Gene Cheung National Institute of Informatics 21st May, 2015

Graph-based Depth Image Processing

NII Overview

- National Institute of Informatics
- Chiyoda-ku, Tokyo, Japan.
- Government-funded research lab.

- Offers graduate courses & degrees through The Graduate University for Advanced Studies.
 - 60+ faculty in "**informatics**": quantum computing, discrete algorithms, database, machine learning, computer vision, speech & audio, image & video processing.

Get involved!

- 2-6 month Internships.
- Short-term visits via MOU grant.
- Lecture series, Sabbatical.

- Traditional vs. Graph Signal Processing
- Graph Fourier Transform (GFT)
- Depth Map Compression
- Depth Map Denoising
- Depth Map Interpolation

Traditional Signal Processing

- Traditional discrete signals live on regular data kernels (**unstructured**).
 - Ex.1: audio / music / speech on regularly sampled timeline.
 - Ex.2: image on 2D grid.
 - Ex.3: video on 3D grid.
- Wealth of SP tools (transforms, wavelets, dictionaries, etc) for tasks such as:
 - compression, denoising, classification.

Graph Signal Processing

- Signals live on graph.
 - Graph is sets of nodes and edges.
 - Edges reveals node-to-node relationships.
- Data kernel itself is **structured**.
- 1. Data domain is naturally a graph.
 - Ex.1: posts on social networks.
 - Ex.2: temperatures on sensor networks.
- 2. Embed signal structure in graph.
 - **Ex.1: images:** 2D grid \rightarrow structured graph.

Graph Signal Processing (GSP) addresses the problem of processing signals that live on graphs.

Graph Signal Processing

Research questions:

- **Sampling**: how to efficiently acquire / sense a graph-signal?
 - Graph sampling theorems.
- **Representation**: Given graph signal, how to compactly represent it?
 - Transforms, wavelets, dictionaries.
- **Signal restoration**: Given noisy and/or partial graph-signal, how to recover it?
 - Graph-signal priors.

- Traditional vs. Graph Signal Processing
- Graph Fourier Transform (GFT)
- Depth Map Compression
- Depth Map Denoising
- Depth Map Interpolation

Graph Fourier Transform (GFT) for Graph-signals

Graph Fourier Transform:

- Signal-adaptive transform:
 - 1. If two connected pixels are "similar", then edge weight is large \rightarrow adjacency matrix A.

3. Perform eigen-decomposition on L for GFT.

 $x = \sum a_i \varphi_i$

• Intuition: Embed geometric structure of signal as edge weights in graph.

Facts of Graph Laplacian & GFT

- L is a high-pass filter.
- $\mathbf{x}^T \mathbf{L} \mathbf{x}$ is one measure of variation in signal. $\mathbf{x}^T \mathbf{L} \mathbf{x} = \frac{1}{2} \sum_{i,j} w_{i,j} (x_i - x_j)^2 = \sum_i \lambda \alpha_i^2$

L for 4-node unweighted line graph

 $\mathbf{L} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$

- L is positive semi-definite; eigenvalues λ 's $\geq 0 \rightarrow$ eigenvalues are graph frequencies.
- L = D A; $\lambda = 0$ must be eigenvalue w/vector $[1 \dots 1]^T$.
- Use eigenvectors for spectral decomposition of signal.
 - GFT defaults to **DCT** for un-weighted connected line.
 - GFT defaults to **DFT** for un-weighted connected circle.

Usage Example: first non-zero eigenvalue \rightarrow spectral clustering (Shi

& Malik'00).

DJI visit 05/2015

- Traditional vs. Graph Signal Processing
- Graph Fourier Transform (GFT)
- Depth Map Compression
- Depth Map Denoising
- Depth Map Interpolation

Depth Map Compression

- DCT are *fixed* basis. Can we do better?
- Idea: use adaptive GFT to improve sparsity.
 - 1. Assign edge weight 1 to adjacent pixel pairs.
 - 2. Assign edge weight 0 to sharp depth discontinuity.

- 3. Compute GFT for transform coding, transmit coeff. $\alpha = \Psi x$ GFT
- 4. Transmit bits (*contour*) to identify chosen GFT to decoder (overhead of GFT).

Depth Map Compression

Q: Why GFT leads to sparseness?

Ans 1: Capture statistical structure of signal in edge weights of graph.

- Adjacent pixel correlation 0 or 1 for piecewise smooth (PWS) signal.
- Can be shown GFT approximates KLT given Gaussian Random Markov Field (GRMF) model.

C. Zhang and D. Florencio, "**Analyzing the optimality of predictive transform coding using graph-based models**," *IEEE Signal Processing Letters*, vol. 20, NO. 1, January 2013, pp. 106–109.

Depth Map Compression using Multi-resolution GFT

ldea:

DCT

• LP-filter & down-sample signal before GFT.

y = DHx

• GFT on LR block. $\alpha = \Psi y$

LP & down-sample operators

LR-GFT

Details:

- 1. Enc: Detect & encode HR edges (structure).
- 2. Enc: Encode down-sampled LR block using GFT (texture).
- 3. Dec: Deduce LR edges from HR edges (structure).
- 4. Dec: Decode LR block in GFT, up-sample & interpolate using HR edges (smooth *texture*).

