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ABSTRACT

In order to allow sufficient amount of light into the image sen-
sor, videos captured in poor lighting conditions typically have low
frame rate and frame exposure time equals to inter-frame period—
commonly called full exposure time (FET). FET low-frame-rate
videos are common in situations where lighting cannot be improved
a priori due to practical (e.g., large physical distance between camera
and captured objects) or economical (e.g., long duration of night-
time surveillance) reasons. Previous work in computer vision has
shown that content at a desired higher frame rate can be recovered
(to some extent) from the captured FET video using self-similarity-
based temporal super-resolution. From an end-to-end communica-
tion standpoint, however, the following practical question remains:
what is the most compact representation of the captured FET video
at encoder, given that a higher frame rate reconstruction is desired
at the decoder? In this paper, we present a compression strategy,
where, for a given targeted rate-distortion (RD) tradeoff, FET video
frames at appropriate temporal resolutions are selected for encoding
using standard H.264 tools at encoder. At the decoder, temporal
super-resolution is performed on the decoded frames to synthesize
the desired high frame rate video. We formulate the selection of
individual FET frames at different temporal resolutions as a shortest
path problem to minimize Lagrangian cost of the encoded sequence.
Then, we propose a computation-efficient algorithm based on mono-
tonicity in predictor’s temporal resolution to find the shortest path.
Experiments show that our strategy outperforms an alternative naı̈ve
approach of encoding all FET frames as is and performing temporal
super-resolution at decoder by up to 1.1dB at the same bitrate.

Index Terms— Video compression, super-resolution, self simi-
larity

1. INTRODUCTION

Appropriate exposure time (and subsequently frame rate) for a cap-
tured video is influenced by the lighting condition of the scene of
interest. If the lighting condition is poor, then exposure time must be
long to permit sufficient amount of light into the photographic film or
image sensor, avoiding undesirable underexposure effects. Clearly,
exposure time cannot be longer than inter-frame period in a video,
hence a longer required exposure time can lead to lower video frame
rate, which is usually not desirable.

Quite often, lighting condition cannot be improved a priori due
to practical or economical constraints. For example, the scene of in-
terest can be too far from the camera to physically insert light sources
before capture. Another example is a night-time surveillance / ob-
servation situation, where prolonged illumination in a large area will
lead to unacceptably high cost, or disturbance to the captured ani-
mals in their nocturnal habitat. Thus, it is often unavoidable to han-
dle captured videos with full exposure time (FET) and lower frame
rate than desirable, where the exposure time of each frame equals

the inter-frame period of the captured video. See Fig. 1 for an illus-
tration.
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Fig. 1. Illustration of temporal super-resolution for: a) sub-
exposure-time video, and b) full-exposure-time (FET) video. Super-
resolved frames are colored yellow.

While FET is in general not a desirable property, to synthesize
video at a required higher frame rate using FET video as input, pre-
vious work in computer vision [1] has proposed temporal super-
resolution using self-similarity (TSR-SS) to exploit the FET prop-
erty. The key observation is that the same motion blur patterns due to
long exposure time often reappear at multiple timescales. By identi-
fying motion blur patches in one FET video frame (using Maximum
A Posteriori (MAP) estimate [1]), two corresponding frames at twice
the frame rate can be constructed by halving the blurs at appropri-
ate spatial locations. Specifically for FET video, [1] has shown that
TSR-SS out-performs previous temporal super-resolution methods
such as optical flow [2] by up to 6dB in PSNR of the reconstructed
high-frame-rate video.

For a typical end-to-end communication scenario, where encod-
ing is performed at video capture location and decoding is performed
at viewer’s display, however, the following practical question re-
mains: what is the most compact representation of the captured FET
video at encoder, given that a higher frame rate reconstruction is
required at decoder? One obvious solution is to perform tempo-
ral super-resolution at encoder to up-sample captured FET video to
high-frame-rate content prior to compression. However, this means
compression must be performed in higher-than-capture frame rate,
expending large number of coding bits. An alternative is to encode
captured FET video as is at encoder, relying on decoder to perform
temporal super-resolution on compressed frames to recover required
high-frame-rate content. However, quantization noise due to com-
pression can severely affect super-resolution, harming constructed
high-frame-rate video quality.

