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Abstract

Implementation of variable-length code (VLC) decoders can involve a tradeo� between de-
coding time and memory usage. In this paper, we proposed a novel scheme for optimizing
this tradeo� using a machine model abstracted from general purpose processors with hierarchi-
cal memories. We formulate the VLC decode problem as an optimization problem where the
objective is to minimize the average decoding time. After showing that the problem is NP-
complete, we present a Lagrangian algorithm that �nds an approximate solution with bounded
error. In the resulting framework, an implementation is automatically synthesized by a code
generator. To demonstrate the e�cacy of our approach, we conducted experiments of decoding
codebooks for pruned tree-structured vector quantizer and H.263 motion vector that show a
performance gain of our proposed algorithm over single table lookup implementation and logic
implementation.

1 Introduction

Many signal processing applications rely upon variable-length coding to reduce distortion and/or

encoding bit rate. For example, Hu�man code [1] maps a sequence of recurring, statistically

independent symbols into a minimally described bit sequence. Likewise, a pruned tree-structured

vector quantization (PTSVQ) [2] maps an input vector into one of a �nite number of codewords in

a codebook via multi-stage approximation. In both cases, the encoder maps each input symbol to

a variable-length code (VLC); VLCs are then concatenated to form a bit stream.

Implementation of VLC decoder is often a tradeo� between decoding speed and memory usage.

E�cient representations of a set of VLCs often mean a slow decoding process, while fast VLC

decoding algorithms usually require large memory space. For example, a simple and e�cient

representation of a set of VLCs is a binary tree. An associated decoding algorithm starts at the

root node, extracts a bit from the input, and follows the corresponding branch to the next node.

The process repeats until a leaf is reached, which in turn indicates the symbol. The complexity of

this algorithm is O(d), where d is the depth of the tree. If the depth d is large, then the decoding

speed of this implementation is slow.

Rather than processing only one bit at each step, a more time-e�cient approach is to decode

bits in parallel using a lookup table. The decoding algorithm �rst extracts d bits of the input to

form an index into a lookup table. The indexed element contains the symbol that corresponds to

the �rst codeword of the indexed d bits. The complexity per codeword is O(1). Unfortunately,

this procedure requires 2d array elements to be stored in memory. If the depth d is large, then the

memory space required for this implementation is large.

Depending on cost criteria, numerous approaches have been o�ered in the literature. To mini-

mize memory required to represent the Hu�man tree, [4, 3] present compact data structures used
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Figure 1: Block Diagram of Proposed System and Machine Model

to store the VLC set while maintaining reasonable decoding speed. To improve the decode speed,

[5] proposes to decode groups of n bits each at a time using di�erent context-dependent decoding

tables. The price of the speedup is the increase in memory usage for the tables. To avoid excess

memory usage, [6] �rst de�nes a metric called memory e�ciency, then presents a tree clustering

algorithm that creates data structures with high memory e�ciency used for Hu�man decoding.

To decode very large data symbol set (n = 106), [7] uses a special set of VLCs called a canonical

code to implement minimum redundancy coding. Because of its numerical sequence property, a

canonical code can be represented without explicitly specifying the binary tree. A fast decoding

algorithm was derived based on this property.

Unlike these previous approaches, the goal of our paper is to automatically synthesize an e�-

cient software implementation of a VLC decoder tailored for a machine processor with hierarchical

memories. By e�cient, we mean a decoder with fast average decoding speed per codeword. Our

motivation for this objective is twofold. First, many modern desktop computers employ general

purpose processors with hierarchical memories { smaller, faster memory is located close to the

processor for fast data access, while larger, slower memory is located further away, storing less

frequently used data. Second, when a thin client in a network of computers requests an optimal

decoder, our proposed system can generate a decoder tailored to a client's speci�c processor and

send it over the network for immediate use.

In this paper we present an optimizing code generator for VLC. The proposed system, shown

in Figure 1a, is divided into two parts. The optimizer receives a set of VLCs as input, and outputs

a description of the optimal implementation. Optimality is de�ned with respect to a machine

model that captures the memory size and access speed of di�erent hierarchical memories of a

processor. The generator translates the description into a mixture of C and in-line Assembly code,

which performs a mixture of table-lookups and programmed logical comparisons. Note that we are
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solving the general case of decoding VLC, a superset that includes the set of minimum redundancy

code. While minimum redundancy code has the freedom to choose any codebook that has the

minimum average codeword length, the general case assumes the particular choice of codebook is

important. Applications where the codebook is important include PTSVQ, alphabetic minimum

redundancy codes [8] etc.

The outline of the paper is as follows. In section 2, the proposed machine model is discussed,

and the optimization problem is formalized. In section 3, we show the optimization problem is

NP-complete. In section 4, we present an approximate solution to the optimization problem. In

section 5, implementation of the code generator is discussed, and results are presented. Finally, a

conclusion is provided in section 6.

2 Machine Model

Modern general-purpose processors use hierarchical memories to enhance performance, where small,

fast memories are located near the CPU and larger, slower (and cheaper) memories are situated

further away. Consequently, the execution speed of a machine instruction that accesses memory

depends on the type of memory referenced. A machine model that reects this characteristic is

shown in Figure 1b. If the processor P accesses a datum residing in type 1 memory M1 (type 2

memory M2), it incurs memory access time T1 (T2). If the instruction does not involve memory

access, then the execution time depends on the complexity of the instruction itself. In Figure 1b,

the cost of a logical comparison cmp is Q. For the chosen machine model, the size of the type 1

memory is S1, and the size of the type 2 memory is S2 = 1.

