
DIRECTED ACYCLIC GRAPH BASED MODE OPTIMIZATION FOR H.263 VIDEO
ENCODING

Gene Cheung

Hewlett-Packard Laboratories
3-8-13, Takaido-Higashi, Suginami-ku

Tokyo 168-0072 Japan

ABSTRACT

Optimal mode selection for video coding is important in minimiz-
ing visual distortion given a rate constraint, and it has been studied
in the literature using a single previous macroblock dependency
assumption. In this paper, we relax the assumption to multiple-
macroblock and develop a directed acyclic graph based procedure
that solves the now generalized optimization problem. We demon-
strate that in certain cases, multiple block dependencies can be
accounted for while remaining computationally feasible. The opti-
mization is sufficiently general that it can be applied to most multi-
mode block-based video coding standards. Experiments show cod-
ing gain of up to

� � � �
dB over UBC’s TMN10 implementation. We

conjecture that the more general optimization can be more flexibly
applied to irregular video objects, as encountered in multiple-VOP
mode in MPEG4.

1. INTRODUCTION

The continuing rapid advance of computing technologies means
increasingly more complex video encoding algorithms are toler-
ated and accepted for the sake of better coding performance. ITU-
T video coding standard H.263 [1], for example, outperforms its
parent H.261 partially because it adopts a more complex picture
description syntax, which provides larger flexibility to adapt to a
variety of scenes. The cost of better performance, of course, is the
higher computational cost associated with finding the best descrip-
tion for a given group of pictures within the now-enlarged confine
of syntax specification due to the increased generality.

In the case of H.263, because each macroblock (MB) has a
choice of coding mode and quantization step size, finding the best
description for a group of pictures on a frame-by-frame basis means
selecting a set of modes and quantization step sizes for a given
frame that minimize the visual distortion subject to a rate con-
straint. As an obviously important problem, there are numerous
existing works that address the problem [2, 3, 4, 5]. A popular
simplifying assumption among these works is that MB dependen-
cies are restricted to be single — each MB depends directly only on
one other MB. While this assumption leads to a simple MB-to-MB
relationship — one-dimensional dependencies — and a straight-
forward Viterbi solution, in reality MB-to-MB dependencies are
more complex due to differential coding of several neighboring
MBs’ information.

In this paper, we generalize the single-MB dependency as-
sumption to multiple-MB — two-dimensional dependencies. We
show that by viewing the dependency graph as a directed acyclic
graph (DAG) and exploiting DAG’s properties, the multiple-MB

dependencies during mode optimization may not be too computa-
tionally prohibitive. For H.263, the algorithm complexity can be
controlled by limiting the number of MB rows we are optimizing
simultaneously, with [2] being our base case. The optimization
discussed here is general enough that it is applicable to most mode
selection problems in existing and future multimode block-based
video coding standards.

We first give the background and formulation of the optimiza-
tion problem in section 2. We then develop the optimization pro-
cedure in section 3, 4 and 5. Results are presented in section 6.
Finally, we conclude in section 7. The discussion focuses on mode
selection only, since variation of the same techniques can be used
to optimize quantization step size selection as well.

2. PROBLEM FORMULATION

The goal of rate-distortion optimization problems is to minimize
the distortion subject to a rate constraint. Assuming the distortion
metric is additive, the mode selection problem — selecting the best
set of modes � � 	 � � � � � � � � � for the � MBs in a frame —
can be expressed as follows:

� � �� �� ! "
 $

� & s.t.
�� ! (

 $
� & * (, (1)

where "
 $

� & is the resulting distortion of the . th MB (� /

)

given mode set � , (
 $

� & is the resulting rate of � /

given
mode set � , and (, is the rate constraint of the frame.

2.1. Lagrangian Approximation

As a constrained problem (1) is difficult to solve, and the conven-
tional approach is to solve instead the corresponding Lagrangian,
expressed as follows:

� � �� �� ! "
 $

� & 2 3 (
 $

� & (2)

It can be proven that for a given multiplier 3 , an optimal solution to
(2), � 4 , is also an optimal solution to (1) if 6 � ! (

 $
� 4 & � (, .

If the equality condition is not satisfied, then an appropriate value
for 3 must be derived to drive the sum to (, while satisfying the
inequality in (1), since the approximation bound is related to the
numeric difference between the sum and (, . The focus of this
paper is not on the derivation of 3 ; a wealth of literature includ-
ing [2, 5] have proposed techniques for finding the appropriate 3 .
Instead, we will focus on solving (2) given 3 .

