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ABSTRACT 

While hitrate-reduction video transcoding is a mature research 
topic, we introduce a irew paradigni for the old prohlein: design- 
ing a complexity scalable transcoder where computation can be 
gracefully traded off with transcoded video quality. Complexity 
scalability is iniprtant when a time-vaqing number of real-time 
transcoding sessions must be inaintaiued by the transcoder simul- 
taneously. We present a complexity scalable ti-aiscdiiig algorithm 
far H.263 based on codiiig niode transition prahahilities. Pre- 
liniiialy results are presented to show potential tndeoffs between 
computation and transcoded video quality in PSNR. 

1. INTRODUCTION 

While part of the networking commiunity is investing heavily on 
research and development of content delivery networks (CDNs) 
~ an overlay network inf~'aSlNcture that reliably and efficiently 
caches popular contents across the Internet for large nunbcr of 
users. another part of the conimunity is uivestigating the next evo- 
lution beyond simple content distribution. The IETF working p u p  
that concems itself with tlus elfort is called Open Pluggable Edge 
Sewices (OPES) [I], and its vision is a future ofapp1ic;ition coni- 
ponrnt networks tliat provide sewices tu content at network edge 
before delivery to coiitcnt consumers. 

An exaniple of this type of network application is real-time 
transcoding of media content suitable for consumption by the re- 
quested client. Because the nuniber of transcoding requests is 
tinie-variant, a g o d  network conrponent respnsihle for transcod- 
inginust beabletoscabtoa largeiiumbcrofseNicerequests,even 
at tlie expense of resulting transcoding quality. In other words. B 

campiexi!,, sculuble transcoder, with the ability to  trade off banscod- 
ing perfonnance with the number of concurrent transcoding ses- 
sions. would he desirable as a network coinponent in the OPES 
tianiework. This is the topic we are inlmtigatiog in this paper. 
In particular. aniong all pssihle transcoding operations. we are 
focusing on the rate-reduction of H.263 121 video stream. Our 
methodology. however. is fairly general and can conceivably be 
applied to rate-reduction of other video coding standards such as 
MPEG4 aud H.26L. In tlie case of the latter, there are ninny more 
rnwles available than in H.263. making our presented approach 
even more applicable. 

While transcoding itself is a fairly nrature research topic 131 
141 [SI 161. casting transcoding in thc fraiiiework of coniplexity 
scalahility is new. Like earlier work in coniplexity scalability un- 
der different contexts 171 [XI, the challenge is to find the optimal 
tradeoffbetween compression quality and computational complex- 
ity given the desired resulting transcoded hit rate. Towards that 
goal. we have developed a complexity scalable transcoding algo- 
ritlun called ym6da~ilis(ic niade-based Iruriscodirrg algorilhni that 
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Fig. 1. Tr.mscodcr Architecture 

uses a iwriuhle amount of side infomiation i ~ d e  available during 
the first stage of the transcoding process (decoding stagc) for the 
second stage (rc-encoding stage). The more side infomiation used, 
the more computationally eficient the transcoding algorithm is, at 
the cxpensc of lower transcoded video quality. 

our proposed algorithm Section 4 presents results and Section 5 
concludes the paper. 

The ncxt sectiondiscusses relatcdworli. Section S thenpresents 

2. RELATED WORK 

2.1. Transcoding 

A typical transcoding architecture, as shown in Figure 1. consists 
of two stnges: a decoding stage that converts the compressed ii- 
put bitstream to an uncompressed frame representation of the in- 
put, followed by a reencoduig stage that ellcodes the illput to a 
lower hit rate by employing stronger quantization. Side ii!finibn,ra- 
tiorr. made available durllig the first stage. is often used as an aid 
for the second stage. 

