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Abstract—The exploding popularity of 802.11 Wireless Local
Area Networks (WLAN) has drawn intense research interest
in the optimization of WLAN performance through channel
assignment to access points (AP), AP-client association control,
and transmission scheduling—we refer to any combination of
the three approaches as WLAN management. No matter what
degrees of freedom are enabled in WLAN management for
performance optimization in a particular WLAN setting, a
fundamental question is the corresponding maximum achievable
system throughput. We show that for a particular network
setting, the derivation of the system throughput (where system
throughput is aggregate throughput of all clients or max-
min throughput), for any combination of channel assignment,
association control and transmission scheduling, is NP-hard and
hard to approximate in polynomial time.

Index Terms—WLAN, optimization, NP-hardness.

I. INTRODUCTION

W ITH increasing popularity of 802.11 Wireless Lo-
cal Area Networks (WLAN), extensive research into

optimization of WLAN system performance is being con-
ducted. A key challenge in WLAN optimization is to properly
account for signal interference, stemming from simultane-
ous wireless transmissions by different entities in the same
channel. Broadly speaking, there are three mechanisms to
mitigate interference: channel assignment to access points
(AP) [1], AP-client association control [2], and transmission
scheduling [3]. Depending on a particular network setting, an
optimizer may perform any combination of the three—together
we simply call WLAN management—to maximize a chosen
system throughput objective function.

No matter what particular WLAN management an opti-
mizer is to perform, a fundamental question is the maximum
achievable system throughput for a given static network setup:
namely, placements of APs and clients and their communica-
tion and interference relations. Not only can the maximum
throughput serve as an upper bound against which different
WLAN management schemes can be compared, it can also be
used to evaluate the network setup itself, so that the setup can
be recasted (e.g., relocation of APs) to increase throughput.

In this paper we prove, for our chosen network model, the
following negative result: for the special case when there is
only one channel and each client can only associate to one par-
ticular AP, the derivation of 802.11 system throughput, where
throughput can be either aggregate throughput of all clients or
max-min throughput, is NP-hard and hard to approximate in
polynomial time. As a corollary, the derivation of throughput
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Fig. 1. Example of WLAN graph 𝐺(𝒱 ;ℒ,ℰ). Triangles are APs; circles are
STAs; arrows are communication links; dotted lines are interference edges.

for the general case when there are more than one channel and
a client can associate to one of several APs is also NP-hard and
hard to approximate in polynomial time. Compared to previous
WLAN throughput analysis, our work differs from [4] in that
optimal centralized scheduling is considered for multiple APs
when the system throughput is sought, and differs from [5] in
that a graph-based interference model is adopted rather than
distance-based models. Moreover, there is no discussion on the
complexity of deriving optimal system throughput in [4,5].

Compared to the majority of previous works studying
complexity and algorithms for interference-aware wireless
networking, we focus on AP-client communication in WLAN
only, which is single-hop, while [3], [6], [7] discussed the
more general multi-hop case. While the general multi-hop
problem includes single-hop as a special case, from an al-
gorithmic point of view, there is hope that the special case
of deriving system throughput for single-hop network can be
simpler in complexity. Our contribution is to demonstrate that
even in the special case of single-hop network, deriving system
throughput is NP-hard and hard to approximate in polynomial
time.

II. MODEL AND ASSUMPTIONS

We consider a set of WLAN APs, each with its own exclu-
sive group of associated client stations (STA), all managed by
a single administrative domain. (See Fig. 1 for an example.)
An ideal optimizer schedules interference-free transmissions
for each AP-STA pair in normalized time 0 ≤ 𝑡 ≤ 1 to
maximize a chosen performance metric (to be defined in
Section III), taking into account all STA-AP, STA-STA and
AP-AP interference relationships. Finding the ideal schedule
is equivalent to deriving the system throughput for a given
network setup.

More precisely, input to an optimizer is a WLAN graph
𝐺(𝒱 ;ℒ, ℰ), containing: i) vertices 𝒱 = 𝒜 ∪ 𝒮 of APs 𝒜
and STAs 𝒮, ii) directed communication links ℒ connecting
each AP to its associated STAs, and iii) vertex-to-vertex
interference edges ℰ . An AP 𝑎𝑖 and any one of its associated
STAs 𝑠𝑗 share two communication links 𝑙𝑖,𝑗 and 𝑙𝑗,𝑖; activation
of 𝑙𝑖,𝑗 means data is transmitted from vertex 𝑣𝑖 to vertex 𝑣𝑗 . A
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bi-directional edge1 𝑒𝑖,𝑗 between vertices 𝑣𝑖 and 𝑣𝑗 (between
APs, between STAs associated with different APs, or between
a STA and an AP different from its associated AP) implies that
one vertex’s transmission can interfere with another vertex’s
transmission or reception. 𝑣𝑖 and 𝑣𝑗 can receive at the same
time, however.

