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ABSTRACT
The rapid progress of computers and today’s heterogeneous

computing environment means computation-intensive signal pro-
cessing algorithms must be optimized for performance in a ma-
chine dependent fashion. In this paper, we present formal machine-
dependent optimizations of scalar and vector quantizer encoders.
Using a dynamic memory model, the optimal computation-memory
tradeoff is exploited to minimize the encoding time. Experiments
show marked improvements over existing techniques.

1. INTRODUCTION
If the computer evolution has matured to a stage where computers
are ubiquitous and homogeneous, and improvements are asymp-
totic, then implementation of a signal processing algorithm needs
only be painstakingly hand-coded once for optimal performance.
Unfortunately, computers continue to progress at an exponential
rate, and computing environments are extremely diverse. Clearly,
hand-coding an algorithm for every possible platform is impracti-
cal. On the other hand, simply compiling a fixed algorithm written
in a high level language for each machine is sub-optimal, since
machine dependent information such as memory hierarchy is un-
exploited at the algorithmic level. A fundamental question sur-
faces: how to re-target an algorithm onto different machine plat-
forms optimallyandautomatically? In light of this problem, recent
research [1], [2] has looked at the distortion-computation tradeoffs
of particular algorithms, thus providing formal analyses of algo-
rithm tuning for machines with different computational budgets.

Our work [3] differs from previous work in that instead of min-
imizing the number of computational units for a given distortion,
we search for the optimal computation-memory tradeoff to mini-
mize running time: divide the processing so that the optimal subset
is implemented as simple data memory retrievals of pre-computed
values (pre-compute), and the other is implemented as on-the-fly
computations (compute). pre-computerequires only a single data
memory lookup but may lead to memory blow-up;computecan
be slow but avoids the memory implosion problem. If the trade-
off between compute and pre-compute is correctly exploited for
a given machine, it can lead to enhanced performance over tech-
niques that completely ignore one or the other. In this paper, we
will demonstrate this is indeed the case for scalar and vector quan-
tizer encoding algorithms.

The importance of quantization is paramount, as just about
every compression algorithm includes quantization of some form.
But while scalar quantizer (SQ) has been widely used, vector quan-
tizer (VQ) has been less popular, partly due to its inherently high
encoding complexity. We will show that by optimally dividing the
processing into compute and pre-compute for a particular machine,
we can improve both encoders’ performance. We begin in section
2 and 3 where we review the machine model and its associated
optimization framework from [3]. In section 4 and 5, we discuss
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Fig. 1. Machine Model and Optimization Framework

how the framework is used to optimize SQ and VQ encoders re-
spectively. We present results in section 6.

2. DYNAMIC MEMORY MODEL (DMM)

Modern processors use hierarchical memories to enhance perfor-
mance, where small, fast memories are located near the CPU and
larger, slower memories are situated further away. Consequently,
the execution speed of a machine instruction that accesses memory
depends on the level of memory referenced. The machine model
we adopt in Figure 1a reflects this characteristic. If the processor
P accesses a datum residing in level 1 memoryM1 (level 2 mem-
oryM2), it incurs memory access timeT1 (T2). If the instruction
does not involve memory access, then the execution time depends
on the complexity of the instruction itself; for example, we denote
the cost of a logical comparison (cmp) asQ. We assume the size
ofM1 (M2) is S1 (1).

Most processors, however, does not have the flexibility of as-
signing data blocks statically to the processors’ memory hierarchy.
What data blocks reside in what level of memory hierarchy at any
given time depends on the processor’s caching policy and the data
access patterns. Instead of tracking all this information, we ap-
proximate each memory access cost as follows.

Suppose the size of data structures used by an implementation
of an algorithm,S, is � S1. Then the access time of a desired
datum,T (S), is T1, since all data structures can be loaded into
M1. If S > S1, then we do not know whether the desired datum
resides inM1 or M2. In this case, we estimate the access time
as follows. At any given time, a fractionS1

S
(S�S1

S
) of the total

number of data blocks will be inM1 (M2). So assuming all pieces
of data are equally probable, we can estimate memory access cost
T (S) of a data memory retrieval as:

T (S) =

�
T1 if S � S1

(S1
S
)T1 + (S�S1

S
)T2 otherwise

(1)

See Figure 1b of an illustration ofT (S).



