GRAPHICS-TO-VIDEO ENCODING FOR 3G MOBILE GAME VIEWER MULTICAST
USING DEPTH VALUES

Gene Cheung, Takashi Sakamoto, Wai-tian Tan

Hewlett-Packard Laboratories

graphics-to-
=== video encoder

core network

observer 2

observer 1

Fig. 1. Overview of GOVEM? Architecture

ABSTRACT

Towards the goal of streaming mobile network game sequences in
standard compliant video to thousands of game observers, a spe-
cialized video encoder called grencoder that takes 3D game graph-
ics as input is discussed. In particular, we present a framework that
increases the visual quality of regions of interest (ROI) of the video
by performing intelligent mode selection during h.263+ video en-
coding. The regions of interest are identified by extracting the
depth values of pixels in the frame buffer made available when
3D objects are projected to a 2D surface during rasterization. Re-
sults show that by performing ROI mode selection, PSNR of test
sequence slightly increases while subjective quality of nearby ob-
jects increases noticeably.

1. INTRODUCTION

While streaming video was believed to be the content that would
occupy the expanded bandwidth of the 3G wireless networks, the
fastest-growing applications, as seen in Korea and Japan, have in-
stead been in the arena of mobile network games. Like their In-
ternet counterparts, mobile network games require real-time in-
teractivity, placing a stringent demand of volume timely deliver-
able data on the current 3G network real-time mechanism [1, 2].
Moreover, typical mobile terminals are low-powered light-weight
devices with limited computing resources, making them impossi-
ble to render millions of triangles per second necessary for high-
quality graphics [3]. The two reasons combined to result in today’s
mobile online games being limited in group size and interaction,
and simplistic in visual quality.

composition
,-=>{_information|™ "~

v

3D Graphics raw Video encoded
models Rendering | frames Encoding | bitstrean

Fig. 2. Graphics-to-video Encoding

Given it is not foreseeable that either of these two inherent
problems would be well solved until a fundamental advance in
wireless network technology and a drastic speedup in mobile com-
puting hardware take place, we instead focus on a different group
of potential users who can flourish even within existing constraints
— game observers. Like the Internet counterparts such as Half-
Life, as games mature highly skilled players acquire fan base who
loyally follow and observe their heroes in action en masse in mul-
ticast channels. As observers instead of active game participants,
the network and hardware requirements to support the observer
view are drastically different. First, the hard real-time nature of
interactive games can be relaxed to a streaming scenario where an
initial buffering delay up to several seconds can be tolerated. Sec-
ond, if streaming video is delivered instead of graphics, then the
burden of rendering triangles can be pushed back to a streaming
server which converts graphics into standard-compliant video and
then streams the encoded bitstream to interested observers. Using
streaming video instead of graphics also has the added advantage
of reachability: mobile handsets are much more likely to have a
built-in streaming client available and ready to go than a vender-
specific game client software.

Given the above observations, we have designed an architec-
ture to support 3G mobile game viewing called GOVEM? (Game
Observer Video Encoding and Mobile Network Multicast). The
overview of GOVEM? is shown in Figure 1. Game player ac-
quires permission and registers for an online game via the por-
tal, then participates in the game in a server-client model via the
game server. The game server sends updated game events to the
player(s) as well as the graphics-to-video encoder. The graphics-
to-video encoder, called grencoder, converts updated game events
to encoded bitstream, then streams to interested observers using
mobile multicast support. Among the many pieces in GOVEM?,
we choose to focus on the grencoder in this paper.

1.1. Graphics-to-video Encoder (Grencoder)

Schematically, the function of a grencoder can be separated into
two parts as shown in Figure 2. A graphics rendering engine first
renders 3D representation of objects onto a 2D plane in the frame
buffer, a process called rasterization [3]. The raw frames in the
frame buffer are then inputed to a standard compliant video en-

coder to be encoded into bitstream. The bitstream is subsequently
packetized and sent to the interested observers.