An optimizer schedules transmissions of each communica-
tion link. An ideal schedule 𝜋𝑖,𝑗 for each link 𝑙𝑖,𝑗 , is given in
the form of a set of 𝑇𝑖,𝑗 tuples:

𝜋𝑖,𝑗 = {[𝑠𝑖,𝑗(1), 𝑡𝑖,𝑗(1)), . . . , [𝑠𝑖,𝑗(𝑇𝑖,𝑗), 𝑡𝑖,𝑗(𝑇𝑖,𝑗))} (1)

where for each tuple 𝑘, [𝑠𝑖,𝑗(𝑘), 𝑡𝑖,𝑗(𝑘)), link 𝑙𝑖,𝑗 becomes
active (𝑣𝑖 transmits) from time 𝑠𝑖,𝑗(𝑘) to 𝑡𝑖,𝑗(𝑘). Without
loss of generality, we assume the tuples are non-overlapping
and ordered in time, i.e., 𝑠𝑖,𝑗(𝑘) < 𝑡𝑖,𝑗(𝑘) ≤ 𝑠𝑖,𝑗(𝑘 + 1). In
addition, we assume that the ideal schedule is normalized to
1, i.e., 0 ≤ 𝑠𝑖,𝑗(1) and 𝑡𝑖,𝑗(𝑇𝑖,𝑗) ≤ 1.

Mathematically, we say that two schedules 𝜋𝑖,𝑗 and 𝜋𝑖′,𝑗′

overlap if the following is true:

∃𝑘, 𝑘′ s.t. 𝑠𝑖′,𝑗′(𝑘
′) ≤ 𝑠𝑖,𝑗(𝑘) < 𝑡𝑖′,𝑗′(𝑘

′) or

𝑠𝑖′,𝑗′(𝑘
′) < 𝑡𝑖,𝑗(𝑘) ≤ 𝑡𝑖′,𝑗′(𝑘

′)
∃𝑘, 𝑘′ s.t. 𝑠𝑖,𝑗(𝑘) ≤ 𝑠𝑖′,𝑗′(𝑘

′) < 𝑡𝑖,𝑗(𝑘) or

𝑠𝑖,𝑗(𝑘) < 𝑡𝑖′,𝑗′(𝑘
′) ≤ 𝑡𝑖,𝑗(𝑘) (2)

III. PROBLEM FORMULATIONS

A. Client Throughput Model

Let 𝑑𝑖 be the transmission and reception duration of a STA
𝑣𝑖. STA 𝑣𝑖 shares two communication links, 𝑙𝑖,𝑗 and 𝑙𝑗,𝑖, with
its associated AP 𝑣𝑗 . Mathematically, we calculate 𝑑𝑖 using
transmission schedules 𝜋𝑖,𝑗 and 𝜋𝑗,𝑖 as follows:

𝑑𝑖 =

𝑇𝑖,𝑗∑
𝑘=1

(𝑡𝑖,𝑗(𝑘)− 𝑠𝑖,𝑗(𝑘)) +

𝑇𝑗,𝑖∑
𝑘=1

(𝑡𝑗,𝑖(𝑘)− 𝑠𝑗,𝑖(𝑘)) (3)

We use 𝑑𝑖 as a metric to quantify client throughput (uplink plus
downlink) for STA 𝑣𝑖 ∈ 𝒮. An alternative definition of client
throughput 𝑑𝑖 is the volume of uplink traffic only, derived
using schedule 𝜋𝑖,𝑗 . One can easily verify that our claim of
NP-hardness and inapproximability for derivation of aggregate
client throughput and max-min client throughput holds equally
true for this alternative definition of client throughput using
the same proofs in Section IV.

B. Objective Functions

The goal of an optimizer is to find interference-free
transmission schedules that maximize a given performance
objective. We consider two objectives: maximize aggregate
client throughput (MaxSum), and maximize the minimum
client throughput (MaxMin). MaxSum, maximizing the sum of
throughput of all STAs in the network, can be written simply:

max
∑

∀𝑣𝑖∈𝒮
𝑑𝑖 (4)

Taking fairness into consideration, MaxMin identifies the
minimum throughput STA and maximizes its performance:

max

{
min
∀𝑣𝑖∈𝒮

𝑑𝑖

}
(5)

1The interference relation can be derived by a measurement-based estima-
tion [8] or by a distance-based interference model [5].