Effectively using side informatioil is important, as it is well 
known that while decoding a video streaiii requires little COmpU- 
tation, encoding requires much more coniputation due to motion 
esth"nn. To save computation using side iilfomiation, earlier 
work IS1 141 reuses motion \rectors and coding modcs ofthe origi- 
nal compressed input, available as side inlormation during decd-  
ing, in the compressed output. As shown in IS] 161. however, the 
new quantization often means tlie original motion vectors (MVs) 
and modes are no longer optimal in a ratedistortion sense. due to 
changes ui the reference pictures available to the decoder. To al- 
leviate this problem, [ 5 ]  and [ 6 ]  propose to use a snialler search 
space to refnic the original MVs. While we acknowledge the Un- 
portance ofrnotion re-estimation duringre-encoding. we are doing 
so in a coiiiplexity scalahle fnshion. trading ollcomputation with 
tnnscoduig quality. 
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2.2. Complexity Scalability 

The study of tndeoff among rate. distortion and complexity for 
vector search in multi-dhncnsional space has heen exa~nined in 
171 and [X I .  We leverage on the variahle clriiiplexity algorithms 
presented in 181. where distortion is traded off with complexity in 
the case of motion estimation_ For a macroblock (MU) in a current 
frame. indicated by vector I.. fmding the hest inatclied MI3 in a 
previous fratne. indicated by i+ G. means identifying the niost 
suitable MV ii' in a search space S that miniinires sonic metric. 
llke the cotinnonly used suiii of ahsolute difl'ereoce (SAD): 

SAD is the sum of I.' nomi o i  the difference in pixel intensity be- 
tween all correspond"~p pixcls oftwo niacroblacks (MBs): 

S A D ( ~ ' - I - ~ . ~ )  = ~ l r t - l ( i ' + ~ - t Z )  - r,(i+ijI (2) 
k II 

where It (G) is the pixel intensity value ofpixel of frame t indicated 
by vector ?C> and B contains the set ofotlset vcctors 6's that points 
to all pixels ior a MR with top IeR corner at (0.0) 

As discussed in [XI, there are essentially two classes of mrth- 
ods to speed up the search in ( I ) .  Fast Murchi,ip speeds up the 
evaluation of SAD by reducing the number uf pixels in B to a 
smaller B'. Post search reduces the number of MV candidates hy 
varying the size of 5 .  We focus on fast search in this paper. b o  
we differ from [SI in that in tlie case of transcodinp. previously 
selected motion vector for each MR in tltc encoded bitstream can 
be used as ill1 good initial mnotion Vector estimate during motion 
re-estimation. 

3. PROBABILISTIC MODE BASED ALGOWTIIM 

The key to designing a complexity scalable transcoding algorithm 
is how to elkctively utilize thc side infbrniation made availahlc 
during the decoding stage of transcoding to scale hack computa- 
tion during the re-encoding slape. The side iiiormation are the 
previously used MVs and coding modes ibr macrohlocks ui a P- 
frame. 

3.1. Correlation in Motion Vcetors 

Before we discuss our cmnplexity scalable algorithm. we fmt ex- 
amine the conelatian hetwecn the MV used in the previous encod- 
ing and the new optimal MV using exhaustive search U1 the entire 
search space after re-quantitization for ewry macroblock (MB) in a 
P-frame, as done by Youn et. a1.[6]. We accomplish that by record- 
ing the vector dilrereiilce behveen the two vectors b r  every MB 
ior 30 frames of QCIF-sized test sequences MotherDaughter. 
Foreman. Coast. a i d  Trevor. The resulting ditrerences arc 
counted for all MBs. normalized to 1, and plotted 111 Figure 2 fix 
d/llercnce pairs ofquantizcrs (2.6) and ( 5 p ) .  We fmt notice that 
the plots are fairly symmetric. and the peaks are centered around 
the oriRin a8 expected. We further notice that as the dillerencc be- 
ween the quantizers increases. the plots become more evenly dis- 
tributed away from the center (the probability that a M V  remains 
the saine is truncated). Figure 3 shows tlie required sc;irch area 
to reach a given percentage of ideal MVs as a function ofthe dif- 
fcrencc between quantization fictors, demonstrating a somewhat 
linear relationship behveen the two. 
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Fig. 2. Correlation hetweeii Previous a i d  New MVs 

What we can conclude is that a sniall rehie search space S' 
ceiitered amund the previous MV is sufficient IO capture the opti- 
mal MV. where 5" depends on the dilkrence hetween the quaoti- 
zation ~nranieters. 

