
AN ATTRIBUTE GRAMMAR BASED FRAMEWORK FOR MACHINE-DEPENDENT 
COMPUTATIONAL OPTIMIZATION OF MEDIA PROCESSING ALGORITHMS 

Gene Cheung, Steven McCanne 

Department of EECS, University of California, Berkeley 
Berkeley, CA 94720 

A B S T R A C T  

Media processing algorithms are typically computation- 
ally intensive, and in complexity constrained environments, 
finding the most computationally efficient algorithm is crit- 
ical. In this paper, we present an attribute grammar based 
framework which captures the computational complexity 

Using 
this formalism, a media processing algorithm can be opti- 
mally and automatically tuned to a particular machine by a 
problem specific optimizer. Moreover, the tradeoff between 
performance and execution time on a specific machine can 
be controlled and thus exploited to optimize overall perfor- 
mance. To illustrate the viability of our approach, we ap- 
plied it to the variable-length code (VLC) decoding prob- 
lem and show that the optimal VLC decoding algorithm 
can be found using the framework. Tradeoff between cod- 
ing efficiency and decoding speed of Huffman code can be 
exploited by employing length-limited code. 

', of an algorithm in a machine-dependent manner. 

1. I N T R O D U C T I O N  

The vast speedups in general purpose processors over recent 
years enables many complex media processing algorithms 
such as JPEG and MPEGl to be implemented in software 
and executed on modern computers. Modern processors, 
however, have unique architectural features that may &a- 
matically affect an algorithm's execution speed - stringent 
complexity constraints of a hand-held device processor, or 
the sizes and speeds of different hierarchical memories of a 
general-purpose processor. The existence of such features, 
together with the computation intensive nature of media 
processing algorithms, means that traditional compiler-level 
code optimizations may not be sufficient to fully realize all 
potential speedups. Instead, an algorithm can be computa- 
tionally optimized for a specific machine at the algorithmic 
level. Formally, one may ask how to optimally tune a par- 
ticular algorithm given the specification of a machine? 

From a theoretical viewpoint, computational complex- 
ity has recently garnered interests in the study of optimal 
tradeoffs between complexity and performance (e.g. dis- 
tortion) for specific transform-based image codecs [l], [2], 
[3]. These tradeoffs are typically performed in a machine- 
independent manner, using a generic metric such as number 
of multiplication operations. We believe, however, that a 
better approach is to adopt a machine-dependent metric, 
the execution t i m e ,  and ask a related machine-dependent 
question: what is the optimal tradeoff between execution 

time and performance for a particular algorithm? This has 
important implications in practice; for example, a user may 
be willing to tolerate the increase in distortion of a video 
stream if the video encoding speed is increased. 

In this paper, we present an attribute grammar based 
framework that addresses the two previously mentioned 
questions. For a given algorithm, a set of context-free gram- 
mar rules (CFG) defines a search space within the algo- 
rithm. Each terminal symbol in a rule represents a locally 
optimized patch of hand-written code, and has associated 
attributes that reflect the properties of the patch, such as 
code size and execution speed at a particular machine. An 
instance of an algorithm is thus represented by an ordered 
sequence of terminal symbols. By representing execution 
time as an attribute, we can optimally tune an algorithm 
by finding an ordered sequence of symbols that minimizes 
the execution time attribute. In so doing, we can formalize 
the notion of computational complexity given an algorithm 
and a specific machine. Moreover, the computationally op- 
timal algorithm can be easily synthesized by performing 
code-stitching. 

Our framework differs from existing works in three re- 
gards. First, by coupling the notion of algorithm compu- 
tational complexity to a particular machine, we can more 
precisely estimate the actual computational cost of the ex- 
ecutable when tuning an algorithm. Second, the frame- 
work provides an extensible and general foundation to study 
a general class of media processing optimization problems 
with computational complexity as objective or constraint. 
Finally, by performing machine-specific optimizations, we 
are able to optimally tune and automatically synthesize an 
implementation of an algorithm tailored for the chosen plat- 
form. 