In this paper, we present instead an adaptive compression strat-
egy for FET video, where FET video frames are selectively encoded
at appropriate temporal resolution to optimize rate-distortion (RD)
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tradeoff. The key idea is to encode at low temporal resolution frames
that can be easily synthesized via super-resolution at decoder (to save
bits), and to encode at high temporal resolution frames that are diffi-
cult to synthesize after quantization (to preserve quality). We formu-
late the selection of individual FET frames at different temporal res-
olutions as a shortest path problem in a directed acyclic graph (DAG)
to minimize Lagrangian cost of the encoded sequence. We then de-
velop a fast shortest-path search algorithm based on assumption on
monotonicity in predictor’s temporal resolution. Experiments show
that our adaptive strategy outperforms the alternative approach of
encoding all FET frames at encoder and performing temporal super-
resolution at decoder by up to 1.1dB at the same bitrate.

The outline of the paper is as follows. After a brief discussion
on related work in Section 2, we overview TSR-SS in Section 3. We
formulate our RD optimization problem in Section 4, and detail our
shortest-path algorithm in Section 5. We present results and conclu-
sion in Section 6 and 7, respectively.

2. RELATEDWORK

Frame interpolation in time was studied in the context of variable
frame rate for low-bitrate video coding [3, 4]. While similar in
motivation to our temporal super-resolution problem, such methods
typically rely on motion compensation or optical flow analysis [2],
which do not perform well for FET video with motion blurs at low
frame rates. By comparison, our previously proposed TSR-SS [1]
has shown noticeably superior performance for FET video.

Our problem of selecting FET video frames at the “best” tem-
poral resolutions for video encoding is a new entry into a family
of RD-optimizing dependent resource allocation problems. It was
first studied in the seminal work [5] on bit allocation for dependent
frames in motion-compensated video coding. [6] later studied the
problem of selecting the appropriate quantization parameters (QP)
and skipped frames1 (to save bits) in video to minimize resulting dis-
tortion subject to a rate constraint. Recently, [7] studied the problem
of selecting subsets of texture and depth maps of multiview images
for differential encoding at appropriate QPs to minimize synthesized
view distortions at decoder subject to a total rate constraint. Our
current work differs from these previous work in two respects. First,
out unique problem setting on FET video coding demands a selec-
tion of frames at different temporal resolutions to optimize RD per-
formance, which has not been previously studied. Second, our fast
solution search is developed based on monotonicity in predictor’s
temporal resolution, which is also new.

3. SELF SIMILARITY FOR TEMPORAL
SUPER-RESOLUTION

Fig. 2. Self-similarity. A x-t plane for single scan line, and 1-D
image sequences with different temporal resolutions.

1Skipped frames can be construed as one form of temporal resolution. We
focus here instead on optimally selecting temporal resolutions of FET video
frames, where, unlike a skipped frame, a lower resolution FET frame is a
pixel-by-pixel average of two higher resolution FET frames.

In natural images, self-similar texture patches tend to redun-
dantly recur many times inside the image, both within the same scale
as well as across different scales. In the same way, self-similarity ex-
ists in the spatio-temporal domain of videos, for example, if objects
in a scene follow similar trajectories with constant but different ve-
locities. On the basis of this observation, previously we proposed a
method to temporally super-resolved video from a single FET video
by exploiting self-similarity, i.e., a self-similar appearance that rep-
resents integrated motion of objects during each exposure time of
videos with different temporal resolutions [1].

For simplicity, let us consider self-similarity in the case of 1D
image sequences of a uniformly moving object. Fig. 2 illustrates
two FET image sequences: V0 has exposure time (also inter-frame
period) e/2, half of that of V1, e. Consider, for example, a small 1D
image patch of V0 with exposure time e/2. In a patch of V1 captured
with exposure time e at the same position in x-t plane, the same ob-
ject moves twice the distance. If the spatial size of the patch of V1 is
twice that of the patch of V0, the patch of V0 becomes similar to the
corresponding patch of V1 because the object moves twice the dis-
tance during the exposure time of V1. This self-similar relationship
can be extended to a 2D-image patch. Utilizing this self-similar re-
lationship between such different temporal resolution frames which
are created from the original captured frames, TSR-SS can create a
high-frame-rate video from the scaled self-similar patches.