3. OPTIMIZATION FRAMEWORK (DMMOPT)
Using DMM, we can evaluate the execution cost of an implementa-
tion l as follows. We first find the size of the implementation’s data
structures,R(l). This translates to a memory access costT (R(l))
using (1). Knowing the access cost, we can evaluate the execution
cost ofl, HT (R(l))(l). If L denotes the set of implementations in
the search space, then the optimization problem is:

min
l2L

�
HT (R(l))(l)

	
(2)

Solving (2) is difficult in general (for the VLC decoding in-
stantiation, see [3] for a formal proof of NP-hardness). The reason
is twofold: i) while the cost of a memory access is not known till
the entire implementation is constructed, the optimal construction
of an implementation depends on the cost of memory access — a
chicken-and-egg problem; ii) because the cost evaluation depends
on non-linear functionT (S), the problem is non-linear. Instead of
solving (2) directly, we dissect it into easier pieces.

Suppose we knowa priori that the total data structure size of
the optimal implementationl� is S�. To find l�, we only need
to search the subset of implementations with total sizeS�. Let
HT (S)(l) denote the cost oflwhen the access cost is fixed atT (S).
(2) is then the same as:

H
0(S�) = min

l2L

�
HT (S�)(l)

	
s.t.R(l) = S

� (3)

We callH 0(S) thesampling function. SolvingH 0(S�) seems
easier, since we have eliminated the problems of mutual depen-
dency and non-linearity. Yet we do not knowS� a priori, and so
we need to search through all possible values ofS for S�:

min
l2L

�
HT (R(l))(l)

	
= min

8S

�
H

0(S)
	

(4)

Graphically, for eachS, we solve (4) and obtain a sample point
onH 0(S). S� is the minimum point on sampling functionH 0(S).
See Figure 1b for an illustration ofH 0(S). We are now faced with
two new difficulties: i) solving (3) for allS is expensive, ii) (3)
itself is still hard since it is a constrained problem.

3.1. Lagrangian Approach for DMM

Given that (3) is difficult, we do not solve (3) directly, but we solve
its corresponding Lagrangian instead:

min
l2L

�
HT (S)(l) + �R(l)

	
(5)

The two problems, (3) and (5), are related: if there exists a La-
grange multiplier�, such that the optimal solution to (5),lo, satis-
fiesR(lo) = S, thenlo is also optimal to (3).

In general, solving the corresponding unconstrained problem
(5) is easier than the original constrained one (3). The problem is
that for a given target constraint valueS, there may not exist a mul-
tiplier � such that the optimal solution to the Lagrangian (5),lo,
has the propertyR(lo) = S. In that case, we propose the follow-
ing procedure callediterative projection methodthat converges to
a size constraint valueS and a multiplier� such thatR(lo) = S:
1) InitializeS. 2) Iteratively solve (5), adjusting� each time, until
R(lo)�S is minimized whileR(lo) � S. 3) If R(lo) = S, done.
Else, letS := R(lo), goto step 2.

BecauseR(lo) is inversely proportional to�, a simple strategy
of adjusting� in step 2 is to use binary search on the real line.
Alternatively, a more efficient strategy calledsingular value search
can be employed. See [3] for details.

3.2. Lagrangian Sampling
Instead of searching for all possible valuesS in (4), by finding so-
lutions to (5) using the iterative projection method, we are actually
only sampling a relatively small number of points onH 0(S), since
the method converges to a small subset of points no matter whatS

is initialized to. We call this phenomenonLagrangian sampling,
since each sample point is a solution to the Lagrangian (5). By
sampling, however, we may not be able to find the optimal solu-
tionH 0(S�); we use the following theorem [3] to bound the error
of neighboring sample points from a local minimum point:

Theorem 1 Let l� be a locally optimal solution to (2) such that
S� = R(l�) 2 [S1; S2], andH 0(S1), H 0(S2) are the two neigh-
boring Lagrangian sample points onH 0(S). WhenS is initialized
to S1 in step 1 of iterative projection method, we can find an opti-
mal solution to (5),lB, such that one of theBounding Conditions
is satisfied: 1) (R(lB) � S2) and (� � 0). 2) (R(lB) � S1)
and (� < 0). 3) (S1 � R(lB) � S2) and (� = 0). The cost
of the locally optimal solutionl� is lower bounded bylB, i.e.:
H 0(S�) = HT (S�)(l

�) � HT (S1)(l
B).