We first describe the proposed attribute grammar based 
framework and its theoretical implications in section 2. An 
important example of algorithm tuning using this frame- 
work, the variable-length code (VLC) decode problem, is 
discussed in section 3. Finally, we provide some concluding 
remarks and future work in section 4. 

2. P R O P O S E D  F R A M E W O R K  

2.1. Att r ibu te  Grammar based Framework 

Our proposed framework, illustrated in Figure 1, is based 
on an attribute grammar (AG) formalism [4]. An AG is 
a set of context free grammar rules (CFG) decorated with 
attributes that are evaluated by attribute evaluation rules. 

0-7803-5467-2/99/ $10.00 0 1999 IEEE 797 



Figure 1: Attribute Grammar based Framework 

A CFG, commonly used for formal language specifications, 
is a set of reduction rules, each of which specifies a set of 
right-hand side symbols that can be reduced to a left-hand 
side symbol. A sequence of reductions from an ordered 
sequence of terminal symbols to the start symbol S is called 
a derivation ’. The role of CFG in our framework is to 
define a search space within an algorithm (tunable space), in 
which an instance of an algorithm can be uniquely specified. 

Each CFG rule has a set of associated attributes, which 
reflects the properties (estimated execution time, data mem- 
ory usage, etc) of the patch of locally optimized hand- 
written code that implements this rule. Attributes are eval- 
uated using a set of synthesized attribute evaluation rules, 
which shows how the attribute values of the left-side sym- 
bol is evaluated from the attribute values of the right-side 
symbols. A set of CFG rules, attributes, and attribute eval- 
uation rules, are collectively called an attribute grammar. 

Given an attribute grammar, we can define the notion of 
computational optimality within our framework: Let B be 
the set of algorithm instances, whose syntax is described by 
CFG of a defined framework that solves a media processing 
problem P .  Let the computational cost of an algorithm 
b E B, evaluated using attribute evaluation rules, be H(b).  
A computationally optimal instance to a media processing 
problem P is: 

argminH(b) (1) 
b E B  

If there are additional implementation constraints such as 
memory, then the computationally optimal instance is one 
that minimizes H(b)  while satisfying the constraints. Opti- 
mal tradeoffs between performance and complexity can be 
found by solving the constrained optimization problem mul- 
tiple times, each time with a different constraint value. For 
example, if D(b) is the distortion of an algorithm instance, 
we can find the optimal tradeoff between complexity and 
distortion by iteratively solving the following for different 
values of D1: 

minH(b) s.t. D(b) 5 D1 
b € B  

Even though the expressiveness of CFG restricts the 
tunable space of algorithm instances for a given problem, 
this restriction is not necessarily problematic in practice. 
During compilation, for example, code patches that cor- 
respond to various CFG terminal symbols need only be 
stitched up to constitute the algorithm, and so the machine- 
dependent algorithm tuning process can be easily auto- 
mated by a problem specific optimizer-code synthesizer pair, 
as shown in Figure 1. 

‘If two derivations are possible from the same sequence of 
terminal symbols, the grammar is called ambiguous. For our 
purpose, we will assume all grammars are unambiguous. 

attributes: syn cost with S, E, T, F domain {int) 

1. S -> E S.cost = E.cost 
2. E -> E ’+’ T EO.cost = El.cost + T.cost + 1 
3. E -> T E.cost 5 T.cost 
4. T -> T ’* ’ F TO.cost = Tl.cost + F.cost + 2 
5. T -> F T.cost = F.cost 
6. F -> ’( ’  E ’)’ F.cost = E.cost 
7. F -> num F.cost = 0 

E 

Figure 2: AG for Expressions 

E 
I 

a) Parse Tree of Instance 1 

T 
T kbl ( x[n] +x[n-I] ) * b 

Parse Tree of Instance 2 

Figure 3: Parse Trees for 2-tap Filter Algorithm 

2.2. Filtering Example 

As an example usage of the framework, we consider the 
following filtering problem. Suppose we want to find the 
fastest algorithm instance that implements a two-tap mov- 
ing average filter. Consider the grammar rules of expression 
in Figure 2, where cost is the attribute that reflects exe- 
cution time. A straight forward algorithm performs the 
following calculation at each discrete time n: 

y[n] = ~ [ n ]  * b + ~ [ n  - 11 * b (3) 
After parsing this algorithm instance’s description into a 
derivation tree (parse tree) shown in Figure 3a, the cost 
of this instance is calculated by evaluating the synthesized 
attribute c o s t  using the attribute rules. In this case, the 
implementation cost is 5. 