Given such a machine model, we can evaluate the average decoding time of a VLC decoding

algorithm that uses a mixture of lookup tables and programmed logics. For example, if the set

of VLCs in Figure 2a is implemented as shown in Figure 2b, where a width 2-bit lookup table

located in type 1 memory is �rst indexed, followed possibly by a logical comparison, then the

average lookup time is: p0(Q+T1)+ p1(Q+T1)+ p2T1+ p3T1+ p4T1, where pj is the probability of

symbol j. We call a particular arrangement of logical comparisons and lookup tables in hierarchical

memories a con�guration. More generally, we can compute the average decoding time per symbol

of a con�guration b, denoted H(b), as:

H(b) =
X
j

pj(ajT1 + bjT2 + cjQ) (1)
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Figure 2: Example of a Con�guration

where aj (bj) is the number of type 1 (type 2) memory access needed to decode symbol j, and cj

is the number of logical comparison needed. In other words, aj (bj) is the number of lookup tables

residing in type 1 (type 2) memory used in the decoding process of symbol j.

Armed with this model, we can pose a well-formed optimization problem that we call the \VLC

decode problem":

min
b2B

H(b) s.t. R(b) � S1 (2)

where B is the set of possible con�gurations and R(b) is the total size of lookup tables assigned to

type 1 memory. In words, the problem is: given a set of VLCs and their associated probabilities,

what is the optimal con�guration such that the decoding time is minimized? Note that the optimal

con�guration must not assign tables to type 1 memory in such a way that it exceeds the memory

capacity of the machine model. This is of real concern in practice, where the length of the longest

codeword can be 13 bits or longer [9]; a full lookup table containing 213 elements would be too

large to �t into type 1 memory | L1 cache | of common processors.

We can also write the cost of a con�guration in terms of the probability density (weight) of

nodes in the binary tree. For example, the decoding time of the con�guration shown in Figure 2b

can be written as:

H(b) = w4T1 + w1Q (3)

where w4 = p0+ � � �+ p4 is the weight of node 4, and w1 = p0+ p1 is the weight of node 1. Cost of

a con�guration written in this form is used in section 4.

In the next section, we will show that even in the case when we use only lookup tables, the

problem is NP-complete. Therefore the general problem using a combination of logical comparisons

and lookup tables is also NP-complete, and we turn to an approximate solution, which we present

in section 4.
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x2 x1 x0 y2 y1 y0 z2 z1 z0

a0 1 0 0 1 0 0 1 0 0
a1 0 0 1 0 0 1 0 0 1
a2 0 0 1 1 0 0 0 1 0
a3 0 1 0 0 1 0 0 1 0
K 1 1 1 1 1 1 1 1 1

Figure 3: Partial Sum Version of 3D Matching Problem: N = 3, M = 4

3 NP-Completeness Proof

We �rst rephrase the VLC decode problem as a decision problem: given a set of VLCs with

associated probabilities, does there exist a con�guration of lookup tables and table assignments to

hierarchical memories that has a cost below a target cost �C, where cost is expressed in (1)? In this

section, we present the proof of NP-completeness for this decision problem.

3.1 3D Matching Problem

The proof is by reduction from a version of the \3D matching problem" [10]. This well-known

NP-complete problem assumes the input is categorized into three distinct groups, say men, women

and pets, each of size N . A list of 3-tuples of size M > N speci�es all possible matches of men,

women and pets. For example, a tuple (im; jm; km) speci�es man im, woman jm and pet km is a

possible match. The decision problem is: given a list of 3-tuples, is it possible to select N of M

possible matches such that each of N men, women and pets is uniquely assigned to one match.

The same problem can be reformulated as the \partial sum" version as follows. Suppose we have

M numbers in numeric baseM +1, each with 3N digits. We transform each 3-tuple (im; jm; km) in

the input list to a number am = (M+1)2N+im+(M+1)N+jm+(M+1)km , 8im; jm; km 2 f0:::N�1g.

Notice each number has exactly three 1's in the three digit positions and the rest of the digits are

zeros, and further that overow in any digit position is avoided for any subset of numbers by

selecting the numeric base to be M + 1. Now, the decision problem is: does there exist a subset

of these M numbers such that the sum of the subset is exactly K, a number with ones in all 3N

digit positions. An example of the partial sum version is shown in Figure 3 for N = 3 and M = 4.

We see that the numbers in the subset fa0; a1; a3g add up to K. This version of the 3D matching

problem is equivalent to the original version discussed earlier.
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Figure 4: Proof Constructs used in the NP-Complete Proof of VLC decode Problem

3.2 Overview of Proof

By reduction from the partial sum version of the 3D matching problem, we will prove the VLC

decode problem is NP-complete, stated below as a theorem.

Theorem 1 The VLC decode problem using only lookup tables and under one hierarchical memory

constraint is NP-complete.

We now sketch the outline of the proof. For every instance of the partial sum version of the 3D

matching problem, we create a corresponding instance of the VLC decode problem, polynomially

transformed from the instance of the partial sum problem. If we solve the corresponding instance

of the VLC decode decision problem, we also solve the original instance of the partial sum decision

problem, and therefore the VLC decode problem is at least as hard as the partial sum problem.

Since the partial sum problem is NP-complete, the VLC decode problem is also NP-complete.