3.3. Optimization Framework for DMM — DMMOPT
Having developed the above concepts, we are ready to discuss the
optimization framework associated with DMM, which we term
DMMOPT — it helps us construct a program that finds a near-
optimal solution to (2) witha posteriorierror bound:

ConstructH 0(S) by obtaining Lagrangian sam-
pling points. Each Lagrangian sampling point is ob-
tained with the iterative projection method. Among
the sampling points, we pick the smallest point as
our operating point.

The global error bound is the difference between the best perfor-
mance sample point and the best performance local bound of all
pairs of neighboring sample points.

How the Lagrangian (5) is solved depends on the particular
instantiation of DMMOPT. In particular, we will see the SQ in-
stantiation in the next section.

4. SCALAR QUANTIZER
We begin with the non-uniform SQ encoding problem. We first
define the search space of implementationsL in the optimization
problem. We then discuss the program we developed using DM-
MOPT that solves SQE-OPT approximately — solving the La-
grangian (5) given�. We then reduce the complexity of the pro-
gram by tree pruning. Singular value search used in step 2 of the
iterative projection method can be found in [3].

4.1. Problem Formulation
Very often a representation of a signal in a computer needs to
be compressed for space-limited storage or for bandwidth-limited
transmission. One compression technique that can perform this
many-to-few bits mapping of signal is the non-uniformM -to-N
bit SQ, where a scalar quantity ofM bits is mapped to one of
2N partitions. Figure 2a shows an example of aM -to-2 bit non-
uniform SQ. The optimal design of non-uniform SQs — the se-
lection of partition boundary set� = f�1; : : : ; �2N�1g that min-
imizes distortion of reconstruction signals — is well-studied [4].
The resultingN -bit quantizer is commonly called theLloyd-Max
Quantizer.

Finding an efficient implementation for theM -to-N -bit SQ
encoder can involve a tradeoff between computation and memory.
Two simple encoding implementations illustrate the extremes of
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Fig. 2. Non-uniform SQ and Encoding Implementation

computation and memory tradeoffs. The first one minimizes com-
putations by performing a singleM -bit table lookup, where the
resulting table entry contains the correspondingN -bit partition in-
dex. However, this requires a memory store of size2M , and mem-
ory access can be slow ifM is large and2M elements cannot fit
intoM1. An alternative implementation minimizes memory usage
by asking a sequence of logic statements “Is x < �i?” until the
correct partition has been identified. This corresponds to a binary
decision tree of heighth � N . If N is large, the sequence of ques-
tions required is long and the implementation is slow. A natural
question is: what is the optimal hybrid scheme, using a combina-
tion of lookup tables and logic, that minimizes the encoding time?
An example of a hybrid implementation is shown in Figure 2b.

Having described the search space of implementations, we can
formally define the optimization problem of finding the optimal
hybrid implementation for theM -to-N bit SQ encoder, denoted
as SQE-OPT, as follows: what is the fastest implementation of a
M -to-N bit SQ encoder, given inputx distributionp(x), partition
boundary set� = f�1; : : : ; �2N�1g, and parameters of DMM?

To solve SQE-OPT, we develop a program that finds an imple-
mentation with near-optimal processing mixture of compute and
pre-compute by applying DMMOPT. We begin development of the
program in the next section.