Having the original 3D models that produce the 2D frames
means the graphics rendering engine has scene composition infor-
mation of the encoding source that are not typically available to
a video encoder. In this paper, we exploit one particular type of
composition information — depth values — to improve the visual
quality of regions of interest (ROI). Depth values of objects are
used so that one can discern which object is closer to the cam-
era, and hence which objects are occluded and which are not. If
we assume objects closer to camera are also objects of interest,
then depth values also reveal regions of interest. In this paper, we
propose to use depth values obtained during rasterization to iden-
tify regions of interest, then apply clever mode selection strategy
to allocate more bits to the regions of interests to improve visual
quality.

The outline of the paper is as follows. First, we discuss the
framework in which we perform extraction of depth values and
mode selection in Section 2. Preliminary results are presented in
Section 3. We then briefly discuss related work in Section 4. Fi-
nally, we conclude in Section 5.

2. GRENCODING FRAMEWORK

The grencoding framework essentially needs to perform two tasks:
i) extract depth values of objects during rasterization, ii) perform
mode selection given extracted depth values during video encod-
ing. We discuss them in order.

2.1. Depth Value Extraction

We begin with a brief discussion of the common representations
of 3D graphics in the game industry. OpenGL [4], an industrial
standard for graphics initiated by Silicon Graphics Inc., is a set
of APIs (application programming interface) that enables graph-
ics programmers to write software that can be easily compiled and
optimized on a wide variety of computing platforms. Application
of OpenGL is far-ranging: from medical imaging to virtual reality
and CAD. In contrast, OpenGL ES (embedded system) [5] is a sub-
set of OpenGL APIs, selected by a special interest industrial group
Khronos, that is deemed essential for mobile network gaming. Us-
ing an essential subset instead of the full-size OpenGL lightens the
burden of the hardware manufacturers to support a graphics speci-
fication, while enabling them to specialize in fewer APIs.

During rasterization when 3D objects are mapped to 2D plane,
a depth value for each pixel mapped is calculated using Z-buffer
algorithm [3] to determine object occlusion. Assuming 3D ob-
jects are expressed in OpenGL ES APIs, we write API wrappers
for particular OpenGL ES APIs after rasterization to first extract
depth value d(j, k) for each pixel (j, k) from the frame buffer be-
fore calling the native APIs. This way, our technique can be eas-
ily adopted by any mobile network game developers that support
OpenGL ES, and game developers do not need to make any alter-
ations to their game software in order to reveal depth values for
grencoding.

2.2. Coding Mode Selection

The coding mode selection problem in video coding is the problem
of selection coding modes for a group of N macroblocks (MBs)
such that the total distortion is minimized subject to a rate con-
straint. It has been proposed to model the inter-dependencies of

a row of MBs in video standard h.263 version 2 (h.263+) linearly
[6, 71, so that the rate and distortion of each M B;, R;() and D;(),
depend only on mode m; of M B; and mode m;_1 of previous
M B;_, if available. As such, the mode selection problem can be
formalized as the following optimization:

N N
min Di(mi,m¢,1) S.t. ZRi(mhmi,l)SRs, (@))]

i=1 i=1

where for h.263+ the possible mode set M for a P frame is:
M = {INTRA, SKIP,INTER, INTER4}, and R; is the bit-
rate constraint for the N MBs.
Instead of solving the original constrained problem, it is com-
mon practice to solve the corresponding Lagrangian or uncon-
strained problem as follows:

N
min Di(msi,mi—1) + Ao Ri(mi, mi—1) 2)
m;EM P}
where)\, is the Lagrange multiplier of a given value. It can be
easily shown [8] that if there is a A such that the optimal solution
{m?} to (2) is such that "1V | R;(m?) = R, then {m¢} is also
the optimal solution to (1). It has been shown that given the quan-
tization parameter (), the appropriate A can be found empirically
[9]. Given A, (2) is typically solved by marching through a trellis
and finding the shortest path within it [6, 7].
Given we have the available depth values d(3, k) of each pixel
(4, k), we can compute (to be discussed) the weight w; of each
M B;, reflecting the level of interest for that MB. Given w;’s, we
can then solve the following modified Lagrangian instead:

