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On the Complexity of Variants of Cooperative
Peer-to-peer Repair for Wireless Broadcasting

Gene Cheung, Danjue Li and Chen-Nee Chuah

Abstract— The well-known NAK implosion problem for wire-
less broadcast can be addressed by leveraging cooperative peer-
to-peer connectivity to repair corrupted data. This paper studies
the Cooperative Peer-to-peer Repair (CPR) framework for mul-
timedia broadcast. We show that CPR can be formulated as an
optimization problem that minimizes the number of iterations
it takes to wirelessly disseminate a desired message from peers
‘with’ the content to peers ‘without’ it. Complicating the problem
are transmission conflicts, where pre-specified sets of links cannot
simultaneously transmit due to interference. In this paper, we
formalize CPR as a discrete optimization problem, and prove
that CPR and its many variants are NP-hard.

I. INTRODUCTION

A new and promising distribution model for 3GPP net-
works is Multimedia Broadcast Multicast Service (MBMS)
[1], where a piece of widely interested multimedia content
(message) is broadcasted to large groups of 3G clients listening
collectively in a pre-assigned broadcast channel. While it is
clear that efficient usage of network resources is a benefit, in
fear of the NAK implosion problem — scenario where server
is overwhelmed by floods of individual retransmission requests
from clients — broadcasting servers typically do not perform
retransmission on request in the event of packet losses due to
wireless transmission failures. Even with the use of Forward
Error Correction (FEC) to correct predictable channel noise,
temporary wireless link failures are often unavoidable, leaving
groups of clients without the desired message at a given time.

Fortunately, many modern wireless devices are multi-homed
and each contains multiple wireless interfaces, so that one
can connect to a wireless wide area network (WWAN), like
a 3G network, and to a wireless local area network (WLAN),
like a wireless ad-hoc peer-to-peer network, simultaneously
[2]. In such setting, a “have not” wireless peer can request
retransmission of a message from a neighboring “have” peer
listening to the same broadcast. Given a group of cooperative
wireless peers willing to repair neighbors’ dropped message,
the problem is: how to schedule rounds of retransmissions
within a group, so that the time required to complete repair
to all peers is minimized? Care must be taken so that pre-
specified sets of interfering transmission links are not activated
simultaneously. We call this problem the Cooperative Peer-to-
peer Repair problem (CPR).

In this paper, we present the following theoretical result:
CPR and its many variants are NP-hard. We first formalize
the unicast variant of CPR, CPR-u, in Section II. We then
present the NP-hardness proof for CPR-u in Section III. We
present the broadcast variant of CPR, CPR-b, in Section IV,
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Fig. 1. Example of Connectivity Graph for Cooperative Peer-to-peer Repair

and its NP-hardness proof in Section V. Other variants are
discussed in Section VI, and we conclude in Section VII.

II. COOPERATIVE PEER-TO-PEER REPAIR: UNICAST
MODE (CPR-u)

We formulate the unicast variant of CPR, CPR-u, as follows.
A connected graph Θ, modeling the connectivity of wireless
peers in WLAN, has a set of nodes N and a set of undirected
links L. Links are labeled from 0, . . . , |L| − 1, where link i
connecting nodes m and n is represented by i ↔ (m,n). At
start time t = 0, each node n ∈ N has color C0,n ∈ {0, 1},
where 0 (blue) means node n is in need of the desired
message, and 1 (white) means the node has the message.
As done in [3], a conflict matrix I of dimension |L| ∗ |L|
dictates which links cannot be activated at the same time
due to interference; in particular, Ii,j = 1 if link i and j
cannot be activated simultaneously, and Ii,j = 0 otherwise.
Matrix I is by definition symmetric. We assume I has the
unicast conflict property: assignments of 1’s and 0’s so that
two links stemming from the same node are in conflict. This is
in compliance with standard 802.11 MAC behavior for unicast
mode, where a node can be in communication with at most
one other node at the same time.

At each iteration t, we select links, each connecting a white
node to a blue node, such that no two selected links are in
conflict according to I. By next iteration t + 1, blue nodes
of the selected links have received the desired message and
changed color to white. The optimization problem is: how to
select a set of non-conflicting links in each iteration, so that all
nodes are white in the minimum number of iterations? Figure
1 shows an example of connectivity graph Θ = {N ,L} with
initial coloring for CPR-u.