5300-7803-6725-1/01/$10.00 ©2001 IEEE

2.2. Complexity of Dependency

With a closer look at (2), one notices that distortion and rate of� /

does not directly depend on modes of all the other MBs for
most video coding standards. In particular, for INTER frame of
H.263, a candidate predictor is first calculated for each MB using
the MB’s three neighboring MBs; the actual motion vector for the
MB is the sum of the candidate predictor and the differentially
encoded vector for this MB. This means � /

depends directly

only on the mode selection of its three neighboring MBs1.
Previous works [2, 4] have assumed this dependency is too

complex and made the following simplifying assumption to ease
the optimization2: the rate and distortion of � /

depends only on

the mode of at most one other MB (typically left neighboring MB)
besides its own mode �

. With this assumption, and assuming

MBs are numbered from left-to-right, top-down, (2) simplifies to:

� � �� �� ! "
 $

�

� � �

& 2 3 (
 $

�

� � �

& (3)

The main benefit of using this assumption is that a single depen-
dency relationship leads simply to a special state transition dia-
gram (SD) called a trellis, and the Viterbi algorithm can be used
to find the optimal solution to (3) by finding the least cost path of
length � through the trellis.

Viterbi algorithm can be viewed as a dynamic programming
solution to the problem of finding the shortest path through a di-
rected acyclic graph (DAG). DAG is a directed graph with no cy-
cles, and finding the shortest path in a DAG is significantly easier
than a general graph [6]. The main contribution of this paper is to
show that a multiple-MB dependency relationship can still lead to
a state diagram that is a DAG, and hence we can still use a Viterbi-
like dynamic programming algorithm to solve the shortest path
problem. In the new few sections, we will discuss step-by-step
a procedure to construct the corresponding state diagram given the
multiple-MB dependency relationship.

3. TOPOLOGICAL SORT

Given a differentially coded block based coding syntax such as
H.263, we can construct a dependency graph (DG) that shows
how each MB is directly dependent on the coded information of
its neighboring MBs. For a running example, we see in the de-
pendency graph of Figure 1 that � / � is directly dependent on the
coded information of � / and � / � . In general, a DG forms
a partial order; the ordering tells us the set of MBs that are first
encoded before a given MB due to differential coding.

Since a DG is a partial order, it is also a DAG — a cycle would
mean half of the cycle must precede the other and vice versa, which
is illogical. Given it is a DAG, one can assign labels

� � � � � to
the � nodes in a DAG with nodes � and edges � such that the
following property is satisfied for all nodes:

� . � �
 � � if

$
. � � &
 � � then . � � (4)

1If Advanced Prediction mode is used, overlapped block motion com-
pensation may cause a MB to depend on the right and/or bottom MB as
well. We assume this dependency is secondary and choose to ignore it
here.

2[2] introduced a decomposition to include the right MB mode in the
optimization as well without violating the single dependency assumption.
Our technique is more general and applies to any type of dependency.

Fig. 1. Example using Proposed Optimization

initialize � � � � .
initialize � � � � � � ! # $ & ') + � - � 0 2 .
while � $� $ 5 ,
-> select � � � & remove it from � .
-> remove 7 ' � + ; - � 0 , ; � ! .
-> forall ; � ! such that $ & ') + ; - � 0 , add to � .
-> label � � ! as � . � ++.

Fig. 2. Topological Sort

An order that satisfies this property is called a topological order
[6]. In words, if there is a directed edge from node . to � , label. must be smaller than � . Essentially the partial order is mapped
to a total order without violating the original ordering rules of the
partial order. A topological sort algorithm is shown in Figure 2.

Notice that in step 1 of the while loop, the algorithm does not
specify the criterion of node selection in B . In fact, any selection
would be a valid topological order. We will discuss a particular
criterion later in section 5 for our optimization. After assigning
the labels, the MBs can be redrawn from left to right in topo-
logical order. We call this graph the ordered dependency graph
(ODG). Figure 1 shows the ODG for the running example. Notice
the edges are all pointing from left to right — a consequence of a
valid topological sort.