To see how the algorithm and its subsequent cost can 
be optimized, we can use associativity and rewrite the ex- 
pression. The new algorithm instance is: 

y[n] = (z[n] + z[n - 11) * b (4) 

The parse tree of this expression is shown in Figure 3b. 
The cost of this instance is 3. Therefore, we can conclude 
that this instance has a lower computational complexity 
than the previous one. In fact, we can make the following 
stronger statement: given the attribute grammar, the lat- 
ter algorithm instance is in fact a computationally optimal 
instance that implements the two-’tap filter. 

2.3. Implications of AG F’ramework 

Using our framework to pose computational optimization 
problems has important theoretical implications. For a 

We conclude that the instance is computationally optimal 
by observing semantically that the filter cannot be implemented 
with fewer than one add and one multiply for the given AG. 

798 



Figure 4: Hierarchical Memory Machine Model 

given AG, let B be the corresponding tunable space that 
solves a problem P. The computational complexity of an 
algorithm b E B is modeled by a series of synthesized at- 
tribute evaluations. If we now assume: i) all algorithm 
instances b E B are of polynomial lengths of terminal sym- 
bols, ii) an instance can be checked if it solves P in polyno- 
mial time (feasibility), and iii) each attribute evaluation can 
be evaluated in polynomial time, then the decision problem 
that corresponds to (1) - does that exist an algorithm in- 
stance that solve P with computation cost less than C? - 
must necessarily be non-deterministic polynomial (NP) [4]. 
The reason is that if the decision problem is true, then there 
exists a verifiable certificate algorithm instance b* of poly- 
nomial length (assumption i), which can be checked against 
feasibility in polynomial time (assumption ii), and whose 
complexity can be computed in polynomial time (by a se- 
quence of attribute evaluations, each of which takes poly- 
nomial time (assumption iii)). The theoretical implication 
is the following: because a great deal is known about the 
class of optimization problems NP, optimization problems 
posed using the framework can potentially be solved using 
traditional optimization techniques. In the next section, we 
will see such an example. 

3. VLC DECODE PROBLEM 

Many signal processing applications rely upon VLC to re- 
duce distortion and/or encoding bit rate. For example, 
the Huffman code maps a sequence of recurring, statisti- 
cally independent symbols into a minimally described bit 
sequence. Likewise, a pruned tree structured vector quan- 
tizer (PTSVQ) maps an input vector into a codeword in a 
finite-size codebook via multi-stage approximation. In both 
cases, the encoder maps each input symbol to a VLC; VLCs 
are then concatenated to form a bit stream. 

The implementation of a VLC decoder often involves a 
tradeoff between computation and memory usage. Efficient 
data structures representing a set of VLCs often mean a 
slow decoding process, while fast VLC decoding algorithms 
usually require large memory space. Depending on cost 
criteria, numerous approaches have been offered in the lit- 
erature. In contrast, our goal is to solve the VLC decode 
problem in a machine-dependent manner using our frame- 
work, where the objective is to find an algorithm instance 
that minimizes the average decoding time per codeword. 
We assume the target machine is a general purpose proces- 
sor with hierarchical memories. To model the memory hier- 
archy, we constructed a machine model shown in Figure 4, 
with two levels of memories M1 and Mz, with different sizes 
and memory access speeds. Because of the intricate inter- 
play between decoding time and memory usage in VLC de- 

Figure 5: Example of VLC Decoding 

coding, we design attributes and attribute evaluation rules 
in this problem to capture their mutual dependence in the 
next sections. 