4. PROBLEM FORMULATION

F FF 3,6 F7 9,108F
1,2

Fig. 3. Example of FET video encoding. MR (captured) frames
F(1,2) and F(9,10) are coded as is. LR frame F(3,6) is average of
captured frames F(3,4) and F(5,6). SR F7 and F8 are synthesized
from MR frame F(7,8).

We formulate our problem of selecting FET frames at appro-
priate temporal resolutions as a formal combinatorial optimiza-
tion in this section. We first overview the degrees of freedom in
the optimization unique for our problem setting. Each captured
FET (medium temporal resolution or MR) frame F(i−1,i) can be
super-resolved via TSR-SS at encoder into super-resolved (SR)
frames Fi−1 and Fi. It can also be combined with captured frame
F(i−3,i−2) into an low resolution (LR) frame F(i−3,i). (In turn, LR
frame F(i−3,i) can be super-resolved into MR frames F(i−3,i−2)

and F(i−1,i).) In general, encoding SR frames gives high quality
but requires many coding bits, while encoding LR frames gives poor
synthesized frame quality at decoder but requires few bits. The
problem is to find a combination of SR frames, MR frames and LR
frames at encoder that gives the best RD tradeoff. Fig. 3 shows one
example of such frame combination.

4.1. DAG Representation of Frame Selection

Denote by F = {F(1,2), F(3,4), . . . , F(2N−1,2N)} the N captured
MR frames. Denote by Fs = {F1, F2, . . . , F2N} the 2N corre-
sponding SR frames synthesized at encoder prior to compression. In
addition, let averages of neighboring captured frames (LR frames)
be Fa = {F(1,4), F(3,6), . . . , F(2N−3,2N)}, where F(i−3,i) is the
pixel-by-pixel average of MR frames F(i−3,i−2) and F(i−1,i). The
goal is to identify which subset of frames in F , Fs and Fa should
be coded for a targeted RD tradeoff.
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We construct a directed acyclic graph (DAG) to represent selec-
tions of frames for coding as follows. For the three sets of SR frames
Fs, MR frames F and LR frames Fa, we create three rows of nodes
from top to bottom, one node x for each frame Fx, as shown in
Fig. 4. We line up nodes i, (i− 1, i) and (i− 3, i) representing Fi,
F(i−1,i) and F(i−3,i), where i is an even index, in one column; these
frames correspond to content of Fi at different temporal resolutions.
In addition, we create start and end nodes s and t at the left and right
end of the DAG.

We draw an edge ex→y from node x to y to represent the
case when frame Fy is differentially coded using Fx as predictor.
Thus, all the potential predictor-predictee relationships between two
frames are shown as edges. Essentially, nodes i and (j, i), ∀j, can be
predictors for nodes i+ 1 and (i+ 1, k), ∀k. In addition, start node
s has edges to nodes of candidate first frames of the coded sequence
(I-frame)—frame F1, F(1,2) and F(1,4). End node t has edges stem-
ming from nodes of candidate last frames of the sequence, frame
F2N , F(2N−1,2N) and F(2N−3,2N) .

(1) (2) (3) (4) (5) (6)

s (1,2) t(3,4) (5,6)

(1,4) (3,6)

Fig. 4. DAG example for six SR frames, and start and end node s, t.
Because a motion-compensated frame has one predictor frame,

which in turn has one predictor frame, all the way back to the first
frame that is encoded as an I-frame, a path p from s to t through
the constructed DAG represents a selection of frames for encoding
of the sequence. If we can then assign cost to the edges representing
rate and distortion costs, then we can formulate the frame selection
problem as as minimum cost path problem. Towards that goal, we
first discuss rate and distortion model.