3.2. Correlation in Coding Modes 

While coniplex coding inode selection algooritluns have been pm- 
posed [SI [lo] so that modes of a group oi MBs can he juktly 
and optimally selected. the complexity required for [Y] and [I01 
remains high and is likely not practical for real-time bwscoding. 
Iiistcad. we focus on selecting modes 011 a MB-by-MB basis in a 
rate-distortion optuiial niaiuier using Lagrange multiplier: 

ni,* = arg min d , ( n i )  + Xri(m) 0 

where d;(nr) and r.i(m) are tlie distortion and rate contribution 
fur MR i giwn tnode in respectively. and ,M is the set of niades 
availahle for each MB. The Lagrange multiplier X can selected 
using one of many well-known methods such as ( I  11. 

For 13.263 12). M essentially has four modes: MTRA (intm- 
block coiling). INTER (inter-block coding with I MV). MTER4V 
(inter-block coding with 4 MVs. ono for each Xxk sub-hlmk) and 
SKIP (repeat block from previous frame). As with MV. the optuiial 
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Fig. 3. Search Range Needed for Given Percentage of MVs 
Graph points me iriterpolated liom observed data points. 

coding mode for a MB will llkely change after re-quantization. To 
empirically see how llkely a MB changes from mode X to Y, we 
repeat the experilleiit in section 3.1 but collect statistics for coding 
modes instead, analyzing mode tmtsitions incurred when the input 
bitstreant to the transcoder has a certain quantization factor and the 
transcoder encodes tlie output hitstream with another quantization 
factor. 'The results. shown io Figure 4, seem to inkcate little varia- 
tion between transition probabilities for diKerent combinations of 
original and output quantization factors. 

3.3. Algorithm Development 

Havhg established lhe correlation between previous and new MVs 
and the correlation between previous and new coding modes, we 
now discuss our p~>posed probabilistic mode-based comploxity 
scaling algorithm. For each complexity N E (0 , .  . . , [ M I z } ,  we 
do the follow-ing: 

1. Given tile quantizer pair (41,42). where ql is the quan- 
tizer used in the initial bitstream and qz is the quantizer 
used in the transcoded hitstream fur the reference frame, 
select the appropnite MV search space S,,-,, for motion 
re-estimation (1 ). 

2. Mark the N cntries with the N hiaes t  probabilities in the 
mode-mode table ofFigure 4. where the probability ofeach 
enhy of modes (,Ur, M,) is probability of the input bit- 
stream mode M, times the probability of the output bit- 
stream niodc M, 

3. For each previous mode S. the mode set for the new mode 
is M ,  containing all marked modes. 

4. During encoding stage, for a given MB i with previous 
mode iiii. we solve (3) wherc made set M is Mei. 

In step 4. because the mode set is constrained depending on 
the previous mode. we only need to perfonn motion estimation (1)  
wlieu INTER or INI'ER4V are in the reduced mode set. Notice 
that when N = 0 and when N = IMI', we get the two base 
cases on the distortion complexity curve: no mode re-selection and 
no motion re-estimation versus full inode re-selection aid motion 

QreViOUS mode new mode transition transition 
wl probability probability pmbahility 
(quant = 5) (quant = 15) (quant = 25) 
intra intra 0.506 0.420 
0.007 inter 0.284 0.222 

inler4v 0.185 0.259 
shp 0.025 0.099 

inter intra 0.071 0.055 
0.427 inter 0.319 0.287 

inter4v 0.401 0.390 
s h p  0.209 0.269 

intcr4v intra 0.096 0.082 
0.363 inter 0.250 0.229 

inlzr4v 0.544 0.539 
Slap 0.110 0.151 

0.202 inter 0.063 0.068 
inter4v 0.088 0.126 
ShQ 0.847 0.804 

skip intra 0.002 0.002 

previous mode new mode transition transition 
wl probability pmhability probability 
(quant = in) (quant= 20) (quant = 25) 
,"Ira lotra 0.267 0.229 
0.062 inter 0.225 0.215 

