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ABSTRACT

While bitrate-reduction video transcoding is a mature research
topic, we introduce a new paradigm for the old problem: design-
ing a complexity scalable transcoder where computation can be
gracefully traded off with transcoded video quality. Complexity
scalability is important when a time-varying number of real-time
transcoding sessions must be maintained by the transcoder simul-
taneonsly. We present a complexity scalable transcoding algorithm
for H.263 based on coding mode transition probabilities, Pre-
liminary results are presented to show potential tradeoils between
computation and transcoded video quality in PSNR.

i. INTRODUCTION

While part of the networking community is investing heavily on
research and development of content delivery networks {CDNs)
— an overlay network infrastructare that reliably and efficiently
caches popular contents across the Intemet for large number of
users, anothet part of the community is investigating the next evo-
lution beyond simple content distribution. The [ETF working group
that concerns itself with this etfort is called Open Pluggable Edge
Services (OPES) [ 1], and its vision is a future of application com-
ponent networks that provide services to content at network edge
before delivery to content consumers.

An example of this type of network application is real-time
wranscoding of media content suitable for consamption by the re-
quested client. Because the number of transcoding requests is
lime-variant, a good network component responsible for transcod-
ing must be able to scale to a large number of service requests, even
at the expense of resulting transcoding quality. In other words. a
complexity scalable iranscoder, with the ability 1o trade off transcod-
ing performance with the number of concurrent transcoding ses-
sions, would be desirable as a network component in the OPES
tramework. This i3 the topic we are investigating in this paper.
In particular, among all possible transcoding operations, we are
focusing on the rate-reduction of H.263 [2] video stream. Our
methodology, however, is fairly general and can conceivably be
applied to rate-reduction of other video coding standards such as
MPEG4 and H.26L. In the case of the latter, there ave many more
modes available than in H.263, making our presented approach
even more applicable.

While transcoding itselt is a fairly mature research topic [3]
[4] [5] [6], casting transcoding in the framework of complexity
scalability is new. Like earlier work in complexity scalability un-
der different contexts [7] (8], the challenge is to find the optimal
tracteof} between conipression quatity and computational complex-
ity given the desired resulting transcoded bit rate. Towards that
goal, we have developed a complexity scalable transcoding algo-
rithm called probabilistic mode-based franscoding algorithm that
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uses a variable amount of side information made available during
the first stage of the transcoding process (decoding stage) for the
second stage (re-encoding stage). The more side information vsed,
the more computationally efficient the transcoding algorithm is, at
the expense of lower transcoded video quality.

The next section discusses related work. Section 3 then presents
our proposed algorithm. Section 4 presents results and Section 5
concludes the paper.

2. RELATED WORK

2.1. Transcoding

A typical ranscoding architecture, as shown in Figure 1, consists
of two stages: a decoding stage that converts the compressed in-
put bitstream to an uncompressed frame representation of the in-
put, followed by a re-encading stage that encodes the mput to a
lower bit rate by employing strenger quantization. Side jnforma-
tion, made available during the first stage, is often vsed as an aid
for the second stage.

Effectively using side information is important, as it is well
known that while decoding a video stream requires little compu-
tation, encoding requires mwuch more computation due to motion
estimation. To save computation using side information, earlier
wark [3] |4] reuses mation vectors and coding modes of the arigi-
nal compressed input, available as side intormation during decod-
ing, in the compressed output. As shown in [5] [6], however, the
new quantization often means the original motion vectors (MVs)
and modes are no longer optimal in a rate-distortion sense. due to
changes in the reference pictures available to the decoder. To al-
leviate this problem, [5] and [6] propose to use a smaller search
space to refine the original MVs. While we acknowledge the im-
portance of motion re-estimation during re-encoding, we are doing
50 in a complexity scalable fashion, trading olf computation with
transcoding quality,
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2.2, Complexity Scalability

The study of tradeoff among rate, distortion and complexity for
veclor search in multi-dimensional space has been examined in
[7] and [8]. We leverage on the variable complexity algorithms
presented in [8], where distortion is traded off with complexity in
the case of motion estimation, For a macroblock (MB) in a current
frame, indicated by vector {. finding the best matclied MB in a
previous frame, indicated by I+ #, means identifying the most
suitable MV 4" in a search space & that minimizes some metric,
like the coinmonly used suin of absolue difference (SAD):

" = arg rpeigSAD(l-:\- # 0 hH

SAD is the sum of ' norm of the difference in pixe! intensity be-
tween all corresponding pixels of two macroblocks (MBs):

SADI 8.0 =" [La(T+5+8) - LI+ @

SeR

where £, (%) is the pixel intensity value of pixel of frame ¢ indicated
by vector #, and B contains the set of offset vectors d’s that points
to all pixels for a MB with top left corner at {0, 0).

