30

35

38

Data Rate (kbps)

P
S

N
R

 (
dB

)

Counter−base deterministic SNC
Randomized SNC

100 300 500 700 900
15

20

25

30

33

Data Rate (kbps)

P
S

N
R

 (
dB

)

Counter−based deterministic SNC
Randomized SNC

a) news b) foreman

Fig. 2. Counter-based deterministic SNC selection with local opti-
mization versus randomized approach.

Fig. 2 compared our proposed counter-based deterministic SNC
packet selection approach with local optimization, to the random-
ized approach. Fig. 2a used the news sequence. Because of our
deterministic approach that guarantees packet reception of small but
important SNC types, and because of the local optimization and CPR
sub-classes that handle the inadequacy of pure distributed transmis-
sions for peers with different CPR capabilities, our proposal greatly
outperformed the traditional randomized scheme. At its maximum,
our proposed scheme achieved 1.87dB gain over the randomized ap-
proach. Fig. 2b showed similar results for the foreman sequence.
The deterministic scheme obtained 1.34dB gain over the randomized
SNC selection scheme in this case.

5. CONCLUSION
In this paper, we propose a counter-based deterministic SNC se-
lection scheme for peers to select NC types for CPR exchanges
of repair packets to collectively alleviate WWAN video broadcast
losses. Combining CPR sub-classes and local optimization, we
show through simulations that our proposed scheme can improve
WWAN broadcast video quality by up to 1.87dB over a previous
randomized SNC selection scheme.
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