We construct the corresponding instance of the VLC decode problem as follows. We �rst

construct the set of VLCs, represented by a binary tree. It is a full binary tree with root r of

height H such that 2H > M , attached at the bottom with M subtrees | one for each number am,

m 2 f0:::M � 1g. This is shown in Figure 4a. In addition, there is one non-zero probability leaf at

the bottom of the full tree, called the heavy leaf, with probability w. The subtrees are the gadgets

necessary to map the numbers am's in the 3D matching problem to the VLC decode problem. Each

subtree m is a concatenation of three mini-trees of height h1;m, h2;m and h3;m and has a single leaf

with non-zero probability q1;m, q2;m and q3;m respectively. Mini-tree 2 and 3 are single sided, and

mini-tree 1 has three branches of the same height h1;m, with non-zero probability leaf in the middle

branch and concatenations to tree 2 and 3 at the other branches. See Figure 4b for an example of

the three mini-trees in a subtree m.
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We �rst set type 1 memory size S1 of the machine model to be 2
H +K. We select H so that

a lookup table of width h > H will not �t in type 1 memory (2H+1 > S1). Now we can set the

probability of the heavy leaf w large enough so that the optimal con�guration must contain a type

1 memory assigned lookup table rooted at r of width H | this is the only way to ensure that

decoding the codeword corresponding to the heavy leaf takes only one type 1 memory access. This

leaves K type 1 memory space for theM subtrees. Knowing the optimal con�guration must contain

the above mentioned table at root r, the decision problem is now reduced to: does there exist a set

of con�gurations for the M subtrees such that the resulting cost is smaller than �C, where K is the

size of the type 1 memory available for the subtrees?

We call the subtree con�guration that employs one type 1 memory assigned lookup table for

each of the three mini-trees as the 3-triangle con�guration. We select h1;m, h2;m and h3;m properly

so that the combined size of the three tables of subtree m is am. Therefore the type 1 memory

usage for 3-triangle con�gured subtree m is also am. We call another subtree con�guration that

uses one type 2 memory assigned lookup table for the entire subtree m the default con�guration.

The type 1 memory usage in this case is 0. By selecting machine model parameter T1, T2 and leaf

probabilities q1;m, q2;m, q3;m properly, 3-triangle con�guration of subtree m reduces lookup cost by

am over the default con�guration. Moreover, other con�gurations besides 3-triangle and default

con�guration are inferior in that they use up too much type 1 memory space while reducing cost

only marginally.

Given the above constructions, we claim the following: If there exists a subset of numbers that

adds up to K in the partial sum problem, then there exists a corresponding subset of subtrees in

the VLC decode problem, in 3-triangle con�gurations, that will reduce the cost by K while using

up exactly K leftover type 1 memory. The converse is also true. That means by answering the

corresponding VLC decode decision problem, we also answer the partial sum decision problem.

Therefore the VLC decision problem is as least as hard as the partial sum problem, and so the

VLC decode problem is NP-complete.

The parameters of the VLC decode problem must be carefully set in relations to the parameters

of the 3D matching problem. Figure 5 shows the dependencies between parameters of the two

problems. We �rst modify the partial sum version of the 3D match problem slightly by selecting

the numeric base of the M numbers to be 2B, where B is:

B = dlog(M + 1)e (4)
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Note that 2B � M + 1 and there is still no overow in any digit position. The target partial

sum K and the number am that corresponds to a possible match (im; jm; km) can now be written

as:

K =
3N�1X
n=0

2Bn (5)

am = 2B(2N+im) + 2B(N+jm) + 2B(km) (6)

We now set the parameters of the VLC decode problem. First, we need to select the height H of

the full tree rooted at r to be large enough such that M subtrees can be attached to the bottom,

i.e. 2H �M . We accomplish this by setting H as:

H = blogKc+ 1: (7)

Second, in order to guarantee the optimal con�guration contains the table rooted at r of height

H in type 1 memory, heavy leaf located at level H from root of the tree will have a large probability

w:

w = 1:5
M�1X
m=0

3X
i=1

qi;m (8)

The heavy leaf has large enough probability to inuence the optimal solution to contain a height

H table rooted at r in type 1 memory, so that accessing this leaf will take only one fast memory

access, T1.
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Third, in order to have the size of 3-triangle con�gured subtree m be am, we need to select the

height of the three associated trees to be:

(h1;m; h2;m; h3;m) = (B(2N + 1+ im); B(1 + km); B(N + 1 + jm)) (9)

where (im; jm; km) is the corresponding 3-tuple that states a possible match for man im, woman

jm and pet km.

Finally, we need to select the leaf probabilities q1;m, q2;m and q3;m, and memory access time

T1 and T2 to satisfy two conditions: i) the improvement of 3-triangle con�guration of subtree m

over default con�guration is exactly am; and, ii) the 3-triangle con�guration is in some sense more

\desirable" than any other con�guration. With these goals in mind, we set these parameters as

follows:

(T1; T2) = (1; 1:75) (10)

pm = (4=17)am (11)

(q1;m; q2;m; q3;m) = (10pm; 7pm; 6pm) (12)

3.3 Details of Proof

We now show the details of the proof. We begin by showing the optimal solution must include a

lookup table rooted at r of height H assigned to type 1 memory.

Lemma 1 A lookup table rooted at r of height H, assigned to type 1 memory, must be part of the

optimal con�guration.

Proof 1

We divide the proof into two cases: i) showing that lookup table rooted at r of height h > H

is sub-optimal, and ii) showing that lookup table rooted at r of height h < H is also sub-optimal.

