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ABSTRACT 

New video codink standards such as H.264 offer the flexibility to 
select from a number of reference frames for motion-estimation 
for a given predicted frame. In this paper, we propose an optimiza- 
tion algorithm using dynamic programming that exploits this flex- 
ibility for multipath streaming - simultaneously streaming over 
two transmission paths with different bandwidths and loss rates. 
A rounding technique is employed to  scale the complexity of the 
algorithm down at the cost of degrading solution quality. Results 
show significant streaming quality improvement over a conven- 
tional multiple description scheme. 

1. INTRODUCTION 
This paper is concerned with the problem of optimal transport 
of standard-compliant video stream over networks with multiple 
transmission paths for real-time playback. Using multiple paths 
means larger combined transmission rate in the case when each 
path is rate constrained’. A network may have multiple trans- 
mission paths, for example, if a wireless client can simultane- 
ously communicate with two nearby base-stations. Because the 
reserved network resources and physical properties such as dis- 
tance from the transmitting base-station for each link are different, 
they will very likely have different packet loss rate and bandwidth 
constraint. We focus on such case when two transmission paths 
with heterogenous characteristics are simultaneously available. 

For the application, we consider the scenario where the appli- 
cation requires lowest network delay possible, to the extent that 
it cannot tolerate even one end-to-end packet retransmission. One 
reason can he that a small playback buffer is employed at the client 
side, together with the relatively large transmission delay of wire- 
less links such as 3G cellular links [ I ] ,  means that any retrans- 
mitted packet upon client request will miss its playback deadline 
and hence be rendered useless. In such case, the optimizing strat- 
egy can only select the correct transmission path for each frame, 
subject to the two paths’ rate constraints. 

The video coding standard we are focusing on is H.264 [2], a 
new standard that offers many coding Rexibilities for better coding 
and streaming performance. One of  these Rexibilities is flexible 
motion-estimation suppol* where each P-frame can choose among 
a number of frames for motion-estimation. At the cost of coding 
efficiency, using a frame further in the past for motion-estimation 
can potentially avoid error propagation due to packet loss. Given 
the described streaming scenario and the chosen video coding stan- 
dard, the research problem we are investigating is: what is the 
jointly optimal selection of reference frame and transmission path 

‘In some cases, using two transmission paths simultaneously decreases 
overall performance because of mutual signal interference. We assume 
here t h l  the paths are orthogonal and therefore additive. 

for optimal performance? After discussing related work in section 
2, we formulate it as a formal optimization problem in section 3. 
We present an approximate algorithm in section 4. Results and 
Conclusion are presented in section 5 and 6, respectively. 

2. PREVIOUS WORK 
H.264 121 is a new video coding standard that has demonstrat- 
ably superior coding performance over existing standards such as 
MPEG-4 and H.263 over a range of bit rates. As part of the new 
standard definition is the flexibility of using any arbitrary frame to 
perform motion-estimation, originally introduced as Annex N in 
H.263+ and later as Annex U in H.263++. Early work on optimiz- 
ing streaming quality using reference frame selection includes [3] 
141. In contrast, we jointly optimize streaming using both refer- 
ence frame (RF) and transmission path (TP) selection. 

The most related work is [5 ] ,  where the authors consider using 
ratedistortion optimized reference frame selection together with 
path diversity for optimized streaming. To match the two-state 
Gilbert model considered in [5], an ad-hoc path selection scheme 
is used @er reference frame selection is done. In contrast, we 
jointly optimize the selection of both the reference frame and the 
transmission path simultaneously. Doing so means rate constraints 
for the two paths can be considered during optimization - this is 
not considered in 151. 

A related research topic is multiple description (MD) 161, where 
video is encoded into two (or more) “descriptions”, and each de- 
scription can be decoded independently of the other. For example, 
a MD encoder encodes even frames independently as stream 1, and 
odd frames independently as stream 0. Customarily, each descrip- 
tion is sent over one of two TPs, with the assumption that at any 
one time, transmission errors typically occur in one or the other 
TP but not both. We differ in assumption in that simultaneous fail- 
ure in both paths is probable - as in the case of cellular links - 
and is taken into account in the optimization. Also note that typ- 
ical frame-level MD-encoded streams, such as the even and odd 
frames encoded streams described above, is simply a special case 
of the many possibilities our optimization algorithm considers.. 

Unlike many previous rate-distortion optimization algorithms 
171 [4] [SI which rely on the use of Lagrange multipliers. our opti- 
mization is unique in that we use a rounding technique that trades 
off complexity with the quality of the obtained solution. This re- 
lieves us of the burden of finding a suitable Lagrange multiplier, 
which is non-trivial. 