We write CPR-u mathematically as follows. Let S be a T ∗
|L| 0-1 link selection matrix, where St,l = 1 if link l is selected
at iteration t and St,l = 0 otherwise, and T is the total number
of iterations. Let C be a T ∗ |N | 0-1 color matrix where
Ct,n = 1 if node n is white at iteration t and Ct,n = 0
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Fig. 2. Example Construction for NP-Completeness Proof for CPR-u

otherwise. Given the first row of C is initialized to the starting
colors of N , the optimization is:

minS,C row(S) s.t.
Ij,k = 0 ∀j, k | St,j = St,k = 1

Ct,m + Ct,n = 1 ∀l | St,l = 1, l ↔ (m, n)
Ct+1,m + Ct+1,n = 2 ∀l | St,l = 1, l ↔ (m, n)

Ct+1,n = Ct,n 6 ∃l | St,l = 1, l ↔ (m, n)∑
n

Crow(S),n = |N |

(1)

where row(S) is the number of rows in matrix S. 1st

constraint in (1) states that no two links selected in the same
iteration t should be in conflict. 2nd constraint states that
only one node of each selected link at iteration t should be
white. 3rd constraint states that both nodes of a selected link
at iteration t should be white at iteration t + 1. 4th constraint
states that color of a node stays the same at iteration t+1 if no
link connected to it was selected at iteration t. 5th constraint
states that all nodes must be white at iteration row(S).

We now present the NP-hardness proof for CPR-u.

III. PROOF OF NP-HARDNESS: CPR-u

We first recast CPR-u as a decision problem: is there a
schedule of non-conflicting links at each iteration, such that
all nodes can be whitened in κ iterations? The CPR-u decision
problem is obviously in NP; a solution (So,Co) can be
checked against constraints in (1), and row(So) against κ,
for feasibility in polynomial time.

We next show that the CPR-u decision problem is NP-
complete via polynomial transformation from a well-known
NP-complete problem Independent Set (IndS). The IndS deci-
sion problem can be stated1 as follows (pg.361 of [4]):

Given a graph G = (V, E) and an integer k, is there
a set I ⊂ V of k vertices such that no two vertices
in I are connected by an edge?

Figure 2a shows an IndS example with independent set {1, 3}.
We now describe a procedure to construct a CPR-u instance
from an arbitrary IndS instance, so that the output of the CPR-u
decision problem corresponds exactly to the decision in IndS,
and hence proving that CPR-u is as hard as IndS.

A. Construction of CPR-u Instance from IndS

We first construct a IndS conflict 0-1 matrix J of size
|V| ∗ |V|, where Ji,j = 1 if ∃ei,j ∈ E and Ji,j = 0 otherwise.
In other words, Ji,j = 1 iff vertices i and j cannot be selected

1Notice we adopt the terminology of nodes and links when referring to
CPR-u, and vertices and edges when referring to IndS to avoid confusion.

to the same independent set because they are connected by
an edge. A IndS conflict matrix {Ji,j}, 0 ≤ i, j ≤ 3,
corresponding to the IndS instance in Figure 2a is:

J =

 0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

 (2)

We next construct a corresponding CPR-u instance with
graph Θ = (N ,L) and conflict matrix I. More specifically,
we construct a bipartite graph with |V| nodes on the left (Nl)
and k nodes on the right (Nr), so that Nl ∪ Nr = N . Nodes
on the left, each labeled n ∈ {0, . . . , |V| − 1}, are white, and
nodes on the right, each labeled m′ ∈ {0′, . . . , (k − 1)′}, are
blue. We draw a link from left to right for every pair of left-
node and right-node. We label a link l ∈ {0, 1, . . . , k|V| − 1}
connecting n ∈ Nl and m′ ∈ Nr as follows:

l = n ∗ k + m ↔ (n, m′) n ∈ Nl, m′ ∈ Nr (3)

The constructed CPR-u instance for our IndS example is shown
in Figure 2b. To complete the CPR-u instance, we construct a
CPR-u conflict matrix I of size k|V| ∗k|V| from J as follows.
For 0 ≤ i, j ≤ k|V| − 1:

Ii,j =


1 if Jb i

k c,b j
k c = 1

1 else if (
⌊

i
k

⌋
6=

⌊
j
k

⌋
) & (i mod k = j mod k)

1 else if (
⌊

i
k

⌋
=

⌊
j
k

⌋
) & (i 6= j)

0 o.w.
(4)

where i mod k gives the integer remainder of i divided by k.
The CPR-u conflict matrix I corresponding to the IndS

conflict matrix J in (2) is as follows.