For the �rst case, we notice that table of height h � H + 1 will not �t into type 1 memory:

2H = 2blogKc+1

> 2logK = K

2H+1 > 2H +K = S1 (13)
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The optimal con�guration among choices of tables h � H + 1 is to use table of height Hmax

and put it in type 2 memory. Because the root table is in type 2 memory, accessing each codeword

of each leaf must take at least one slow memory access, T2. Given that is the case, we make that

memory access the only one needed by using the largest possible lookup table, thereby minimizing

the cost. The cost of the con�guration, C0, is:

C0 = wT2 + T2

M�1X
m=0

3X
i=1

qi;m (14)

We now �nd an upper bound cost of an optimal con�guration using table rooted at r of height

H . A conservative con�guration puts the height H table in type 1 memory and puts all the M

default con�gured subtrees in type 2 memory. Note that only 2H type 1 memory is used, with K

memory space left empty. The cost of this choice is:

C = wT1 + (T1 + T2)
M�1X
m=0

3X
i=1

qi;m (15)

Comparing the two cost:

C0 � C = (T2 � T1)w� T1

M�1X
m=0

3X
i=1

qi;m

= (0:75)1:5
M�1X
m=0

3X
i=1

qi;m �
M�1X
m=0

3X
i=1

qi;m > 0 (16)

We show that the upper bound cost of an optimal con�guration using table rooted at r of height

H is lower than the lower bound cost of a con�guration using table of height h > H . Therefore,

we conclude that con�gurations using table rooted at r of height h > H is sub-optimal.

Consider now the case of using lookup table rooted at r of height h < H . We know that the

table must be assigned to type 1 memory, for same reason discussed previously. Because the table

has height smaller than H , it will take at least 2T1 to access the heavy leaf and any leaves on the

M subtrees. The lower bound cost is:

C00 = w2T1 + 2T1

M�1X
m=0

3X
i=1

qi;m (17)

Similar calculation will show the upper bound cost of con�gurations using table rooted at r of

height H is smaller than C 00. Therefore, we conclude that the table of height h < H is sub-optimal.

We have shown that table of height h > H and of height h < H are both more costly than

table of height H . Therefore Lemma 1 is proven. 2
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Given the optimal solution contains table rooted at r of height H assigned to type 1 memory,

we have simpli�ed the problem to allocating M subtrees in K leftover type 1 memory to minimize

cost.

We now prove that with the parameters chosen, 3-triangle con�guration of a subtree has the

two properties we discussed above. The following lemma proves the �rst property.

Lemma 2 Employing 3-triangle con�guration of subtree m has cost reduction am over default

con�guration of subtree m.

Proof 2

3-triangle con�guration of subtree m has the following cost (beyond lookup cost of table rooted at

r):

C = q1;mT1 + q1;m2T1 + q1;m2T1

= 10pm + (7pm)2 + (6pm)2 = 36pm (18)

The cost of default con�guration, denoted as the default cost, is shown below:

Cd = q1;mT2 + q2;mT2 + q3;mT2

= 23pm(1:75) = 40:25pm (19)

Comparing these two costs:

Cd � C = 4:25(4=17 � am) = am (20)

Therefore the reduction in cost of 3-triangle con�guration of subtree m over default con�guration

is am. 2

Before we show how the 3-triangle con�guration of a subtree is more \desirable" than other

con�gurations, we �rst prove some con�gurations are intrinsically locally sub-optimal, and therefore

can be removed from consideration when constructing the optimal subtree con�guration. They are

con�gurations that has lookup tables rooted at rm and height h � h1;m, and di�erent from the

3-triangle con�guration. They are discussed in the next two lemmas.

Lemma 3 A subtree con�guration that contains a lookup table rooted at rm of height h < h1;m is

locally sub-optimal.
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Proof 3

We �rst �nd the lower bound cost of these con�gurations. If a subtree con�guration contains

a lookup table rooted at rm of height h < h1;m, then to access the single leaf on tree 1, as well as

leaves on tree 2 and 3, will take at least two fast memory load. The lower bound cost C0 is:

C0 = (q1;m + q2;m + q3;m)2T1

= (10pm + 7pm + 6pm)2 = 46pm (21)

Recall the default cost Cd is 40:25pm. Since the default cost is lower than the lower bound cost

of these con�gurations, we can lower the cost by removing this subtree from type 1 memory and

placing it in type 2 memory. Therefore this con�guration is locally sub-optimal. 2

The next lemma deals with con�gurations using lookup table rooted at rm of height h = h1;m,

but di�erent from the 3-triangle con�guration.

Lemma 4 Suppose a subtree con�guration, di�erent from the 3-triangle con�guration, also has a

lookup table rooted at rm of height h = h1;m. This con�guration is locally sub-optimal.

Proof 4

A subtree con�guration with lookup table rooted at rm of height h = h1;m can di�er from the

3-triangle con�guration in two ways: i) by placing the single lookup table of tree 1, 2 or 3 in type

2 memory instead of type 1; and, ii) by using more than one lookup table in tree 2 and/or tree

3. Simple calculation will show that by placing any single lookup table in tree 1, 2 or 3 will result

in cost larger than the default cost. Similarly, if one create more than one lookup table in tree

2 and/or tree 3, the number of memory access required for leaf on tree 2 and/or 3 will increase,

and the resulting cost is also larger than the default cost. Therefore, a subtree con�guration with

lookup table rooted at rm of height h = h1;m, if di�erent from the 3-triangle con�guration, is locally

sub-optimal. 2

We now show that the remaining con�gurations are less \desirable" compare to 3-triangle

con�guration. By desirable, we mean it has a high performance-price ratio, de�ned as the ratio of

cost reduction of a con�guration over the default con�guration, to the amount of type 1 memory

space required for the con�guration. For example, if a con�guration y has cost C(y) and requires

type 1 memory space S(y), then the performance-price ratio r(y) for this con�guration is:

r(y) =
Cd � C(y)

S(y)
(22)
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The following lemma shows the 3-triangle con�guration has the best possible performance-price

ratio.