3. PROBLEM FORMULATION 
We formulate the RF / TP selection problem formally as an opti- 
mization problem in this section. We first discuss the source model 
used for the encoded video stream, then the network model for 
multipath networks in our streaming scenario. 
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3.2.1. Network Resource Constraints 

We assume each path has a rate constraint due to limited network 
resources available. Mathematically, the constraints for the two 
paths are: 

Fig. 1. Directed Acyclic Graph Source Model 

3.1. Source Model 

We model the decoding dependencies of the encoded media source 
using a directed acyclic graph (DAG) model G = (U,&) with 
vertex set U and edge set E,  similar to one used in [7]. Specifically, 
the streaming media is represented by a collection of frames, F;’s, 
i E 11, .  . . , IUI}. Each frame F,, represented by a node i in G. 
has a set of outgoing edges e;,; E E to nodes j’s, representing the 
possible R F s  4 ’ s  from which F, can choose. We designate a 0-1 
variable xi,, to he 1 if Fi uses Fj as RF, and 0 otherwise: 

( 1 )  
1 
0 otherwise 

if Fi uses F; as R F  

Because each P-frame F, can only have one RF, we have the fol- 
lowing R F  constraint: 

We assume that only frames in the past are used for reference, 
i.e. Ve,,, E E ,  i > j .  We also assume only frame I is intrasoded, 
and hence pel ,]  e, E. An example of a DAG model of a 4-frame 
sequence is shown in Figure I .  

As a frame F, uses a RF F; further in the past, for fixed quan- 
tization parameters, the encoding rate of F, is likely to increase 
since the temporal distance between the predicted frame and RF 
has increascd. We model this change in encoding rate by integer 
~ i , ;  E Z, denoting the encoding rate of F; if F; is used as refer- 
ence. T I . ]  denotes the rate of the starting I-frame. We will assume 
a rate marri-r r of size \U/ I \U1 is computed a priori as input to the 
optimization algorithm. We will discuss how r is generated in our 
experiment in section 5.1. 

3.2. Network Model 

We assume the network provides two TPs with different packet 
loss rates. More specifically, we assume an independent and iden- 
tically distributed (iid) loss model for each path. As a concrete 
example, consider the case where a wireless client uses two cel- 
lular links connected two different base-stations simultaneously. 
We henceforth assume each frame Fi can select a network path k, 
denoted by variable q, = IC, k t {0,1}. 

For given selected TP, and frame size r;,;, it entails a frame 
delivery success probability p k ( ~ , , , ) .  p x ( . ) ’ s  are in general de- 
pendent on T ~ . ,  because a large frame size may negatively impact 
the delivery success probability of the entire frame as more data is 
pushed through the lossy path. Note, however, that the operation 
and the optimality ofour  algorithm are independent ofhow pli(.)’s 
are defined 

In practice, rate constraints are imposed by the network infrastruc- 
ture ~ for cellular link, during session setup phase when physical 
resources are assigned. 

3.3. Integer Programming Formulation 

The objective function we selected is the expected number of cor- 
rectly decoded frames at the decoder. Each frame F; is correctly 
decoded iff  F, and all frames F,’s it depcnds on ( V j  5 i )  are 
delivered drop-free. Mathematically, we write it as: 

The problem is then: given pre-computed rate matrix r and de- 
livery success probability functionspk(ri,,)’s, find variables x ; . ~ ’ s  
and q,’s that maximize (4) while satisfying the integer constraint 
( I ) ,  the RF constraint (2) and the network resource constraints (3). 
We formally denote this optimization the R F  / TP selection prob- 
lem 

4. DYNAMIC PROGRAMMING SOLUTION 

A proof similar to the one in [8] can he easily constructed to show 
that the RF / TP selection problem is NP-hard. Given it is NP- 
hard, we first present a pseudo-polynomial algorithm that solves 
the optimization problem optimally but in exponential time. We 
then discuss how a rounding technique is used to trade off algo- 
rithm complexity with the quality of the resulting solution. 

The optimization algorithm composes of two recursive func- 
tions, called Sum(i, R I ,  &) and Prod(j ,  i ,  R I ,  Ra) and are shown 
in Figure 2 and 3 respectively. Sum(i, RI, &) returns the maxi- 
mum sum of products in (4) for frames FI up to F, given rate RI  
in path 1 and rate & in path 0 are available. Prod(j , i ,  R I ,  &) 
r e h ”  the maximum product term for Fj,  given rate RI in path 
1 and Ro in path 0 are available for FI to Fd. A single call to  
Suni(lVI, R;, RG) will yield the optimal solution. We now exam- 
ine Sum(i, R I ,  &) and Prod(i, RI,  &) closely. 