I =



0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 0
1 1 1 0 1 1 0 1
1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1
1 1 1 0 1 1 0 1
1 1 0 1 1 1 1 0


(5)

Given the constructed CPR-u instance, the corresponding
decision is: is there a schedule of non-conflicting links, such
that all blue nodes can be whitened in 1 iteration?

B. Remarks

First, we show that the constructed CPR-u instance is of
polynomial size of the IndS instance. The node set N of
bipartite graph for CPR-u is of size |V| + k ≤ O(|V|). The
number of links is bounded by O(|V|2), and the size of the
CPR-u conflict matrix I is bounded by k2|V|2 ≤ O(|V|4).
Hence we conclude that the size of the constructed CPR-u
instance is O(|V|4), i.e. it is of polynomial size of the IndS
instance.

Next, we show that the 1’s and 0’s assigned to I using (4)
satisfies the unicast conflict property. From link labeling (3),
we see that links stemming from the same left-node n but
arriving at different right-nodes are in conflict with each other
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due to the 3rd if statement of (4). Similarly, from (3), we
see that links arriving at the same right-node m′ but stemming
from different left-nodes are also in conflict with each other
due to the 2nd if statement of (4). Since this covers all links,
we conclude that the constructed I satisfies the unicast conflict
property.

Finally, We discuss the intuition behind the construction of
the CPR-u instance. Each node ∈ Nl of CPR-u corresponds
one-to-one to a vertex ∈ V of IndS. Selecting one of k links
stemming from a node ∈ Nl of CPR-u means selecting the
corresponding vertex ∈ V of IndS into the independent set. The
1st if statement in (4) prevents selection of links stemming
from two nodes representing vertices ∈ V that are connected
in G.

Each node ∈ Nr corresponds to a unique, successful
selection of an independent vertex ∈ V . We track to see if all k
nodes ∈ Nr can be whitened in 1 iteration. There is no under-
counting, since the unicast conflict property prevents joint
selection of links stemming from two nodes ∈ Nl going to
the same node ∈ Nr. There is also no over-counting, because
the unicast conflict property also prevents joint selection of
links stemming from the same node ∈ Nl going to different
nodes ∈ Nr.

We now state the proof formally as a theorem.
Theorem 1: The CPR-u decision problem is NP-complete.

Proof: We prove the theorem by showing that “yes” to
the constructed CPR-u instance implies “yes” to the original
IndS instance, and vice versa. Suppose the output of the
constructed CPR-u decision problem is “yes”. That means
the solution composes of exactly k non-conflicting links,
originating from k distinct left-nodes ∈ Nl and terminating
at all k blue right-nodes ∈ Nr. We know there are exactly
k selected links, because all k blue right-nodes ∈ Nr are
whitened in 1 iteration, and links terminating at the same right-
node ∈ Nr are conflicting due to the unicast conflict property.
We know these k links originated from k distinct left-nodes
because links originated from the same left-node ∈ Nl are
conflicting, again due to the unicast conflict property. Finally,
these distinct k left-nodes ∈ Nl of the k selected links must
correspond to k independent vertices ∈ V in IndS due to (3)
and 1st if statement of (4). Therefore, we conclude that “yes”
to the CPR-u decision problem corresponds to “yes” in the
original IndS decision problem.

Suppose there is an independent set {vo
0 < . . . < vo

k−1} ⊂
V of size k in the IndS instance. We can correspondingly select
a set of k non-conflicting links ∈ L, where for each vo

i , we
pick link vo

i ∗ k + i. First, we know each of these k links
connect to a different right-node ∈ Nr due to (3). Second,
we know each of these k links connects to a different left-
node ∈ Nl, again due to (3). Hence, given each of these k
links has a different left-node and a different right-node, they
do not violate unicast conflicts (2nd and 3rd if statements
in (4)). They also do not conflict due to 1st if statement of
(4), since vertices vo

i ’s, where vo
i =

⌊
vo

i ∗k+i
k

⌋
, do not conflict

in G by assumption. Therefore, this set of k non-conflicting
links ∈ L converts all k blue nodes ∈ Nr in 1 iteration. We
can now conclude that since both directions of the implication

have been proven, Theorem 1 is also proven.
Corollary 1: The CPR-u optimization problem is NP-hard.