Results: up to 68% bitrate reduction compared to HR-DCT.

Wei Hu, Gene Cheung, Antonio Ortega, Oscar Au, "**Multiresolution Graph Fourier Transform for Compression of Piecewise Smooth Images**," *IEEE Transactions on Image Processing*, vol.24, ¹⁴ no.1, pp.419-433, January 2015.

- Traditional vs. Graph Signal Processing
- Graph Fourier Transform (GFT)
- Depth Map Compression
- Depth Map Denoising
- Depth Map Interpolation

Depth Image Denoising

- Problem:
 - Acquired depth images are noisy. desired signal observation $\longrightarrow y = x + v \leftarrow noise$
- Strong signal prior: piecewise smooth (sparsity in GFT).
 - **Self-similarity** in images (non-local means[#]).
 - Our algorithm (in a nutshell):
 - 1. Identify similar patches (same structure).
 - 2. Compute average patch for cluster, compute GFT.

Intuition:

up sparsification.

Sparsely represented signal = Denoised signal

A. Buades, B. Coll, J. M. Morel, "A review of image denoising algorithms, with a new one," *Multiscale Modeling Simulation (SIAM Interdisciplinary J.)*, vol.4., no.2, pp.490-530, 2005.

Denoising Algorithm

common GFT from avg. patch

observation *i*

Algorithm:

$$\min_{\mathbf{U},\alpha} \sum_{i=1}^{N} \|\mathbf{y}_{i} - \mathbf{U}\alpha_{i}\|_{2}^{2} + \mu \sum_{i=1}^{N} \|\alpha_{i}\|_{0}^{2}$$

$$\frac{-\|y_{i}-y_{j}\|^{2}}{2}$$

$$w_{ij} = e^{\frac{\sigma_w^2}{\sigma_w^2}}$$

 $W = [w_{ij}],$

$$\mathcal{L}\mathbf{U}=\mathbf{U}\Lambda$$

 $\mathcal{L} = D - W$

1. Identify similar patches, compute average patch. (self-similarity)

code vector for observation *i*

- 2. Given average patch, compute "similarity" between adjacent pixels. Construct graph.
- 3. Compute graph transform (GFT).
- 4. Given GFT, seek sparse representation.

Depth Image Denoising

- Experimental Setup:
 - Test Middleburry depth maps: Sawtooth
 - Additive White Gaussian Noise (AWGN)
 - Compare to: Bilateral Filtering (BF), Non-Local Means Denoising, (NLM), Block-Matching 3D (BM3D).
- **Results**: 2.28dB improvement over BM3D.

- Traditional vs. Graph Signal Processing
- Graph Fourier Transform (GFT)
- Depth Map Compression
- Depth Map Denoising
- Depth Map Interpolation

Depth Image Interpolation

Depth image missing 85% pixels

- Problem:
 - Fill holes in sparsely sampled depth images.

ldea:*

- 1. Find right graph for missing pixels.
 - Adaptive kernel

*Yu Mao, Gene Cheung, Yusheng Ji, "Image Interpolation During DIBR View Synthesis Using Graph Fourier Transform," *3DTV-Conference 2014*, 20 Budapest, Hungary, July, 2014.

Denoising Results

		2	-	8	
	V	00			
	16		0		
	~	Y	N		
2	0	K	7.7		

Original	Noised (theta = 20)
LARK	Our Proposal
(26.99dB)	(27.36dB)

Interpolation Results

Original	Partial sample
LARK	Our Proposal
(34.82dB)	(35.31dB)

Summary & Open Problems

- By embedding image structure onto a graph, signal is smooth wrt graph.
- Current Work:
 - GSP for joint denoising / SR of GPWS images (ICIP'14).
 - GSP for bit-depth enhancement in images (ICIP'14).
 - Variants of graph transforms (in submitted SPL).
- Open Questions:
 - Appropriate graph?
 - Optimize desired signal and graph simultaneously.
 - Given graph, appropriate set of basis?
 - Other transforms, (biorthogonal) wavelets, dictionaries.

Acknowledgement

Collaborators:

- Y. Mao, Prof. Yusheng Ji (NII, Japan)
- W. Sun, W. Hu, P. Wan, W. Dai, J. Pang, J. Zeng, A. Zheng, Prof O. Au (HKUST, HK)
- Y.-H. Chao, Prof. A. Ortega (USC, USA)
- D. Florencio, C. Zhang, P. Chou (MSR, USA)
- Y. Gao, Prof. J. Liang (SFU, Canada)
- T. Maugey, L. Toni, B. Motz, A. De Abreu, P. Frossard (EPFL, Switzerland)
- B. Machiavello, C. Dorea, M. Hung (University of Brasilia, Brazil)
- W.-t. Tan (formerly HP Labs, now Cisco, USA)
- C. Yang, V. Stankovic (U of Strathclyde, UK)