Lemma 5 The 3-triangle con�guration of a subtree m has strictly higher performance-price ratio

than other con�gurations.

Proof 5

We will divide the proof into three cases: i) con�gurations with lookup table rooted at rm of

height h1 + 1 � h < h1 + h2, ii) h1 + h2 � h < h1 + h3, and iii) h = h1 + h3. Recall from Lemma

3 and 4 that con�gurations with table rooted at rm of height h � h1, if di�er from 3-triangle

con�guration, are locally suboptimal. As a result, the cost improvement over default con�guration

is negative, and their performance-price ratios are also negative.

The performance-price ratio of 3-triangle con�guration x, denoted as r(x), is computed as

follows:

r(x) =
40:25pm � 36pm

2h1;m + 2h2;m + 2h3;m
=

4:25pm
2h1;m + 2h2;m + 2h3;m

(23)

We will show in all three cases, the ratio will be strictly smaller than r(x).

1. h1 + 1 � h < h1 + h2

Con�gurations using lookup table rooted at rm of this height means that leaf on tree 1 need

one type 1 memory access, and leaves on tree 2 and 3 need two type 1 memory access. Note

that neither the leaf on tree 2 or tree 3 can require more than two fast memory access, or

the cost will exceed the default cost. That has two consequences: i) the con�guration must

employ one lookup table for each of the remaining tree 2 and 3, as shown in Figure 6i; and,

ii) the con�guration has a cost equal to the cost of 3-triangle con�guration. This means if

the size of this con�guration is larger than 3-triangle con�guration, then this con�guration
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will have a smaller performance-price ratio than the 3-triangle con�guration. The size can be

lower bounded as follows:

S(y1) = 2h + 2h1;m+h2;m�h + 2h1;m+h3;m�h

> 2h1;m+1 > S(x) (24)

Since S(y1) > S(x), we conclude that con�gurations with lookup table rooted at rm and

height h1 + 1 � h < h1 + h2 has strictly smaller performance-price ratio than 3-triangle

con�guration.

2. h1 + h2 � h < h1 + h3

We �nd the upper bound of performance-price ratio for these con�gurations as follows. Leaf

at tree 3 must take a minimum of two fast memory access, so the minimum cost can be

computed as:

C(y2) = [q1;m + q2;m + 2 � q3;m]T1 = 29pm (25)

Since the table rooted at rm must be in type 1 memory, the size is at least 2h1;m+h2;m . The

upper bound of the performance-price ratio is:

r(y2) �
(40:25� 29)pm
2h1;m+h2;m

=
11:25pm
2h1;m+h2;m

(26)

We would like to �nd the smallest value h2;m can take on. Note that the 3D matching problem

is non-trivial when the number of members in a group N � 2. This means M � 2+1, B � 2,

and h2;m � 2.

r(y2) �
11:25pm
2h1;m+2

=
2:8125pm
2h1;m

(27)

We need to change the denominator of r(x) to 2h1;m to have a meaningful comparison. We

�rst note that B � 2 implies h1;m � h3;m + 2. The following bound follows:

1=2 � 2h1;m > 2h2;m + 2h3;m (28)

We can now lower bound r(x) as follows:

2h1;m + 2h2;m + 2h3;m < 2h1;m + 1=2 � 2h1;m = 2h1;m(1 + 1=2)

r(x) �
4:25pm
2h1;m3=2

�
2:833pm
2h1;m

(29)
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We see that the lower bound of r(x) is larger than the upper bound of r(y2). Therefore

the performance-price ratios for this set of con�gurations are smaller than the 3-triangle

con�guration.

3. h = h1 + h3

Applying similar bounding techniques to previous case, we arrive at the following upper bound

of the performance-price ratio of these con�gurations y3 as:

r(y3) =
40:25pm � 23pm

2h1;m+h3;m
�

17:25pm
2h1;m+6

�
0:270pm
2h1;m

(30)

Therefore we can conclude r(y3) < r(x).

We have shown that the performance-price ratio for all three sets of con�gurations are smaller

than the ratio for 3-triangle con�guration. Therefore the lemma is proven. 2

Armed with the above lemmas, we are ready to proof Theorem 1.

Proof 1

We need to prove the theorem in both direction. First, we will prove that if there exists a subset

of numbers in the partial sum version of the 3D matching problem that adds up to K, then the

reduction in cost will also be K.

Suppose there exists a subset of numbers that adds up to K. We know that lookup table rooted

at r of height H must be in type 1 memory by lemma 1. That leaves K memory space left for M

subtrees. For each subtree m that corresponds to a number am in the subset, we use 3-triangle

con�guration | each has type 1 memory usage am (by construction) and reduction in cost am (by

lemma 2). For all other subtree, we use default con�guration | each has type 1 memory usage 0

(by construction) and reduction in cost 0 (by de�nition). The total type 1 memory usage of the

subtree will be K, while the total reduction in cost is also K. This proves the �rst part.