N
mr{gl}/‘ Z; Di(mi,mi—1) + M ws)Ri(ms, mi—1) 3)

where the multiplier A(w;), controlling the severity of the penalty

function A(w;)R; (), now depends on the weight w; of M B;. Two
remaining problems need to be solve then: how to map pixel depth
values d(j, k)’s to MB weight w;’s, and how to determine multi-
plier function A(w;). We discuss them next.

2.2.1. Mapping Pixel Depths to MB Weights

Given we have the depth value of each pixel (7, k), d(j, k), we
need to calculate a weight w; for each 16216 M B; to reflect the
level of interest of M B;. We first define anti-depth values as the
scalar difference of pixel depth from maximum depth value, i.e.
dmax — d(j, k). We have already made one observation that the
surfaces of objects closer to the camera (large anti-depth values)
are likely to garner more viewer interest. Hence the mean of anti-
depth values in a MB would be a good indicator of how close to
the camera the surfaces of objects in the MB are likely to be. In
fact, the square of the anti-depth value mean of pixels would be
used to accentuate the importance of close-to-camera objects.

A secondary consideration is that the edges of objects are often
important as viewers try to discern the shape of objects. Edges of
objects in a MB would often be reflected in the variance of the
pixel depth values. (This is not always the case. Consider a thin
piece of paper on top of a desk.)

As an example, consider in Figure 3 a cone object whose bot-
tom is closer to the camera than the top. M Bz and M B4 would

2\4

Fig. 3. Determining the Weight of MBs

have high anti-depth value mean, while M B, and M Bz would
have high variance of pixel depth values.

Given the two above considerations, we use the formula that
w; equals to the square of the anti-depth value mean in M B; plus
the variance of depth values in M B;.

To control the extent to which we proportionally contribute
more bits to ROIs at the expense of other MBs, we define v > 1 to
be the multiplicative factor such that no MB will receive more than
- share of the bit budget. We accomplish that by defining offset
weights v; = w; + Woysy, With wo s being the offset parameter.
On average M B; will receive % portion of the bit budget, where
v = % Zi\; , Vi is the mean of the N MB offset weights. By
definition of v, we have:

Vi Y ,
— < =
No SN Vie{l,...,N} “4)

We satisfy inequality (4) by defining offset parameter w, s as:
(&)

where Wmax = max;—1,.. v{w;} and ® = + SN w;.
Notice that using this bit distribution strategy, we perfectly ex-
haust the budget Rs to the N MBs:

N n
iRs = ° i o
£ Nv N@;w + Wor s
= BN+ Nwy) =R 6
~ No off) = e

2.2.2. Determining Multiplier Function \(w;)

Suppose), is selected a priori for original Lagrangian optimiza-
tion (2) such that optimal solution {m{ } has operational rate RS =
Zf\; L Ri(mg, m?_1) is the same or very close to R, of original
constrained optimization (1). The goal now is for each weight w;
of M B;, find multiplier A(w;) that will result in usage of pro-
portion = of the bit budget Rs when performing modified La-
grangian optimization (3). This means the solution {m;} to (3)
will result in operational rate R = va: L Ri(mi,mi_1) = RS.
Having this requirement has the benefit that any previously derived
formulas for A such as [9] will have the same intended operational
rate when our modified rate-distortion optimization is applied.