3.1. AG for Static Memory Model 

Two common techniques for VLC decoding are table lookup 
and logical comparison. Consider the set of VLCs in Figure 
5a, represented as a Huffman tree. A particular decoding 
algorithm is shown in Figure 5b, where a height 2-bit lookup 
table is first indexed, followed possibly by a logical compar- 
ison. The execution time of a given table lookup operation 
will depend on what type of memory the table is residing 
in; if the table resides in type 1 (type 2) memory, then the 
lookup operation will take 2'1 (2'2) amount of time. The to- 
tal size of tables assigned to type 1 memory by a decoding 
algorithm must not exceed the available type 1 memory of 
the machine, SI. We assume that the size of level 2 memory 
is infinite, and that we can explicitly assign lookup tables to 
levels of hierarchical memory statically. An AG capable of 
expressing a decoding algorithm that uses a set of memory 
assigned lookup tables, with attribute rules that find the 
average lookup cost and memory usage, is shown in Figure 
6. To expand the grammar to permit logical comparison as 
well, we add a small set of AG rules shown in Figure 7. The 
execution time of a logical comparison is Q. 

Given such a grammar, we can express a VLC decoding 
algorithm instance that uses a mixture of lookup tables and 
programmed logics and evaluate its execution cost. For ex- 
ample, the algorithm instance in Figure 5b can be expressed 
as : 
~.~.[(~,~4,P4)~(~,~3,P3),(2,~z,P2),(3,~.~(~,~i~Pi~,~~,~o~Po~]~1 

(5) 
where p ,  is the probability of symbol sj. The cost of the 

instance, evaluating using the attribute rules, is: p o ( Q  + 
TI) +pi (Q + 7'1) + ~ Z T I  + p37'1 + p4Tl. More generally, we 
can compute the average decoding time per symbol of an 
instance b, denoted H(b), as: 

N(b) = Cp,(a,Ti  + b,T2 + c J Q )  (6 )  
3 

where a3 (b,) is the number of type 1 (type 2) memory 
access needed to decode symbol j ,  and c, is the number of 
logical comparison needed. In other words, a, (b,) is the 
number of lookup tables residing in type 1 (type 2) memory 
used in the decoding process of symbol j .  

Armed with this AG, we can pose a well-formed opti- 
mization problem: 

minH(b) s.t. R(b) 5 Si 
b E B  (7) 

799 



attributes: 
s y n  prob w/ T, M, m domain {real} 
s y n  cost w/ S, T, M, m domain {real} /* lookup cost of node */ 
syn size w/ T, M, m domain {int} /* size of type 1 tables */ 

/* prob. of node * /  

1. 
2. 

3 .  

4 .  

5 .  

6 .  

7 .  
8. 

1’. 
2’. 

6 ’ .  

S -> T S.cost = T.cost 
T -> h ’ . ’  Y I . ’  ’C’ M ’1’ T.prob = M.prob 

/* define lookup table */ 
if (Y.value == 1) { 

T.cost = M.cost + M.prob * T-1 
T.size = 2-h + M.size 

> 
else { /* Y.value == 2 */ 

T.cost = M.cost + M.prob * T-2 
T.size = M.size 

> 
if (T.size > S-1) ERROR; 

MO.cost = Ml.cost + m.cost 
MO.size = Ml.size + m.size 
if (MO.size > S-1) ERROR; 

M.cost = m.cost 
M.size = m.size 

M -> M ’,’ m MO.prob = Ml.prob + m.prob 

M -> m M.prob = m.prob 

in -> ’ ( ’  int I , ’  id I , ’  real ’ ) ’  
m.prob = real 

/* define table entry */ 
m.cost = 0 
/* (index, symbol, entry probability) */ 
m.size = 0 

m.cost = T.cost 
m.size = T.size 

h -> int /* define table width */ 
Y -> int Y.value = int 

m -> ’( ’ int ’,’ T ’ ) ’  m.prob = T.prob 

/* define memory type */ 

Figure 6: AG for Tables: Static Memory Model 

s -> L S.cost = L.cost 
L -> ’0’ > , >  ’[’ > , >  m ’ 3 ’  

L.prob = ml.prob + m2.prob 
/* define logic comparison */ 
L.cost = L.prob * Q + ml.cost + m2.cost 

m -> ’ ( ’  int ’,’ L ’) ’  m.prob = T.prob 
m.cost = T.cost 

Figure 7: AG for Programmed Logic 

where B is the set of feasible algorithm instances using 
lookup tables and logics, and R ( b )  is the total size of lookup 
tables assigned to type 1 memory. In other words, given 
a set of VLCs and their associated probabilities, what is 
the optimal algorithm instance that minimizes the decoding 
time? Note that the optimal instance must not assign tables 
to type 1 memory in such a way that it exceeds the memory 
capacity of the machine model. 