Suppose there is a reduction in cost of K in the VLC decode problem. Again, lookup table

rooted at r of height H must be in type 1 memory by lemma 1, leaving K memory space left forM

subtrees. To achieve a reduction of exactly K, we claim that there must be a subset of subtrees in

3-triangle con�gurations that �t exactly in the K leftover memory space, thereby reducing the cost

by K. It cannot be done any other way. The reason is the following: all 3-triangle con�gurations of

all subtrees has the strictly largest improvement-price ratio, 1. If one attempts to reduce the cost
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by any other con�gurations, one will do so at a lower ratio, resulting in a less-than-K improvement.

This proves the second part.

We have proved the theorem in both direction, and so the theorem is proven. 2

4 Lagrange Approximation Algorithm

Given that the VLC decode problem is NP-complete, we propose the following approximate algo-

rithm that has fast execution time and terminates with bounded error. We �rst present a high-level

description of the algorithm, then we detail the notion of singular value | special multiplier values

used in the algorithm to ensure it converges in �nite time.

4.1 Development of Algorithm

Our algorithm is based on an application of Lagrange multipliers to discrete optimization problems

with constraints, as was done by Shoham and Gersho [11] for bit allocation problems. Instead of

solving the original constrained VLC decode problem in (2), we solve the corresponding Lagrangian

problem, which is unconstrained:

min
b2B

H(b) + �R(b) (31)

where � is a Lagrange multiplier with non-negative value, and H(b) , B and R(b) are de�ned

as before. If there exists a multiplier value �� such that the solution of the Lagrangian problem,

b�, satis�es the constraint of original problem with equality | i.e. R(b�) = S1, then b� is also

the solution to the original problem. Because the Lagrangian is unconstrained, it is potentially

easier to solve. However, there is an additional step of adjusting the multiplier value � so that the

constraint variable, R(b), satisfying the constraint in (2).

To solve (31) for a particular value of �, we �rst represent the set of VLCs in question by a

binary tree, where nodes are numbered in post-order with root r. We de�ne a function f�(i), which

returns the minimum Lagrangian cost, H(b) + �R(b), of all possible con�gurations for the binary

tree rooted at node i for given multiplier value �. We can solve f�(i) via the following case analysis.

At node i, we have three choices: i) perform a logical comparison at node i with cost wiQ; ii) create

a lookup table at node i of some width h and place it in type 1 memory with cost wiT1+�2h; and,

iii) create a table of width h and place it in type 2 memory with cost wiT2. The minimum of these

three costs for all possible table width plus the recursive cost of the children nodes will be the cost

of the function at node i, expressed below:

f�(i) = min

8<
:wiQ+

X
j2L1;i

f�(j); min
1�h�Hi

2
4wiT1 + �2h +

X
j2Lh;i

f�(j)

3
5 ; min

1�h�Hi

2
4wiT2 +

X
j2Lh;i

f�(j)

3
5
9=
; (32)

where Hi is the height of binary tree rooted at node i, and Lh;i is the set of nodes at height h of

tree rooted at node i. We can simplify (32) by the following observations. First, since there is no
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penalty cost for placement of lookup table in type 2 memory, the best possible choice given a table

at node i is assigned to type 2 memory is to create a width Hi table | this eliminates the cost of

the children nodes. Second, we can restrict our search space of con�gurations, B in (2) and (31),

to the set of con�gurations that does not assign a table of size greater than S1 to type 1 memory

| a necessary condition to satisfy constraint in (2). Now we can simplify (32):

f�(i) = min

8<
:wiQ+

X
j2L1;i

f�(j); min
1�h�blog

2
S1c

2
4wiT1 + �2h +

X
j2Lh;i

f�(j)

3
5 ; wiT2

9=
; (33)

We note that there are overlapping sub-problems when solving f�(r) using (33); if s is a children

node of r and t is a children node of s, then f�(t) will be used in the calculation of f�(r) as well as

the calculation of f�(s). To avoid solving the same sub-problem more than once, we use a dynamic

programming table F�[ ] of size r � 1 to store the calculated values f�(i) for i = 1:::r. Each time

the function f�(i) is called, it �rst checks if the entry F�[i] has been �lled. If it has, then f�(i)

simply returns the value F�[i]. Otherwise, it calculates the value using (33) and stores it in the

table. After solving the Lagrangian problem using (33), we have a con�guration, denoted by b�,

that minimizes the Lagrangian problem for a particular multiplier value �.

The crux of the algorithm is to �nd � such that the memory size constraint is met with equality,

i.e. R(b�) = S1. It can be shown that the constraint variable R(b�) is inverse proportional to the

multiplier �. Therefore, a simple strategy to search for the appropriate multiplier value is to do

binary search on the real line to drive R(b�) to the actual memory size S1. Note that there may not

exist a multiplier value such that R(b�) = S1. In that case, we �nd the smallest multiplier value

such that R(b�) < S1. The solution to the Lagrangian now becomes an approximate solution, with

the error bounded by the following theorem:

Theorem 2 Let b� be the optimal solution to (2). Let b1, b2 be optimal solutions to (31) for

multipliers �1, �2 respectively, such that R(b1) < S1 and R(b2) > S1. The error of the approximate

solution b1 to (2) can be bounded as follows:

jH(b1)�H(b�)j � jH(b1)�H(b2)j (34)

See lemma 3 of [12] for a proof of this theorem.