As discussed in [8]. there are essentiajly two classes of meth-
ods to speed up the search in (1), Fast Marching speeds up the
evaluation of SAD by reducing the number of pixels in B to a
smaller B'. Fast search reduces the number of MV candidates by
varying the size of S. We focus on fast search in this paper. but
we differ from [8] in that in the case of transcoding, previously
selected motion vector for each MRB in the encoded bitstream can
be used as an good initial motion vector estimate during motion
te-estimation,

3. PROBABILISTIC MODE BASED ALGORITHM

The key to designing a complexity scalable transcoding algorithm
is how to effectively utilize the side mformation made available
during the decoading stage of transcoding to scale back computa-
tion during the re-cncoding stage. The side information are the
previously used MVs and coding modes for macroblocks in a P-
frame.

3.1. Correlation in Motion Vectors

Before we discuss our complexity scalable algorithm, we first ex-
amine the correlation between the MV used in the previous encod-
ing and the new optimal MV using, exhaustive search in the entire
search space after re-quantization for every macroblock (MB) in a
P-frame, as done by Youn ef. al.{6]. We accomplish that by record-
ing the vector difference between the two vectars for every MB
for 30 frames of QCIF-s1zed test sequences Mot herDaughter,
Foreman, Coast, and Trevor. The resulting differences are
counted for all MBs, normalized to 1, and plotted in Figure 2 for
djfference pairs of quantizers (5,6) and (5,25). We first notice that
the plats are fairly symmetric, and the peaks are centered around
the oripin as expected. We further notice that as the diflerence be-
tween the quantizers increases. the plots become more evenly dis-
tributed away from the center (the probability that a MV remains
the same is truncated). Figure 3 shows the required seuarch area
to reach a given percentage of ideal MV's as a function of the dif-
ference between quantization lactors, demonstrating a somewhat
linear relationship between the two.
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Fig. 2. Correlation between Previous and New MVs

What we can conclude is that a small refine search space S’
centered around the previous MV is sufficient to capture the opti-
mal MV, where §’ depends on the difference between the quanti-
zation parameters.

3.2. Correlation in Coding Modes

While complex coding mode selection algorithms have been pro-
posed [9] [10) so that modes of a group of MBs can be jointly
and optimally selected, the complexity required for [9] and [10]
rernains high and is likely not practical for real-time transcoding.
Instead, we focus on selecting modes on a MB-by-MB basis in a
rate-distortion optimal manner using Lagrange multipliet:

ME in d;{m) -+ Ar; 3
n arg 7;1&}}\14 {(m) + Ar;(m) 3

where d;(m) and »;(m) are the distortion and rate contribution
for MB ¢ given mode 712 respectively, and A4 s the set of modes
available for each MB. The Lagrange multiplier A can selected
using one of many well-known methods such as [11].

For H.263 [2], M essentially has four modes: INTRA (intra-
block coding), INTER (inter-block coding with | MV), INTER4V
(inter-block coding with 4 MV, one for each 8x8 sub-block) and
SKIP (repeat block from previous frame). As with MV, the optimat
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previous mode  new mode  transition transition
wi/ probability probability probability
(quant = 5) (quant =15} (quant = 25)
intra wtra 0.506 0.420
; : : 0.007 inter 0.284 0.222
8 [CIEES interdv 0.185 0.259
Quanbizes Difference Sklp 0.025 0.099
infer intra 0.071 0.055
0.427 inter 0.319 0.287
Fig. 3. Search Ranpge Needed for Given Percentage of MVs interdv 0.401 0.350
Graph peints are interpolated frem observed data points. skip 0.209 0.269
interdv intra 0.096 0.082
0.363 inter 0.250 0.229
coding mode for a MB will likely change after re-quantization. To Interdv 0.544 0.339
o o . skip 0.110 0.151
empirically see how ll%xely a‘MB changes from 1nt?d¢? XtwoY, we skip intra 0.002 0.002
repeat the experiment in section 3.1 but collect statistics for coding 0.203 inter 0.063 0.068
modes instead, analyzing mode transitions incwred when the input interdv 0.088 0.126
bitstream to the transcoder has a certain quantization factor and the skip 0.847 0.804
transceder encodes the output bitstream with another quantization
factor. The results, shown in Figure 4, seem to indicate little varia-
tion between transition probabilities Yor different combinations of ] - B
original and output quantization factors. previous mode  new mode  transition fransition
wi probability probability probability
. (quant = 1) (quant = 20}  {quant =23}
3.3. Algorithm Development i Tnira 0.967 0.270
. . . 0.062 inter 0.225 0.215
Having esmbhshed the correlation between previous and new MVs interdv 0.453 0.472
and the correlation between previous and new coding modes, we skip 0.054 0.084
now discuss our proposed probabilistic mode-based complexity inter intra 0.075 0.058
scaling algorithm. For each complexity N € {0,...,|M|[*}, we 0.297 inter 0.365 0.350
do the following: interdv 0.393 0.402
skip 0.167 0.190
1. Given the quantizer pair (g1,492), where ¢ is the quan- interdv intra 0.076 0.066
tizer used in the initial bitstream and gz is the quantizer 0.364 inter 0.219 0.227
used in the transcoded bitstream for the reference frame, interdv 0.574 0559
select the appropriate MV search space S, for motion skip 0.132 0148
he approp PACE Dg—m skip intra 0.006 0.003
re-estimation (1). 0.277 inter 0.070 0.075
2. Mark the IV entries with the N highest probabilities in the interdv 0.L18 0.134
mode-mode table of Figure 4, where the probability of each skip 0.806 0.788
entry of modes (M=, M,) is probability of the input bit-
siream mode A, times the probability of the output bit- . . . .
stream mode M. Fig. 4. Correlation between Previous and New Coding Modes