4. ODG TO STATE DIAGRAM

By redrawing the MBs in a straight line, the ODG reminds us
of the single MB dependency assumption [2, 4] where a MB de-
pends only on the left MB. In that case, the optimal mode selection
problem is solved by first drawing a special SD (trellis) that cor-
responds to the associated DG with � stages corresponding to the� MBs. Each stage in the trellis has as many states as there are
modes C D C , and C D C F C D C edges connect the states between two
consecutive stages. The cost of traversing each edge

$
�

� � �

&

between two states in the trellis is the Lagrangian cost of going
from mode �

� of stage . J �

to mode �

of stage . , i.e. cost

"
 $

�

� � �

& 2 3 (
 $

�

� � �

& in (3). Viterbi algorithm is then
used to find the shortest path in the trellis.

531

4.1. Drawing Nodes in SD

In our case, the same simple trellis is insufficient to represent the
possible state transitions due to the multiple MB dependencies.
For example in Figure 1, � / � depends on both � / and � / � ,
meaning C D C incoming edges for each state in stage 3 is not enough
to represent all possible mode combination of � / and � / � .
To overcome this limitation, we increase the number of states in
the stage 2 to C D C � so that the mode used in stage 1 can be pre-
served. SD in Figure 1 shows the case when C D C � �

. Each edge
$ $

� � � � & � � � & now carries the following Lagrangian cost:

" �
$

� � � � � � � & 2 3 (�
$

� � � � � � � & (5)

An important observation is that since there is no outgoing
edges from � / in the ODG that arrive beyond � / � in ODG,
there is no need to preserve the mode used in stage 1 after stage 3
in SD. More generally, we find the number of states for each stage
in SD as follows3:

SD Node Construction Procedure: Each stage . has C �

C
memories, preserving modes of stages

�

� 	 �

� � � � � � �

� � � � � � .

Each stage has C D C � � � � states.
� is 	 � / � . To find

�

for.
 �
, apply the following rules in increasing order in . . Rule

0: Initialize
�

� � �

� � /

� � � /

. Rule 1: If there exists

outgoing edges from � /

in ODG to MBs other than � /

� ,
then

�

� � �

� � � /

. Rule 2: If the origin of an incoming

edge at � /

� , say � / � , has no outgoing edge beyond � /

� ,
then

�

� � �

� � � / � .
Using this procedure, we can find the prescribed memories

�

,

and hence the number of states in each stage . .

4.2. Drawing Edges in SD

To complete the SD, we need to connect the states between two
neighboring stages in SD with directed edges in a way that modes
of specified past stages are preserved. Towards that goal, we do
the following:

SD Edge Construction Procedure: first label states in each
stage . top-down with a number with base C D C and C �

C digits,

with numerical value from
�

to C D C � � � � J �
. The number label

represents a particular permutation of modes in set
�

. For each

state � in stage . , draw an edge to a state � in stage . J �
iff the

mode permutation reflected in � ’s label matches the permutation
reflected in � ’s label.

By match, we mean � ’s permutation of modes in
�

� � /

is the same as � ’s permutation. We do that by checking the digit
in each of � ’s and � ’s label that correspond to the same past stage
mode are the same. Note that a � / � in

�

� � /

must also be
permuted in stage . J �

by the node construction procedure.
Figure 3 shows two examples of SDs from ODGs. The node

labels in ODGs are in alphabets to avoid confusion. In both cases,
C D C � �

, and the number labels for states are the binary numbers
inside the nodes. The bottom of Figure 1 shows the SD corre-
sponding to the running example.

After the SD is constructed, a Viterbi-like dynamic program-
ming algorithm can be used to find the shortest path of length �
through the SD to find the optimal mode selection for the � MBs.

3In fact, �

is simply the set of origins with edges drawn from left of� �

to right of
� �

in ODG plus

� �

. We propose the construction

procedure because searching for edges as above is difficult in practice.

Fig. 3. More Examples of State Diagram

5. COMPLEXITY CONSIDERATION

We first compute the running time of the dynamic programming
algorithm used to find the least-cost path through the SD, after
constructing the SD using the above discribed procedure. (Con-
struction of SD can be performed offline, and hence it is less im-
portant.) For each state in stage . of SD, we find the shortest path
to that state from a maximum of C D C � � � � � � states in stage . J �

,
where

� " $ & � (* + � (,

 ! - - - � C �

C . The maximum number of
states in stage . is the same, and there are � stages. Hence, we
can conclude that the running time is .