ioter4v 0.453 0.472 
skip 0.054 0.084 

inter intra 0.075 0.058 
0.297 inter 0.365 0.350 

inter4v 0.393 0.402 
skip 0.167 0.190 

inter4\, intra 0.076 0.066 
0.364 inter 0.219 0.227 

inler4v 0.574 0.559 
skip 0.132 0.148 

0.277 inter 0.070 0.075 
ioter4v 0.118 0.134 
skip 0.806 0.788 

skip intra 0.W6 0.003 

Fig. 4. Comelation between Previous and New Coding Modes 
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re-estimation. When we need to consider mode transitions from 
INTRA to INTER or INTER4V. we execute a full motion search as 
opposed to a limited one based upon the quantizer pair. Since the 
amount of INTRA blocks are relatively few for tlie bitrates under 
consideration. this does drastically affect the overall complexity. 

4. RESULTS 

Figure 5 shows results of transcoding experiments perfonned on 
four sequences; Trevor. MotherDaughter. the pannillg part 
of Foreman. and Carphone. For each sequence. me transcode 
61 franies of a 30 Ws 200-301) kphs stream down to 80 kbps (30 
kbps in the case of MotherDaughter). These ditferenl bitratos 
comespond to quantization factors of 3 to 5 in the original sc- 
quences to factors of22 tu 25 in the transcoded sequences. We run 
the trmscoder at each complexity level, noting the total time taken 
to transcode the bitstream and the improvement in PSNR achieved 
over reusing all modes and motion vectors in the input hitstream. 
The simulations were done on  B 550 Mbz Pentiuni 111 with 256 
MB of main memory, and C-code \vas compiled with gcc with 
the -03 option. The reader should note that culrently available 
processors NII at UP to six times the speed ofuur test platform. so 
there are many possibilities for real-tinie performance. 

As expected. the time of computation increases as the cmn- 
plexity level increases. The PSNK also improves as the complexity 
le\sel increases. although the total amount of increase o w  all the 
coiiiplexity levels sanes with the type of sequence. Carphone 
shows the least amount of increase. since the sequence is rela- 
tively stationary ~Olllpar~d to the others. I n  Mother Daugh- 
ter. we obsewe a sudden jump in PSNR at complexity level 1 0_ 
whcre the PSNR is about the same as it is at full coniplexiry. This 
is because at tliat complexity level. macroblocks that are skipped 
in the original bitstream are allowed to be re-evaluated for mo- 
tion vectors and residual data as opposed tu just being skipped ui 
the transcoded bitstream. We believe that this makes n great dif- 
ference because refereoce franies in the l“coded sequence are 

so degradcd in CoNpariSon to reference franies in the original se- 
quence that residual data is much more necessnry. In  general. the 
probabilities presented in Figure 2 may not necessnnly translate 
into equivalent opportunities for distortion reduction. 

5. CONCLIJSION AND FUTURE DIRECTIONS 

In this paper. we show thilt video transcoding can be done in a coin- 
plrrih, .scdohle fashion by usuig a probabilistic mode-based com- 
plexity scaling algorithm. which gocs beyond motiw refmement 
techniques by appropriately selecting a set of mode transitions to 
consider based upon prior estiniatbns of the transition prohabili- 
ties. We demonstrated its use in reaching complexity-perfomiance 
points in between the extremes of redoing all inode decisions and 
motion vector searches and using all mode decisions and motion 
\~ecton hom the incoming bitstream. 

Future dkections for improving our algorithm may include 
linding ways to combine the presented algorithni with probahilis- 
tic methods of varying tlie motion search as presented by Lengwe- 
hasatit mid Ortega[8]. and adaptive motion refnement techniques 
as presented by Youn el. 0 / . [6 ] .  along with working on the overall 
conipntational eniciency ol-al l  complexity lewls .  
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