4.2. Program Development

We begin with the definition of the cost function that we are mini-
mizing: letf(a; b) be the minimum Lagrangian encoding cost (5)
— minl2LHT (S)(l)+�R(l) — given inputx 2 [a; b). The opti-
mal initial operation for this input range can potentially be a logic
or table lookup, resulting in costfl(a; b) or ft(a; b) respectively:

f(a; b) = min f fl(a; b); ft(a; b) g (6)

For the logic case, we can choose among all�i values that are
in the range(a; b) to check against inputx. The result of the check
is a partition of the original interval into[a; �i) and [�i; b). Let
p(a; b) denote the probability thatx 2 [a; b), andQ denote the
cost of a logic operation. We can writefl(a; b) as:

fl(a; b) = p(a; b)Q+ min
�i2(a;b)

[f(a; �i) + f(�i; b)] (7)

For the table lookup case, there is an initial cost ofp(a; b)T (S).
The index used in ah-bit table lookup operation is theh left-most
bits of the numberx � a. The largest valuex � a can take on,
givenx 2 [a; b), is b � a� 1. Hence, the number of bits needed
to describex � a, or the maximum height of a lookup table, is
dlog2(b� a)e. For each table heighth, the table operation divides
the range[a; b) into smaller ranges of widthm = 2dlog2(b�a)e�h

b)
2-a1τ -a

log(b-a) h=3

a)
τ

Fig. 3. Tree Pruning Example

each. The number of these smaller ranges,n, is determined by the
largest number that theh most significant bits ofx�a can take on.
The associated penalty�R(l) in (5) is therefore�n. The following
equations formalize this:

ft(a; b) = p(a; b)T (S) + min
1�h�dlog2(b�a)e

[�n+

n�1X
i=1

f(a+m(i� 1); a+m(i)) + f(a+m(n� 1); b)

#

m = 2
dlog2(b�a)e�h n =

j
b� a � 1

m

k
+ 1 (8)

This recursion is grounded in a base case where there is no�i in
range(a; b), meaning the inputx can only be in one partition:

f(a; b) = 0 if 6 9 �i 2 (a; b) (9)

The value off(0; 2M ) then yieldslo, the optimal solution to (5)
given�.

4.3. Tree Pruning
While we can solve (5) given� with call tof(0; 2M) using recur-
sive calls (6), (7) and (8), the running time is exponential — the
call has2M recursive calls when aM -bit table lookup operation
is tested forft(0; 2M ). This means a single execution of (8) has
running timeO(2MM). However, we can alter the program to
reduce its complexity by pruning off some of the recursive calls
in (8). When performing anh-bit table lookup for a given range
[a; b), there will ben recursive calls according to (8) correspond-
ing ton branches of a binary tree — the leaves of the tree are the
possible values ofx� a. Figure 3a shows a binary tree for a range
[a; b) wheredlog2(b � a)e = 4. It also highlights the branches
that corresponds to each�i 2 [a; b). We call them� -branches.

If we perform a 3-bit table lookup on the same range[a; b), as
shown in Figure 3b, we see that unless inputx follows one of the
two � -branches, we know immediately which partition the input
falls into. If inputx follows one of the two� -branches, then further
operations are needed to determine the correct partitions. We can
generalize the above observation and say that the only recursive
calls needed in (8) are these� -branches. So if we prune off the
non-� -branches during execution of (8), the complexity of (8) is
O(2NM); it is now polynomial in size of the input.

5. VECTOR QUANTIZER
Instead of developing a new optimization, we leverage on the pro-
gram we developed for SQE-OPT and use it to speed up a pre-
processing step of an established VQ encoding technique, called
equal-average nearest neighbor search(ENNS). We first describe
how ENNS works, then discuss how the program developed for
SQE-OPT can be used to improve ENNS.

5.1. Equal-average Nearest Neighbor Search
ENNS [5] has been shown to lower VQ encoder’s complexity in
the average case for image data. The key observation is that there
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Fig. 5. Experiment for SQ

are strong correlations among input vector’s individual compo-
nents for image data. As a result, the majority of the input vectors
are distributed along the central linel = fxjx1 = : : : = xkg.
ENNS proposes that we first pre-sort the codevectors according
to their means, then during actual algorithm execution to find the
nearest neighbor to input vectorx, we can successively eliminate
potential nearest neighbors by using this bound:

d(x;y) �
p
kjmx �myj (10)

whered(x;y) is thel2 distance between input vectorx and po-
tential nearest neighbory, k is the number of dimensions, andmx

andmy are mean ofx andy respectively.
An example is shown in Figure 4a, where we first test code-

vectory5 and computed(x;y5). We can then eliminate any vector
yi whose meanmyi

is such that
p
kjmx�myi

j � d(x;y5). Ge-
ometrically, we eliminate all codevectors that lie outside the gray
strip that encloses the circle in Figure 4a. In this example, we
eliminatey1, y2, y3 andy6.