$
� C D C � � � � � � � & .

To reduce the complexity of the algorithm, we can only try
to minimize C � " $ &

C , since � and C D C are given parameters of
the problem instance. Recall from section 3 that in step 1 of the
while loop of the topological sort, any nodes with no incom-
ing edges (any nodes in B) can be selected as the next node to be
labeled without violating the topological order. We exploit this
degree of freedom in an attempt to minimize C � " $ & C . We do that
by selecting a node in B at iteration . of the loop that yields the
minimum number of states for stage . . For the running example
in Figure 1, selecting � / 0 when . � �

would lead to C � � C � �
,

while selecting � / � , as shown in the figure, leads to C � � C � �
.

If the complexity of the algorithm remains too high even after
the proposed node selection in topological sort has been used, we
have no choice but to further reduce the complexity at the cost of
decrease in coding performance. For H.263, we accomplish that
by reducing the number of MB rows that is being optimized at a
time. Notice that when the number of MB rows is reduced to one,
our optimization is same as the one in [2].

6. RESULTS

To test the effectiveness of the proposed optimization, we first ap-
plied the modified topological sort algorithm to the DG of MBs
of QCIF size to obtain an ODG — we were optimizing two MB
rows at a time in this case. The dependency pattern is the same the
one shown in the DG of Figure 1. The result is the ODG shown in
Figure 4.

We compared the coding efficiency of our algorithm to Uni-
veristy of Britsh Columbia’s TMN10 implementation and Wie-

532

Fig. 4. Topological Order for QCIF (2 Rows)

gand et. al. [2] for the carphone sequence. Mode selection
in [2] is the same as the base case of our optimization when we
fix the number of MB rows being optimized at 1. Tests were per-
formed at 38kbps, 76.5kbps and 126kbps, with quantizer step size
fixed at

� �
,

�
and � respectively for I and P frames. The frame rate

was chosen to be
� �

frames/s, and an intra refresh mode was pe-
riodically forced into the selection every

� �
frames for every MB.

The results in luminance PSNR are shown in Figure 5. We see
that the proposed technique has up to

� � � �
dB improvement over

TMN10 and
� � � �

dB improvement over [2].

7. CONCLUSION

In this paper, we show that even for multiple-node dependencies,
one can construct a state diagram that is a directed acyclic graph,
and hence one can still use a Viterbi-like dynamic programming al-
gorithm to solve the mode selection problem. We accomplish that
by first using a modified version of the topological sort algorithm
to transform a dependency graph to an ordered dependency graph,
then using a proposed construction procedure to construct the de-
sired state diagram. The complexity of the dependency graph ul-
timately determines the algorithm complexity, so one can choose
to simplify the complexity of the dependency graph apriori. In the
case of H.263, for example, we show by decreasing the number
of MB rows that is being optimized at a time, one can reduce the
algorithm complexity.

While we demonstrated some coding gain over UBC’s TMN-
10 implementation of H.263, we were unable to show significant
coding gain over mode selection techniques that assume single-
MB dependency such as [2]. However, we conjecture that the
proposed optimization is fundamentally more general, and hence
conceivably can be more flexibly applied in a more general cod-
ing setting, such as for arbitrary shape video objects, as seen in
multiple-VOP mode in MPEG4.

8. REFERENCES

[1] ITU-T Recommendation H.263, Video Coding for Low Bitrate
Communication, February 1998.

Fig. 5. Comparison of Coding Results

[2] T. Wiegand et. al., “Rate-distortion optimized mode selection
for very low bit rate video coding and the emergin h.263 stan-
dard,” in IEEE Trans. on CSVT, April 1996, vol. 6, no.2.

[3] G. Schuster and A. Katsaggelos, “Fast and efficient mode and
quantizer selection in the rate distortion sense for h.263,” in
VCIP, SPIE, March 1996, vol. 2727, no.2.

[4] D. Mukherjee and S. Mitra, “Combined mode selection and
macroblock quantization step adaptation for the h.263 video
encoder,” in ICIP, 1997.

[5] G. Sullivan and T. Wiegand, “Rate-distortion optimization for
video compression,” in IEEE SP Magazine, November 1998.

[6] Cormen, Leiserson, and Rivest, Introduction to Algorithms,
McGraw Hill, 1986.

533