4.1. Dissecting Sum(i, R I ,  &) 

The recursive case (line 10-22) is essentially testing every combi- 
nation of  RF and path for F, for the maximum sum. The result 
of this search is stored in the [ i , R I ,  Ro] entry of the 3 dynamic 
programming (DP) tables, DPsunL[ 1, DPpath[ ] and DPind[  ] 
(line 23-25). DP tables are used so that if the same subproblem is 
called again, the already computed result can he simply returned 
(line 1.2). The two base cases (line 3-9) are the following: i) when 
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10. m a z v  := -m; 
I I .roreachjs.t.e;,,  E&, //recursive case 
1 2 . I  m o s V t : = S u m ( i - l , R I  - ~ i , j , R o I ;  
13. mazV1 +=P~(P.,,) Prod($ i - 1,Rz - v,,,, R,,); 
14. mozVo:=Sum(i- I , R I , R ~ - V { , ~ ] ;  
I S .  mazl/;,+=p,,(r;,j)Prod(j,i- l , R 1 . R o  - T ; , ~ ] ;  
16. if(morV < msx[mazVL,mosVu}l 
17. [ if(mazV, > mosKll 
18. { (mozV,mazQ,marJ ) := (mazV~, l , j ) ;  } 
19. el= 
20. { (mazV,marQ,mazJ)  :=(mazMi,O,j); ] 
21. 1 

26. remm marV 

Fig. 2. Defining Sum(i, RI,  &) 

the resource constraint is violated, in which case we return --CO 

to signal the violation; and, ii) when the root node (I-frame) is 
reached. Because root node has no RF to choose from, the search 
for optimal solution (line 6-9) is much simpler. 

The complexity of Sum(lU1, R;, 4) is bounded by the time 
required to construct the DP table of size lUl t RI * Ro. To f i l l  
each entry, we call function Sum(i, RI, &) as shown in Figure 
2, which has complexity O(l&l) to account for the f o r  loop from 
line 11-22 in the recursive case. Therefore we can conclude the 
complexityofSum(lV1, R : , G )  is O(IVII&IR;G). 

4.2. Dissecting PTod(j, i, R I ,  I&) 
From line 12-15 of Figure 2, we see that Prod(j,i,RI,Ro) is 
called after S,um(i, RI,  Ro) has been called, so we will assume 
entry [i, RI,  lio] of  the DP tables are available during execution of 
Prod(j ,  i ,  R I ,  &). 

The recursive case has two sub-cases: i) when j < i ,  in which 
case we recurse on Prod(j ,  i - 1, ., .) given we know the optimal 
resource ri,li., is used for node i: and, ii) when j = i ,  in which case 
we know term i of the product term, which is either pt (T<,*D) or 
p o ( r , , k n ) .  The maximum product will be this times the recursive 
termProd(ko,i-l,Rl-ri,t.,Ro)orProd(ko,i-l,R1, Ro- 
r i p ) .  The two base cases are similar to the two base cases for 
Sum(i, R I , & ) .  

4.3. Trading off Complexity with Solution Qualib 

As previously derived, the complexity of Sum(lV1, R;,%) is 
O(jU l&lR:G), which is pseudo-polynomial2. Instead ofsolving 
the original RF / TP selection problem instance I for optimal soh- 
tion s, we solve a modified problem instance I' for solution s' with 
complexity reduced by a factor K 2  at the cost of decreasing solu- 
tion quality. To accomplish that, we simply rewrite the network 

2This essentially means the complexity looks polynomial but is not. In 
bits as this case, because R;,  R; are encoded i n  rlog2,R;1, [log, 

input, O(R;R;) is exponential in the size of the input parameters. 

function Prod(j, i, R I ,  Ro) 
I .  if (RI < O ) ~ I ( R a  < 0) 

3. if (j = i = 1) 
4. retumDPsum[l,R1,Ro]; 
5. qD := DPpathli, RI.  Ro]; 
6. k" := DPind[ i ,  RI,  a,]; 
7. if (j < i )  //recursive case 
8. [ if(q" = 1) 
9. 
IO.  elre 
11. 
12. } 
13. 45. i / j  = i 
14. [ if(g" = 1) 
IS.  { u a l : = p l ( v < , w ] ;  
16. val:=ual*Prod(kD,i- l , R 1  -r<,ko,&,);  } 
17. else 
IS. (U01 : = p , , ( c  p ] ;  
19. ual:=ual*Prod(k",i- l , R ~ , R o - r i , p ) ;  ) 
20. } 
21. retumuol; 

libase case 1 

iibase case 2 
2. { retumo; } 

val :=Prod(& i - 1, RI - T . . ~ - ,  Ro); 

ual :=Prod( j , i  - 1, R I ,  Ru - re,ke]; 

Fig. 3. Defining Prod(j, i ,  R I ,  Ro) 

resource constraints by dividing and rounding up each rate term 
T,,, by factor K and dividing and rounding down the constraint 
parameters R;, 4 by the same K. The new network constraints 
become: 

Usingthe same Sum(i, RI, Ro) andProd( j ,  i ,  RI, Ro), thecom- 
plexity o f l '  is now O ( ~ U ~ & ~ ~ Q / ~ $ ) .  