We have shown in [5] that (7) is an NP-hard problem 
and presented a branch-and-bound technique based on La- 
grange multipliers that finds an approximate solution. We 
will later briefly discuss some results from [5]. 

3.2. AG for Dynamic Memory Model 

In many processor architectures, programmers do not have 
explicit control on which level of hierarchical memory data 
structures reside in; movements are typically determined 
by the architecture’s cache replacement strategies. In such 
cases, we adopt a dynamic memory model, which can be 
reflected by a slight change in the AG. 

Figure 8: Memory Access Cost Function 

1. S -> T S.cost E Time(T.size)*T.cost 
2. T -> h ’ . [ ’  M ’1’ T.prob = M.prob 

/* define lookup table */ 
T.cost = M.cost + M.prob 
T.size = 2-h + M.size 

3-6. 

Figure 9: AG for Tables: Dynamic Memory Model 

Suppose the size of the data structures of an algorithm 
in memory, S ,  is less than or equal to SI. Then the memory 
access time of a desired datum, T ( S ) ,  is always T I ,  since 
all the data structures can be loaded into level 1 memory. 
If S > SI, then the desired datum may not be in level 1 
memory. We estimate the memory access time in this case 
as follow: a size SI portion of the S memory will be in level 
1 memory at any given time. If all pieces of data are equally 
likely to be in the level 1 memory, then with probability 9 
we will find the data in level 1 memory, and with probability 9 we will find the data in level 2 memory. Using this 
approximation, the memory access cost as a function of the 
size of the data structures in memory is: 

This function is shown in Figure 8. To evaluate the com- 
plexity of an algorithm instance b E B,  we need f i s t  to find 
the size of the data structures of the instance, R(b). We 
then find the corresponding memory access cost T(R(b)) .  
The execution time of an instance b will be a function of 
both b and T(R(b)).  The difference in execution time eval- 
uation is reflected by a change in attribute evaluation rules 
shown in Figure 9. The new optimization problem is: 

min H(b,  T(R(b)) ) 
b € B  

(9) 

In [ 6 ] ,  it is found that (9) is an NP-hard problem as well. It 
discusses a similar branch-and-bound technique that finds 
an approximate solution. We see that the new machine- 
dependent architectural detail can be captured by a slight 
change in the AG. 

3.3. Results 

We now discuss the performance of the VLC decoding al- 
gorithm instance generated by the branch-and-bound op- 
timization technique in [5], based on AG in Figure 6, 7. 
For input, we use two different sets of VLCs. The first set 

800 



I Logic only I Lagrange I Full Table I M & T 
~ ,263 VL 4.76 4.32 3.82 

PTSVQ 2.67 4.16 3.70 

Figure 10: Results VLC Decode, in mil. lookups/s 

is the motion vector VLC table of the H.263 video com- 
pression standard, with a 13-bit longest codeword. Using 
the technique in [5], we found a near-optimal algorithm in- 
stance and automatically generated a VLC decoder for the 
machine parameters: 5’1 = 16kB, 2’1 = 1, TZ = 3, and 
Q = 0.5. They were estimates for our testbed, a 266MHz 
Pentium processor. 