IV. NP-HARDNESS PROOFS

A. Maximizing Aggregate Throughput

We show that MaxSum (4) is NP-hard via a reduction
from a known NP-hard problem independent set (IS). IS
optimization problem is to find the largest subset of nodes
𝑈 ′ ⊂ 𝑈 in an undirected graph 𝑄 = (𝑈,𝐸) such that there
does not exist an edge 𝑒𝑖,𝑗 ∈ 𝐸 between any two nodes 𝑢𝑖, 𝑢𝑗

in 𝑈 ′, and the cardinality of ∣𝑈 ′∣ is maximized.
We show that solving MaxSum is equivalent to solving IS,

hence MaxSum is also NP-hard. For each instance of IS, we
construct an instance of MaxSum as follows. First, the set
of nodes 𝑈 in IS will be reused as the set of STAs 𝒮 in
MaxSum. Second, each STA will have its own AP serving it
and shared by no other STAs, hence ∣𝒮∣ = ∣𝒜∣, and there exist
interference edges from each AP to all other APs. Third, the
same set of edges 𝐸 among nodes in IS will be reused as
interference edges among STAs in MaxSum.

We claim that there exists an independent set of size 𝐾
in an instance of IS if and only if there is an aggregate
throughput of 𝐾 in a corresponding instance in MaxSum,
hence solving MaxSum is equivalent to IS. We show this
in both directions. If there is an independent set of size 𝐾
in IS, then the same corresponding set of STAs in MaxSum
can transmit simultaneously for all time 0 ≤ 𝑡 ≤ 1 without
interference, resulting in an aggregate throughput of 𝐾 .

Conversely, if there is an aggregate throughput of 𝐾 in
MaxSum, we know that there exists an instant 𝑡, 0 ≤ 𝑡 ≤ 1,
where there are at least 𝐾 simultaneously transmitting vertices
(otherwise throughput of 𝐾 cannot be achieved). At such in-
stant 𝑡, the 𝐾 transmitting vertices must be 𝐾 non-interfering
STAs (a single transmitting AP will prevent all other APs
from transmitting or receiving data). Hence the 𝐾 nodes in
IS corresponding to the 𝐾 simultaneously transmitting STAs
will form a size-𝐾 independent set.

Since both directions have been proven, we have shown
that solving MaxSum is equivalent to solving IS, and hence
MaxSum is NP-hard. □

B. Maximizing Minimum Client Throughput

We show that MaxMin (5) is NP-hard via a reduction from a
known NP-hard problem 𝐾-coloring (COL). Recall that COL
optimization problem is to find the smallest number 𝐾 of
distinct colors required to color each node in an undirected
graph 𝑄 = (𝑈,𝐸) so that no two nodes 𝑢𝑖, 𝑢𝑗 ∈ 𝑈 connected
by an edge 𝑒𝑖,𝑗 ∈ 𝐸 are of the same color.

We show that solving MaxMin is equivalent to solving COL,
hence MaxMin is also NP-hard. For each instance of COL,
we construct a corresponding instance of MaxMin as follows.
First, the set of nodes 𝑈 in COL will be reused as the set of
STAs 𝒮 in MaxMin. Second, the set of edges 𝐸 connecting
nodes in COL will be reused as the set of interference edges
connecting corresponding STAs in MaxMin. Third, each STA
will have its own AP for communication, and there exist
interference edges from each AP to all other APs.

We claim that graph 𝑄 of COL is 𝐾-colorable if and only if
the corresponding MaxMin instance has max-min throughput
of ≥ 1/𝐾 . We prove this claim for both directions. It is clear
that if 𝑄 is 𝐾-colorable, then STAs of MaxMin corresponding
to nodes of the same color in 𝑄 can be scheduled for
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Fig. 2. Example of an MaxMin instance constructed from an COL instance.

transmission simultaneously without causing interference. If
each set of STAs of MaxMin corresponding to the same-color
nodes in COL are scheduled for transmission in turn for the
same duration each, then the throughput of each STA is exactly
1/𝐾 , and the max-min throughput of MaxMin is also 1/𝐾 .