To derive the mappings \(w;), we first need a theoretical char-
acterization of A and rate R. It is analyzed in [9] that the Lagrange
multiplier A corresponds to the negative slope of the distortion-rate
function:

A= ——. 7

iR N
We next assume a typical high-rate approximation curve for entropy-
constrained scalar quantization can be written as:

R(D) = alog (%) , (3)

where a and b are constants that parameterized the rate-distortion
function. We can now see that X is related to R exponentially:

A= <é) e
a
One interpretation of (9) is that to achieve operational rate R2 for
N MBs, the appropriate multiplier), is found by (9). The prob-
lem is that we know neither parameters a and b, nor the intended
rate RZ. However, we do know that A\, = (g) e % results in bit
consumption of %RZ per MB on average for N MBs. To achieve
target usage ;\’,’ﬁ R for M B; then, we find A\(w;) that will result
in operational rate %* R and apply it to M B; only as done in (3),
so that it will consume % R on average.
To find A(w;) that consumes “* R bits for N MBs, we solve
for RY in terms of A, and substitute in (9):

()

We know g > X, from observing (9). If we let g = a\,, where
a > 1, we get:

ol

(C)]

s

A (10)

1-% 1‘(%&)
Aw;) =X~ = Ao of f

(11)

3. EXPERIMENTS

3.1. Implementation

To construct a testbed for grencoding, we employed Mesa release
5.1, an implementation of OpenGL version 1.4 API’s on Linux.
We wrote wrappers to extract RGB components from the frame
buffer using the OpenGL (also OpenGL ES) API glreadPixels(),
which were then converted to Berkeley YUV format as input to the
h.263+ video encoder. Also using glreadPixels(), we extracted the
depth value of each pixel from the frame buffer. The calculation in
Section 2.2.1 is then performed for each MB and outputted to be
used by the video encoder.

3.2. Numerical Results

We generated three 100-frame demo sequences from Mesa pack-
age, gears and reflect, as our test sequences. We set the
frame size at QCIF (176x144) and the frame rate at 30 fps. Us-
ing base mode selection algorithm [6] of (2), we encoded the se-
quences for given quantization parameters, resulting in bit-rate as
shown in Table 1. Under the same parameter setting, we reran the
video encoder using the ROI mode selection algorithm of (3), with
7 and « set to 4 and 1.1, respectively. The Peak Signal-to-Noise
Ratio (PSNR) performance of both mode selection algorithms are
shown in Table 1.

From Table 1, we see that by using the depth values to adjust
the multiplier value A, the PSNR performance improves 0.36dB
to 0.95dB, albeit a slight increase in bit-rate. One explanation can
be that by investing in more bits in the near-camera objects, those
objects are more likely to reoccur and not be occluded in future
frames, resulting in better motion-compensation. Recall that base
mode selection (2) is a frame-by-frame optimization and does not
take into account this type of inter-frame dependencies.

The more telling improvement, however, can be seen visually
as shown in Figure 4 and 5, where the 12th frame of sequence

sequence Quant. | Opt | kbps PSNR
gears 11 base 124 31.25dB
gears 11 ROI 132 | 31.66dB

reflect 9 base 124 | 32.71dB

reflect 9 ROI 134 | 33.07dB
gloss 5 base 123 30.86dB
gloss 5 ROI 137 31.81dB

Table 1. PSNR Comparison of Different Mode Selection Schemes

a) Normal Mode Selection b) ROI Mode Selection

Fig. 4. Visual Comparison of Sequence 'reflect’

reflect and 75th frame of sequence gloss are shown, respec-
tively. In Figure 4, we see that on the right, the heavy bit allocation
to the cone and the matt below of the ROI mode selection scheme
resulted in a higher quality representation of the objects as com-
pared to the base mode selection scheme. Similarly in Figure 5,
the lid and mouth of the pot on the right is more detailed.

4. RELATED WORK

Intelligent bit allocation in video coding according to regions of
interest has been studied previously in the literature [10]. Our
work differs in that we are focusing on graphics-to-video encod-
ing, where composition information such as depth values can be
easily extracted as discussed in Section 2.1.