3. For each previous mode .Y, the mode set for the new mode
is M, containing all marked inodes.

4. During encoding stage, for a given MB i with previous
mode 172;, we solve (3) where mode set M is M,

In step 4, because the mode set is constrained depending on
the previous mode, we only need to perform motion estimation (1)
when INTER or INTER4V are in the reduced mode set. Notice
that when N = 0 and when N = |M|?, we get the two base
cases on the distortion complexity curve: no mode re-selection and
no motien re-estimation versus full mode re-selection and motion
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Fig. 5. Signal Fidelity versus Computation Time

re-estimation. When we need to consider mode transitions from
INTRA to INTER or INTER4V, we execute a full motion search as
opposed to a limited one based upon the quantizer pair. Since the
amount of INTRA blocks are relatively few for the bitrates under
congideration, this does drastically affect the overall complexity.

4. RESULTS

Figure 5 shows results of transcoding experiments performed on
four sequences; Trevor, MotherDaughter, the panning part
of Foreman, and Carphone. For each sequence. we transcode
61 frames of a 30 fis 200-300 kpbs stream down to 80 kbps (30
kbps in the case of MotherDaughter). These different bitrates
correspond to quantization factors of 3 to 5 in the original se-
quences to factors of 22 to 25 in the transcoded sequences. We run
the transcoder at each complexity level, noting the total time taken
to transcode the bitstream and the improvement in PSNR achieved
over reusing all modes and motion vectors in the input bitstream.
The simulations were done on a 350 Mhz Pentium Il with 256
MB of main memory, and C-code was compiled with gcc with
the -03 option. The reader should note that currently available
processors run at up to six times the speed of our test platform, so
there are many possibilities for real-time performance.

As expected, the time of computation increases as the com-
plexity level increases. The PSNR also improves as the complexity
level increases, although the total amount of increase over all the
complexity levels varies with the type of sequence. Carphone
shows the least amount of increase, since the sequence is rela-
tively stationary compared to the others. In Mother Daugh-
ter, we observe a sudden jump in PSNR at complexity level 10,
where the PSNR is about the same as it is at full complexity. This
is because at that complexity level, macroblocks that are skipped
in the original bitstream are allowed to be re-evaluated for mo-
tion vectors and residual data as opposed to just being skipped in
the transcoded bitstream. We believe that this makes a great dif-
ference because reference frames in the transcoded sequence are

50 degraded in comparison to reference frames in the original se-
quence that residual data is much more necessary. In general, the
probabilities presented in Figure 2 may not necessarily translate
into eguivalent opportunities for distortion reduction.

5. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we show that video transcoding can be done ina com-
plexity scalable fashion by using a probabilistic mode-based com-
plexity scaling algorithm, which goes beyond motion refinement
techniques by appropriately selecting a set of mode transitions to
consider based upon prior estimations of the transition probabili-
1ies. We demonstrated its use in reaching complexity-performance
points in between the extremes of redoing all mode decistons and
motion vector searches and using all mode decisions and motion
vectors from the incoming bitstream.

Future directions for improving our algorithm may include
finding ways to combine the presented algorithm with probabilis-
tic methods of varying the motion search as presented by Lengwe-
hasatin and Ortega[8], and adaptive motion refinement techniques
as presented by Youn ef. ¢l{6]}, along with working on the overall
computational efficiency of all complexity levels.
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