4.2. Rate Model

For a given path p = {s, p1, p2, . . . , pLp , t}, where Lp is the length
of path p minus s and t, we can write the encoding rate R(p) of the
coded sequence described by path p as as sum of individual selected
frames:

R(p) =

Lp∑
l=1

rc(pl, pl−1) (1)

where p0 = s, and the coded rate rc(p1, p0) of the first frame de-
pends only on the selection of the first frame Fp1 . The coded rate
rc(pl, pl−1) of the l-th frame depends only on the selection of l-th
frame Fpl and its predictor Fpl−1

. This Markovian rate dependency
model has been shown to be useful in [7].

4.3. Distortion Model

We can similarly write the resulting distortion D(p) of the super-
resolved sequence at decoder, given encoded frame selection path p,
as a simple sum:

D(p) =

Lp∑
l=1

d(pl,p) (2)

where d(pl,p) is the distortion corresponding to coded frame Fpl . If
coded frame Fpl is a SR frame, then distortion d(pl,p) is simply the
coded distortion dc(pl, pl−1) that depends on the selection of its pre-
dictor Fpl−1

only [7]. If Fpl is a MR frame or a LR frame, then we

must account for synthesized distortions of all SR frames to be gen-
erated at decoder of which Fpl contains content. Let (a(pl), b(pl))
be the range of SR frames of which frame Fpl averaged over, given
Fpl is a MR frame F(i−1,i) or an LR frame F(i−3,i). We can write
distortion d(pl,p) of coded frame Fpl as:

d(pl,p) =

{
dc(pl, pl−1) if Fpl ∈ Fs∑b(pl)

k=a(pl)
ds(k,p) o.w. (3)

where ds(k,p) is the synthesized distortion of super-resolved SR
frame Fk at decoder given selected frame path p. Because TSR-
SS uses all coded frames in the sequence to detect self-similarity,
ds(k,p) cannot be further simplified to depend only on local pl and
pl−1, as done for distortion dc(pl, pl−1) of coded SR frame Fpl .

4.4. Shortest Path in DAG

Having defined rate cost R(p) and distortion cost D(p) for a given
frame selection path p, we can formalize our path selection problem
as a Lagrangian optimization problem:

min
p∈P

Θ(p) = D(p) + λR(p) (4)

where P is the set of feasible paths from s to t, and λ is the La-
grangian multiplier. We can alternatively write (4) as a sum of indi-
vidual Lagrangian costs θ(pl,p) of coded frame Fpl :

Θ(p) =

Lp∑
l=1

θ(pl,p)

θ(pl,p) = d(pl,p) + λrc(pl, pl−1) (5)

By assigning each individual Lagrangian cost θ(pl,p) to edge
epl−1,pl of path p, we see now that a shortest cost path in the DAG,
where the cost of the path p is the sum of individual edge costs
c(epl−1→pl)’s, corresponds to the optimal frame selection in (5).
We discuss how we find this shortest path in the next section.

5. FAST SHORTEST PATH ALGORITHM

There are two complications when trying to solve the shortest path
problem in (5). The first is that Lagrangian cost θ(pl,p) of edge
epl−1→pl depends on the entire path p rather than just the two end
nodes of the edge, pl−1 and pl. The second is that even if edge cost
c(epl−1→pl) can be determined solely as function of pl−1 and pl,
finding the shortest path for a large number of nodes and edges can
be computationally expensive. We address the two issues in order.

5.1. Iterative Shortest Path Procedure
To address the first concern, we propose an iterative procedure
where, in each iteration, a shortest path (SP) in the DAG is found
given fixed edge costs; i.e, each cost c(ex→y) of edge ex→y is fixed
given nodes x and y, independent of other nodes. Edge costs are
adjusted after each iteration. The procedure terminates when two
consecutive iterations return the same SP. Details of the procedure
is shown in Iterative SP Procedure.

We explain the rationale behind the procedure as follows. Step 2
initialize each edge ex→y to be the smallest θ(y,pi) possible, since
all other nodes besides x and y are SR nodes, resulting in the smallest
synthesized distortions. This provides the procedure an opportunity
to find a path away from initial path of all SR nodes. Subsequently,
for each discovered SP p, each edge cost of SP will only increase
according to selected nodes in p. This means the procedure is guar-
anteed to converge. Moreover, the calculated cost of the converged
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Iterative SP Procedure
1: Initialize previous path p

′ to be path with all SR nodes.
2: Initialize c(ex→y) to be θ(y,pi), where path p

i contains x and
y, and all other nodes are SR nodes.