For compliance with the standardized packet streaming ser-
vice (PSS) of 3GPP [1, 2], we specialize in the coding mode se-
lection problem for video standard h.263 version 2 (h.263+) [11].
Mode selection for h.263+ has been extensively studied [6, 7, 12].
We leverage on these work as our starting point in Section 2.2.

One can interpret having available depth values of pixels in
a frame as an improvement in source model over the basic raw
video frame, and it has been shown [13] that having more informed
source models does indeed improve coding efficiency. The differ-

a) Normal Mode Selection b) ROI Mode Selection

Fig. 5. Visual Comparison of Sequence 'gloss’

ence in approach from [13] is that instead of using a parametric
model based codec, we are constrained to have standard-compliant
video as output, limiting our flexibility.

A related topic is light field coding [13, 3], outgrown from an
image-based graphics rendering technique named light field ren-
dering. To the best of the authors’ knowledge, interactive game
developers still use polygons in describing objects, and light field
rendering is not currently supported in OpenGL specification [4].

5. CONCLUSION & FUTURE WORK

In this paper, we have shown that using depth values available
from 3D graphics rasterization, we can improve the visual qual-
ity of close-to-camera objects. We do so by writing wrappers to
OpenGL ES APIs, hence requiring minimal code change to origi-
nal software written by mobile game developers. The technique is
sufficient general that it can be applied to other coding standards
such as h.264. However, mode selection using depth values is only
one concrete example of how composition information of 3D ob-
jects can be extracted for video encoding benefits. For future work,
we are investigating other forms of composition information useful
for compression efficiency and/or optimized mobile streaming.

6. ACKNOWLEDGMENT

The paper benefited from discussions with other members of the
GOVEM? team in HP Labs Japan: Yasuhiro Araki and Takeaki
Ota and Michael Sweeney.

7. REFERENCES

[1]1 3GPP TS 26.233 Transparent End-to-End Packet Switched Streaming Services
(PSS); General description (Release 4), ftp://ftp.3gpp.org/Specs/2001-03/Rel-
4/26_series/26233-400.zip, March 2001.

[2] 3GPP TS 26.234 Transparent End-to-End Packet Switched Streaming Services
(PSS); Protocols and codecs (Release 4), ftp://ftp.3gpp.org/Specs/2001-03/Rel-
4/26_series/26234-400.zip, March 2001.

[3] T. Akenine-Moller and E. Haines, Real-time Rendering, AK Peters, 2002.

[4] “OpenGL: The industry’s foundation for high performance graphics,”
http://www.opengl.org.

[5] “OpenGL ES: The standard for
http://www.khronos.org/opengles/.

embedded 3D graphics,”

[6] T. Wiegand et. al., “Rate-distortion optimized mode selection for very low bit
rate video coding and the emergin h.263 standard,” in /EEE Trans. on CSVT,
April 1996, vol. 6, no.2.

[7]1 D.Mukherjee and S. Mitra, “Combined mode selection and macroblock quan-
tization step adaptation for the h.263 video encoder,” in ICIP, 1997.

[8] Y. Shoham and A. Gersho, “Efficient bit allocation for an aibitrary set of quan-
tizers,” in IEEE Trans. ASSP, September 1988, vol. 36.

[9] T. Wiegand and Bernd Girod, “Lagrange multiplier selection in hybrid video
coder control,” in IEEE International Conference on Image Processing, Thes-
saloniki, Greece, October 2001.

[10] W.-S. Cheong, K. Kim, and G. H. Park, “A new scanning method for h.264
based fine granular scalable video coding,” in ACM Multimedia, Berkeley, CA,
November 2003.

[11] ITU-T Recommendation H.263, Video Coding for Low Bitrate Communication,
February 1998.

[12] G. Cheung, “Directed acyclic graph based mode optimization for h.263 video
encoding,” in IEEE International Conference on Image Processing, Thessa-
loniki, Greece, October 2001.

[13] B. Girod et al., “3-D image models and compression — synthetic hybrid or
natural fit?,” in International Conference on Image Processing, October 1999.