4.2 Singular Values | multiplier values with multiple solutions

When the constraint variable is close to the memory size, there is a faster method to �nd the next

multiplier value than binary search. Because the problem is discrete, there are only �nite number
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Figure 7: Constraint variable and Lagrangian cost as functions of multiplier

of optimal con�gurations for 0 � � � 1. As a consequence, if we sweep � from 0 to 1, there is

a discrete set of multiplier values at which the optimal con�guration changes from one to another.

In Figure 7a, we see that the constraint variable R(b�) is a decreasing step function with respect to

multiplier �. Notice at special values of �, there are multiple optimal con�gurations, denoted by

circles, and therefore multiple values of constraint variable. For example, there are two values of

R(b�), R2 and R1, that resulted simultaneously from two optimal con�gurations for � = �2. These

unique values of � which yield multiple optimal solutions are called singular values in [11].

An important observation is that neighboring singular values share a common optimal solution.

For example, singular values �1 and �2 share a common optimal solution with R(b
�) = R2. Because

constraint variable R(b�) is non-increasing with respect to multiplier �, together with the above

observation, we can conclude that by solely looking at the optimal con�gurations of the singular

values, it is su�cient to discover all con�gurations that are solutions to the Lagrangian. Our

approach when constraint variable R(b�) is close to constraint S1, is to step to the neighboring

multiplier value until the best possible value is found. This approach is similar to the one in [11].

To �nd the neighboring singular value, we �rst observe from (32) that by construction, the

optimal con�guration has Lagrangian cost of form:

f�(i) =
X
x2X

wxT1 +
X
x2X

2hx�+
X
y2Y

wyT2 +
X
z2Z

wzQ (35)

where X is a set of tables assigned to type 1 memory, Y is a set of tables assigned to type 2

memory, and Z is a set of nodes performing logical comparisons. Rewriting the equation yields a

simpler representation: a linear function of � with slope mi and y-intercept ci:

f�(i) = ci +mi� (36)

ci =
X
x2X

wxT1 +
X
y2Y

wyT2 +
X
z2Z

wzQ (37)

mi =
X
x2X

2hx (38)
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Note that this linear function is the optimal solution to the Lagrangian only within a small

neighborhood of the current multiplier value �. As � increases, if another con�guration with a

di�erent slope and y-intercept becomes the minimum of all con�gurations, then that con�guration

becomes the optimal solution to the Lagrangian. In Figure 7b, as � increases from �1�� to �1+�,

optimal con�guration switches from x1 to x3. As shown, minimum Lagrangian cost as function

of the multiplier, L(�) = f�(r), is a piecewise linear function. Locating the point at which L(�)

switches from one linear piece to another, means locating where the optimal con�guration changes,

and therefore where constraint variable R(b�) changes.

To locate the larger neighboring singular value, we �rst de�ne g�(i) as a function that returns

the next potential larger singular value for the tree rooted at node i. This value can be derived from

one of two cases. First, it is the value at which a new con�guration that uses a new lookup operator

at node i (for example, a logical comparison at node i instead of a type 1 memory lookup table), in

combination with the con�gurations of the children nodes, becomes optimal as the multiplier value

increases. Second, it is the value at which one of the children nodes of node i changes its optimal

con�guration, which a�ects the optimality calculation for node i. g�(i) will return the smaller of

these two values, as expressed in the following pseudo-code:

1. temp := I

�
[ci;mi]; [wiQ+

P
j2L1;i

cj ;
P

j2L1;i
mj]

�

if temp > �, then g�(i) := temp // check config. w/ logic at node i

else g�(i) := 1

2. temp := min1�h�blog S1c

n
I

�
[ci;mi]; [wiT1 +

P
j2Lh;i

cj; 2h +
P

j2Lh;i
mj ]

�o

if temp > � & temp < g�(i), then g�(i) := temp // check config. w/ type 1 memory table at node i

3. temp := I ([ci;mi]; [wiT2;0])

if temp > � & temp < g�(i), then g�(i) := temp // check config. w/ type 2 memory table at node i

4. temp := minj2L1;i g�(j)

if temp > � & temp < g�(i), then g�(i) := temp // check the potential s.v.'s of children nodes

where function I([c1; m1]; [c2; m2]) takes in the slopes m's and y-intercepts c's of two lines, and

returns the intersection point. If they are parallel lines, it returns 1.

g�(i) can be tabulated as (33) is being solved; the slope mi and y-intercept ci of node i are

calculated using (36) after the optimal con�guration is found for tree rooted at i, and they are then

stored in dynamic programming table M [ ] and C[ ], similar to table F�[ ] used in solving (33).

When the constraint variable is su�ciently close to the memory size, multiplier value g�(r) is used

instead.
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5 Implementation & Results

5.1 Implementation of Optimizer-Code Generator Pair

An optimizer serves as the front-end of our optimizer-generator pair. A VLC table containing the

symbols and associated codewords and probabilities are input into the optimizer, along with the

values of the parameters of the machine model that models the underlying processor. The optimizer

parses the table and transforms it into a binary tree. It then performs the optimization described

in Section 4. The computed con�guration is passed on to the code generator.

In general, the computed con�guration has a mixture of lookup tables and logical comparisons,

and it is the code generator's job to implement the con�guration using a mixture of C and native

assembly code. Code generation for programmed logic is relatively straight-forward; a sequence of

nested if statements with labels are generated corresponding to the section of the binary tree that

uses logical comparisons. Code generation for lookup tables is more complicated, as tables need to

reside in hierarchical memories corresponding to their memory assignments. In architecture where

explicit cache movement is possible via native assembly codes (e.g. DEC Alpha), we can create

lookup tables and assign them explicitly to the hierarchical memories as prescribed in the computed

con�guration. In other architectures such as the Pentium, we use the following approximation

scheme instead, which creates lookup tables assigned to type 1 memory in a way that they will be

more likely to reside in the L1 cache.