It can be easily shown (See [a]) that s' is feasible in I. More- 
over, we can bound the performance difference between s' and s 
by first obtaining a super-optimal solution s" in a new instance I", 
where the network resource constraints are now: 

After obtaining optimal solution s" to I", we can bound our 
approximate solution s' from the optimal s in original instance I 
as follows: 

(9) 

where obj(s) is the objective function using solution s. The proof 
of this bound is similar to one in [X I .  

lobj(s) - obj(s')l 5 lobj(s") - obj(s')l 

5. EXPERIMENTAL RESULTS 

5.1. Experimental Setup 

To test the performance of the proposed optimization algorithm 
for the RF / TP selection problem, we selected, network simula- 
tor 2 (ns-2 [9]) as our testing environment. We constructed two 
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Fig. 4. Comparison for Different Loss Rates Fig. 5. Comparison for Different Bandwidth 

independent paths from streaming source to client with two dif- 
ferent loss rates. Path I has a frame delivery success probability 
p , ( ~ i , j )  = l - a~ , andPa thOhaspo( r i , j )  = 1-ao. 

The H.264 video software we use is version JM 4.2 [2]. The 
video sequence we selected for experimentation is the first 100 
frames of the QClF 176x 144 news sequence, sub-sampled in time 
by 2 (i.e. we encoded every other frame). The quantization param- 
eters are kept unchanged throughout at 31 and 30 for I-frames and 
P-frames respectively. We forced an I-frame into the sequence cv- 
ery 10 encoded frames, meaning we optimize a group of 1 I-frame 
plus 9 P-frames at a time. We assume a playback speed of 10 
frames per second at the client. 

To generate the rate matrix r, we executed the encoder while 
forcing all frames Fi's to select Fi-*'s for RFs. The resulting 
coding rates are entries ~ i , , - t ' ~ .  We repeated this procedure for 
t = 1 , .  . . ,5. 

5.2. Numerical Results 

For the experiment, we assumed a round off factor IC = 100. We 
compared our optimization algorithm to a MD-encoded scheme 
which encoded even and odd frames independently into hvo streams 
for every 10 frames, i.e. frame Fi always used frame F,-P for 
motion-estimation, with the exception of F I ,  which used Fo, and 
Fo, which was an I-frame. Stream I uses path 1 and stream 0 uses 
path 0. Note that unlike our proposed algorithm, this MD-encoded 
scheme has the disadvantage that it is channel-blind. 

Fixing the bandwidths of the two paths at ISkbps and 36kbps. 
the encoding rate of the MD-encoded streams, the performance of 
the two schemes are shown in Figure 4 for varying a1 and a o .  
The metric is the fraction of correctly decoded frames, where each 
frame Fi is correctly coded iff all frames 4 ' s  it depends on, j j i ,  
are delivered drop-free. We see that the near-optimal scheme (line 
2) consistently outperformed the MD-encoded scheme (line 1 ), 
and in poor network conditions, the near-optimal scheme decoded 
close to 10% more frames than the MD-encoded scheme. 

For the second set of experiment, we fixed packet loss rates at 
al = 0.1 and ao = 0.05, and we varied TPs' bandwidths. Fig- 
ure 5 shows the fraction of correctly decoded frames of proposed 
scheme over MD-encoded scheme. By fixing quantization param- 

eters, encoding rates of the two MD-encoded streams are fixed at 
IRkbps and 36kbps as in the previous experiment. We notice that 
as bandwidth increases in either path 0 or path I ,  the proposed 
scheme is able to take advantage of the increased bandwidth by 
selecting earlier RFs to break error propagation and increase the 
number of correctly decoded frames. 

6. CONCLUSION 
In this paper, we consider optimized streaming for H.264 video 
over multiple transmission paths of different loss characteristics. 
In particular, we presented an optimization scheme that maximizes 
the expected number ofcorrectly decoded frames at the receiver by 
selecting the near-optimal reference frame and transmission path 
for each predicted frame. The optimization is novel in the sense 
that unlike convention Lagrangian approaches, it uses a rounding 
technique instead to gracefully trade off comolexity with the qual- 
ity of the obtained solution. 
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