3: Find SP p given fixed edge costs.
4: if p′ �= p then
5: c(epl−1→pl) ← max{θ(pl,p), c(epl−1→pl)}.
6: p

′ ← p. Goto Step 3.
7: end if

SP is an upper-bound of the Lagrangian cost of the true SP due to
the max operation in Step 5.

5.2. Monotonicity in Predictor’s Temporal Resolution
For given fixed edge costs, we can speed up the SP search with the
assumption of monotonicity in predictor’s temporal resolution. The
observation is that finer temporal resolution of a frame containing
content of SR frame Fi, say F(i−1,i), is in general a better predictor
for future frames F(i+1,k)’s, ∀k, than coarser temporal resolution of
the same frame, say F(i−3,i). So if the local cost of choosing the
finer temporal resolution of the frame is already less than the coarser
resolution, then the coarser resolution is globally sub-optimal.

In more rigorous details, let ψ(x) be the shortest sub-path from
s to node x. We state the above observation formally as follows:

Lemma 1 If ψ(x) < ψ(y), where Fx and Fy are fine and coarse
temporal resolution of the same frame, then Fy is globally sub-
optimal.

Proof of Lemma 1 We prove by contradiction. Suppose there exists
SP p

o that includes node pol = y. We construct a new path p∗ =
{ψ(x), pol+1, . . . , p

o
Lpo , t}. By assumption, ψ(x) < ψ(y). Further,

given Fx and Fy are fine and coarse temporal resolution of the same
frame, c(ex→po

l+1
) ≤ c(ey→po

l+1
) by monotonicity of predictor’s

temporal resolution. Hence the cost of path p∗ is strictly less than
cost of SP p

o, a contradiction.
The lemma can be used in the following way to speed up the

SP search. Shortest sub-paths to nodes in the DAG are calculated
column-by-column from left to right. At each column of nodes, if
ψ(x) < ψ(y) where Fx is a finer temporal resolution of Fy , then
node y is sub-optimal and can be pruned from DAG right away.

6. EXPERIMENTATION

Fig. 5. SR frame in intrsct3 at QP=35.
To test the performance of our proposed compression scheme

(adapt), we first shot a 300-frame 384 × 216 FET video sequence
intrsct3 as data for MR frame set F . We then created SR frame
set Fs via TSR-SS, and Fa by averaging neighboring MR frames.
Assuming an Group of Pictures (GOP) size of 30 captured frames,
we then encoded combinations of F , Fs and Fa at different QPs us-
ing H.264 to calculate encoding rates rc’s and distortions dc’s. For a

given QP, we varied multiplier value λ when finding the best frame
combinations for encoding via SP to obtain an RD curve. We re-
peated the experiment for different QPs; adapt is the convex hull
of all adaptive curves. See Fig. 5 for an example of a TSR-SS syn-
thesized SR frame.
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Fig. 6. RD performance of various compression schemes. x-axis is
bits per super-resolved frame, and y-axis is video quality in PSNR.

In Fig. 6, we compare our scheme to simple schemes when the
entire FET video is first up-sampled via TSR-SS before encoding
(high-fps), and when the FET video is encoded as is, then is
super-resolved temporally via TSR-SS at decoder (mid-fps). We
first observe that mid-fps performed better than high-fps at
lower bitrate, while high-fps performed better at higher bitrate.
This is intuitive, since we know high-fps preserves TSR-SS qual-
ity but consumes more bits. We next observe that adapt outper-
formed both high-fps and mid-fps at higher bitrate: by up to
1.1dB and 1.8dB, respectively. This shows that adaptive selection of
FET frames at different temporal resolution is important.

7. CONCLUSION

In this paper, we propose an adaptive encoding strategy to select
full-exposure-time (FET) frames at different temporal resolutions to
optimize RD performance. Results show our adaptive scheme out-
performed naı̈ve schemes by up to 1.1dB in PSNR. For future work,
we are considering adaptive selection of QPs at a frame level to-
gether with temporal resolutions.
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