We �rst de�ne an array p, large enough to contain all the elements in all the tables. For all

the tables that are assigned to type 1 memory, we map the tables onto the array in breadth-�rst

order, starting at the root of the tree. This will ensure that all type 1 memory assigned tables are

in contiguous memory, and that each type 1 memory assigned mother-child table pairs are closer

together than other type 1 assigned tables. We then do the same procedure for the type 2 memory

assigned tables starting at the root of the tree. This ensures that type 1 memory assigned tables

are more likely to be in the cache than type 2 memory ones.

The encoding scheme for each array element is shown in Figure 8a. If the most signi�cant bit

(MSB) of the element is 1, then we have reached the leaf of the tree, and the next 31 bits contain

the symbol number. If MSB is zero and the next 5 bits are non-zero, then the 5 bits encode the

width of the next table. The last 26 bits contains the o�set in memory location of the next table

relative to the �rst element of the array p. If the 5 bits are zeroes, then the last 26 bits contains

the o�set in memory location of the next programmed logic instruction relative to the �rst logic
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logic offset

symbol

0 table offsettable width

0 00000

a) Array element layout

#define initDec()
int off[1];
asm lea EAX, logic0
asm lea EBX, logic0
asm sub EBX, EAX
asm mov off[0], EBX
p[0]= -2147483648;
p[1]= -2147483647;
p[2]= -2147483646;
p[0+3]= off[0];

#define match(index, A)
... // table lookup
logic0: if (A >= 0) f
index = 3;
asm jmp done g
else f
index = 4;
asm jmp done g
done: ;

b) Initialization macro c) Decoding macro

Figure 8: Array Element Layout, Example of Generated Code

instruction.

The code generator �rst generates an initialization macro initDec(), written in C and in-line

Pentium Assembly code, that performs initializations of all such array elements. It then generates

the decoding macro match(index, A), which performs the decoding procedure outlined by the

con�guration. In Figure 8, we see the example initialization macro and decoding macro for the

con�guration in Figure 2b. match(index, A) �rst performs a table lookup. If it is successful, then

it will jump to done and return the correct symbol number in variable index. Otherwise, it will

jump to logic0 to perform a logical comparison.

5.2 Results

To test our algorithm, we ran our algorithm with two di�erent sets of inputs. The �rst set of VLCs

is the motion vector VLC table from H.263 video compression standard [9]. The longest codeword

in this case is 13 bits. We fed the codebook and codeword probabilities into our optimizer-generator

pair to generate an optimal VLC decoder. For the parameters of the cost model, we let S1 = 16kB,

T1 = 1, T2 = 3, and Q = 0:5, which are estimates for our testbed, a 266MHz Pentium processor.

To compare our approximate solution to the optimal, we use the pseudo-polynomial algorithm

discussed in [12] to �nd the optimal solution. We �rst note that the execution of the approximate

algorithm takes seconds on this data set, while the pseudo-polynomial algorithm takes 10-15 min-

utes. Note also the the pseudo-polynomial algorithm would be completely impractical for larger

codebooks. When the optimal solution is found, we notice that the optimal con�guration is the

same as our approximate con�guration.

For a test bit stream, we generated 10 million random codewords using the available codeword

probabilities. Using our testbed machine, we execute our VLC decoder 20 times on the bit stream to

obtain an average lookup speed. In Figure 9, we �rst compare the performance of our decoder to two

simple decoders: single table lookup implementation, and logic only implementation discussed in
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Logic only Optimal Full Table Mo�at & Turpin

H.263 VLC 3.87 4.76 4.32 3.82
PTSVQ 2.67 4.16 3.70 -

Figure 9: Results for decoding TSVQ and H.263 VLC, in mil lookups per sec

the Introduction. we see our decoder is a 10:2% faster than the single table lookup implementation,

and is 23:0% faster than the logic only implementation. Since the set of VLCs is a canonical code,

we are able to compare our algorithm to algorithm ONE-SHIFT in [7]. We see in Figure 9 that our

algorithm has a 24:6% improvement over algorithm ONE-SHIFT.

The second set of VLCs is the codebook of a pruned tree-structured vector quantizer. We

obtained the TSVQ source code from [13]. The training set used for the construction of the

codebook consists of three 512x512 grey-scale images: the well-known lena, tiffany and baboon

images. Using the training set as input to the program, we obtained the PTSVQ codebook and the

codeword probabilities for vector dimension 4 and rate 5. The longest codeword was length 15. In

Figure 9, we see that we have 12.4% improvement over the full table lookup implementation and

55% improvement over the logic only implementation.

6 Conclusion and Future Work

In this paper, we described an optimizer-generator pair that generates a software VLC decoder

for general purpose processors with hierarchical memories. We �rst formulated the problem as an

optimization problem with respect to a machine model, then we showed the problem is NP-complete.

We then presented a Lagrangian-based approximate algorithm with fast execution time. We showed

that the performance of the generated implementation using a mixture of programmed logic and

table lookups is superior to single table lookup implementation and logic only implementation. A

possible future work is to address the problem of constructing a tree-structured vector quantizer

such that it simultaneously minimizing the decoder's execution time as well as distortion of the

decoded output.
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