To create a test bit stream, we generated 10 million ran- 
dom codewords using the available codeword probabilities. 
Using our testbed machine, we executed our VLC decoder 
20 times on the bit stream to obtain an average lookup cost. 
In Figure 10, we first compare the performance of our de- 
coder to two other decoders: i) full table lookup algorithm 
that uses a single lookup table of 2h elements, where h is 
the height of the Huffman tree; and, ii) logical compari- 
son only algorithm that decodes one bit at’a time using i f  
statements. Note that full table lookup algorithm is the 
optimal VLC decoder if one uses number of operations as 
the metric, and logic-only algorithm is optimal if one uses 
number of memory access as the metric - both of which 
are machine-independent metrics. The results show that 
our decoder is 10.2% faster than the full table algorithm, 
and is 23.0% faster than the logic-only algorithm. Since 
the set of VLCs is a canonical code, we are able to compare 
our algorithm to algorithm ONE-SHIFT in [7]; Figure 10 
shows that our algorithm has a 24.6% improvement over 
algorithm ONE-SHIFT. 

The second set of VLCs is the codebook of a pruned 
tree-structured vector quantizer. The training set used for 
the construction of the codebook consists of three 512x512 
grey-scale images: the well-known lena, t i f f  any and baboon 
images. Using the training set as input to the program, we 
obtained the PTSVQ codebook and the codeword prob- 
abilities for vector dimension 4 and rate 5. The longest 
codeword was length 15. In Figure 10, we see that we have 
12.4% improvement over the full table algorithm and 55% 
improvement over the logic-only algorithm. We see that by 
using the proposed framework, we are able to capture the 
machine-dependent computational complexity when opti- 
mizing an algorithm, and as a result, our optimizations out- 
perform those based on machine-independent techniques. 

We can also trade off between encoding rate of a lossless 
variable-length code and the decoding time. VLC decod- 
ing using lookup tables is difficult when the length of the 
longest codeword is very long compared to the average code- 
word length, i.e. the Huffman tree is very skewed. Suppose 
we employ a length-limited code [8] instead, where we sys- 
tematically reduced the length of the longest codeword. For 
each new set of length-limited VLCs, we find a near-optimal 
algorithm instance using technique in [5]. In Figure 11, we 
see this tradeoff between encoding rate and decoding time 
can be exploited by modifying the motion vector VLC table 
as mentioned above. 

’I \ 

Figure 11: Tradeoff between Bit Rate and Decoding Time 

4. CONCLUSION & FUTURE WORK 

In this paper, we presented an attribute grammar based 
framework for the computational optimization of media pro- 
cessing algorithms. Using our framework, machine depen- 
dent computational optimality can be formally defined. Af- 
ter finding the optimal algorithm instance using a problem 
specific optimizer, an implementation of the algorithm can 
be automatically generated. In particular, we show how the 
VLC decoding problem can be optimized using the frame- 
work. In the future, we plan to investigate optimizations of 
other computationally intensive algorithms using the frame- 
work, such as the unconstrained VQ encoding problem. 

5. REFERENCES 

V. Goyal, M. Vetterli, “Computation-Distortion Char- 
acteristics of Block Transform Coding,” ICIP 97, 

M.Gormish, J.Gill, “Computation-rate-distortion in 
transform coders for image compression,” SPIE 
~01.1903 Image and Video Processing, pp.146-152, 
1993. 
K. Lengwehasatit , A. Ortega, “Distortion/Decoding 
Time Tradeoffs in software DCT-based Image Cod- 
ing,” ICASSP 97, 1997. 
M.Sipser, Introduction to  the Theory of Computation, 
December, 1996. 
G.Cheung, S.McCanne, C.Papadimitriou, “Software 
Synthesis of Variable-length Code Decoder using a 
Mixture of Programmed Logic and Table Lookups,” 
DCC 99, Jan, 1999. 
G.Cheung, S.McCanne, “Dynamic Memory Model 
based Optimization and Code Synthesis for IP Address 
Lookup,” Submitted for publication in ICNP 99, May, 
1999. 
A.Moffat, A.Turpin, “On the Implementation of 
Minimum Redundancy Prefix Codes,” IEEE Trans. 
Comm., vo1.45, No.10, pp.1200-1207, October 1997. 
J.Katajainen, A.Moffat, A.Turpin, “A Fast and Space- 
Economical Algorithm for Length-Limited Coding,” 
Proc. Int. Symp. Algorithms and Computation, pp.12- 
21, Dec, 1995. 

pp.2729-2732, 1997. 

80 I 