We now show that if the max-min throughput of the
corresponding instance in MaxMin is ≥ 1/𝐾 , then original
𝑄 of COL is 𝐾-colorable. Without loss of generality, we first
define a schedule 𝜋 = {𝐶1, 𝐶2, . . . , 𝐶𝐵} that results in max-
min throughput for the given MaxMin instance. 𝐵 is the
number of STA sets 𝐶𝑖’s in schedule 𝜋, where each 𝐶𝑖 is
scheduled for transmission in turn for the same duration 1/𝐵.
Let 𝑀 be the minimum number of times any STA appears as a
transmitter in sets 𝐶𝑖’s of schedule 𝜋. The max-min throughput
using schedule 𝜋 is hence 𝑀/𝐵. Let 𝐾 be the smallest integer
such that:

1

𝐾
≤ 𝑀

𝐵
(6)

As an example, consider an MaxMin instance
in Fig. 2 with five STAs and five associated APs.
One optimal transmission schedule 𝜋 would be
{{𝑙1,6, 𝑙3,8}, {𝑙2,7, 𝑙4,9}, {𝑙3,8, 𝑙5,10}, {𝑙4,9, 𝑙1,6}, {𝑙5,10, 𝑙2,7}}.
It is easy to see that 𝐵 = 5 and 𝑀 = 2 and max-min
throughput is 2/5. Smallest integer 𝐾 satisfying (6) is 3.

We prove by contradiction. Suppose schedule 𝜋 has max-
min throughput of 𝑀/𝐵 and 𝐾 such that 1/𝐾 ≤ 𝑀/𝐵, but
graph 𝑄 of COL is not 𝐾-colorable. 𝑄 being not 𝐾-colorable
means there are ≥ 𝐾+1 nodes in 𝑄. Let us first consider the
special case when the number of nodes in 𝑄 is exactly 𝐾+1.
Having 𝐾+1 nodes in 𝑄 and 𝑄 not 𝐾-colorable means 𝐾+1
nodes form a clique. We know each STA must appear in the
schedule 𝜋 at least 𝑀 times. But each STA cannot appear in a
same set 𝐶𝑖 with any other STA, because corresponding nodes
in 𝑄 forming a clique means each STA interferes with every
other STA. Thus, at least (𝐾 +1)𝑀 sets 𝐶𝑖’s are needed, but
at most 𝑀𝐾 sets are available. A contradiction.

Consider now the general case where the number of nodes
in 𝑄 is 𝐾𝑣 and the chromatic number (minimum number of
colors to color a graph) of 𝑄 is 𝐾𝑐, where 𝐾𝑣 ≥ 𝐾𝑐 ≥ 𝐾+1.
We can transpose the original graph 𝑄 to a new graph 𝑄𝑐 by
mapping all same-color nodes in 𝑄 to a single node of the
same color in 𝑄𝑐; all edges shared by the same-color nodes
in 𝑄 will now be shared by a single node in 𝑄𝑐. Note that 𝑄𝑐

has 𝐾𝑐 nodes, each of a different color, and forms a clique.
Similarly, we can map STAs in 𝐺 corresponding to these

same-color nodes in 𝑄 to a single STA in 𝐺𝑐. Schedule 𝜋

for 𝐺 can be transposed to a new schedule 𝜋𝑐 for 𝐺𝑐, where
it contains the same number 𝐵 of sets 𝐶𝑖’s, but the previous
schedule for STAs corresponding to the same color in 𝑄 are

now for a single STA. Clearly, the minimum number of times
any STA appears in set 𝐶𝑖’s is now 𝑀 𝑐 ≥ 𝑀 . Now we see
the same contradiction we countered in the special case: each
of 𝐾𝑐 ≥ 𝐾 + 1 STAs must appear at least 𝑀 times alone in
schedule 𝜋𝑐 (given corresponding nodes in 𝑄𝑐 form a clique),
but there are only at most 𝑀𝐾 STA sets. Having shown there
is a contradiction in the general case, we have shown that if the
max-min throughput of the corresponding instance in MaxMin
is at least 1/𝐾 , then original 𝑄 of COL is K-colorable.

Since both directions are proven, solving MaxMin is equiv-
alent to solving COL, hence MaxMin is NP-hard. □

V. PRACTICAL IMPLICATIONS

We discuss the implications of having shown MaxSum and
MaxMin are both NP-hard. First, it has been shown that both
IS [9] and COL [10] are both hard to approximate within
𝑛1−𝜖, where 𝑛 is the number of vertices in graph and 𝜖 > 0.
Given solving MaxSum and MaxMin is equivalent to solving
IS and COL, we conclude that MaxSum and MaxMin are hard
to approximate in polynomial time. Notice that we formulated
our optimization problems MaxSum and MaxMin for the
special case when there is only one channel and each STA
can only associate to one particular AP. Given deriving the
system throughput for the special case is already NP-hard and
hard to approximate, deriving the system throughput for the
general case when there are more than one channel and each
STA can associate to one of several APs within range (which
must be no easier) is also NP-hard and hard to approximate.
For future work, we are designing heuristics exploiting clues
provided by the constructed NP-hardness proofs that indicate
the roots of difficulty of the sought optimization problem.
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