For ENNS to be most effective, the initial candidate codevec-
tor should have mean closest to the input vector. To this end,
ENNS uses a binary decision tree to first find this closest-input-
mean codevector. To speed up this initial search, we use the pro-
gram for SQE-OPT to find a near-optimal implementation that
finds this closest-input-mean codevector.

6. RESULTS
To evaluate the performance of our developed algorithm for SQ,
we conducted experiments to compare our optimized implemen-
tation to an implementation that use a binary decision tree to en-
code SQ [4]. For our experiments, we use parameters in Figure 5a,
which are estimates of our test machine, a Pentium II 266 MHz
processor. It has 16kbyte L1 cache (50-50 split of the 32kbyte
data-instruction cache). The input distributionp(x) of Figure 5a is
an arbitrarily chosen Gaussian distribution.

(M,N) impl. speed
(15,2) logic-only 3.738 mil/s
(15,2) hybrid 4.790 mil/s
(15,4) logic-only 2.484 mil/s
(15,4) hybrid 4.597 mil/s

size impl. time
8 logic-only .280s/lena
8 hybrid .255s/lena
16 logic-only .465s/lena
16 hybrid .440s/lena
32 logic-only .465s/lena
32 hybrid .440s/lena
64 logic-only .935s/lena
64 hybrid .895s/lena

a) Comparison of SQ Encoders b) Comparison of VQ Encoders

Fig. 6. Comparisons of SQ, VQ Encoders

Using the chosen parameters, we generatedT (S) (bottom)
andH 0(S) for 15-to-4 bit SQ, with input distribution A (top) in
Figure 5b. The partition boundary set�was generated using Lloyd’s
algorithm.

To compare our hybrid table lookup-logic SQ encoder to a
binary decision tree SQ encoder, we generated a workload of 20
million input samples according to the input distribution and en-
coded them 10 times with each implementation to find an average
speed for each case.

For input distribution A, 15-to-2 bit (15-to-4 bit) SQ encoders
excluding I/O access time, we see a28:14% improvement (85:06%)
over the binary-tree encoder. AsN increases, the improvement of
the hybrid encoder over the binary-tree encoder increases. This is
expected, since the height of the binary decision tree for binary-
tree encoders is larger when asN increases.

We performed experiments to show that ENNS has faster en-
coding speed when the implementation found by the program solv-
ing SQE-OPT is first used to find the codevector with the closest
mean to input vector. To generate various VQ codebooks for test-
ing, we used 512*512 gray scale images ofLena , Baboon and
Tiffany as training data, and constructed codebooks of size 8,
16, 32 and 64 for dimension 4 using the generalized Lloyd algo-
rithm [4]. We then compared the encoding speed of ENNS us-
ing a binary decision tree and ENNS using our generated imple-
mentation when encoding theLena image. Excluding I/O access
time, we achieved speed improvement of9:83%, 5:67%, 6:65%
and4:47% respectively for the four codebook sizes.

First, we observe that the improvement for VQ is not as dras-
tic as SQ. This is expected, since we are speeding up only the
initial search for closest codevector mean, and the VQ encoding
algorithm needs to perform other tasks like computing distortion
between input vector and potential candidate vectors. Second, we
see that as the size of the codebook increases, the percentage im-
provement decreases. The reason is that ENNS is increasingly in-
effective in ruling out candidate codevectors as the codebook size
grows. The bulk of the computation then becomes the compu-
tations of distortion between input vector and candidate vectors,
and the speed improvement of initial search for closest codevector
mean is diminished in the overall picture.
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