Proof: Given the CPR-u decision is NP-complete as
stated in Theorem 1, it follows by definition of NP-hardness
[4] that the corresponding optimization is NP-hard.

IV. COOPERATIVE PEER-TO-PEER REPAIR: BROADCAST
MODE (CPR-b)

A different variant of the CPR problem can be formulated
where nodes are selected instead of links at each iteration t.
Using broadcast mode of 802.11 MAC, each selected node
locally broadcasts to all directly connected nodes so that
they all receive the message in one iteration. Instead of
using an undirected graph to model peer-to-peer connectivity
as done for CPR-u in Section II, we use here a directed
connectivity graph. The reason is the following: while a node
i can broadcast to nodes j and k at the same time, node i
cannot listen to both nodes j and k simultaneously. Hence
there should be no conflict for links2 connecting [i, j] and
[i, k], while there is a conflict between [j, i] and [k, i]. Only a
directed graph can model the asymmetric relationship.

Even with the minor caveat of using directed links instead,
the optimization remains similar. The new variant we call
CPR-b. The optimization variable is now S∗, a T ∗ |N | 0-
1 node selection matrix, where S∗

t,n = 1 if node n is selected
for local broadcasting at iteration t and S∗

t,n = 0 otherwise.
Color matrix C is as defined earlier. The conflict matrix I
will now have the broadcast conflict property: links starting
from the same node cannot be in conflict, so that conflict-free
broadcasting by any node is possible. The optimization is:

minS∗,C row(S∗) s.t.
Ij,k = 0 ∀j, k | S∗

t,m = S∗
t,n = 1,

j ↔ [m, p], k ↔ [n, q] ∀p, q ∈ N
Ct,n = 1 ∀n | S∗

t,n = 1
Ct+1,m + Ct+1,n = 2 ∀l | S∗

t,n = 1, l ↔ [n, m]
Ct+1,m = Ct,m 6 ∃l | S∗

t,n = 1, l ↔ [n, m]∑
n

Crow(S∗),n = |N |
(6)

Constraints in (6) are similarly defined as ones in (1). 1st

constraint in (6) states that links starting from two selected
nodes at iteration t cannot be in conflict. 2nd constraint states
that each selected node in iteration t must be white. 3rd

constraint states that the destination node m and corresponding
selected source node n at iteration t must both be white in
iteration t + 1. 4th constraint states that color of a node stays
the same at iteration t + 1 if no nodes with links destined to
it was selected at iteration t. 5th constraint states that all the
nodes must be white by iteration row(S∗).

We now present the NP-hardness proof for CPR-b.

V. PROOF OF NP-COMPLETENESS: CPR-b
We similarly recast CPR-b as a decision problem: is there a

schedule of nodes with non-conflicting links at each iteration,
such that all nodes can be whitened in κ iterations? It is
again obvious that the CPR-b decision problem is in NP; a
solution (S∗o,Co) can be checked against constraints in (6),
and row(S∗o) against κ, for feasibility in polynomial time.

2We use square brackets to denote directed links.
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Fig. 3. Example Construction for NP-Completeness Proof for CPR-b

We again prove NP-completeness of CPR-b via polynomial
transformation from IndS. The construction of a CPR-b in-
stance from an arbitrary IndS instance is very similar to CPR-
u’s. Instead of having |V| nodes in Nl, we replicate k batches
of |V| nodes each as shown in Figure 3. In this construct, left-
node i ∈ Nl corresponds to vertex i mod |V| ∈ V . As done
previously, there are k right-nodes in Nr. We draw a link from
every left-node in batch i to the ith right-node ∈ Nr. We label
the links as:

l = (n mod |V|) ∗ k + m ↔ [n, m′] n ∈ Nl, m′ ∈ Nr (7)

Using the same (4), we create a CPR-b conflict matrix I. Since
each node has at most out-degree 1, I satisfies the broadcast
conflict property trivially.

The corresponding decision problem is similar: is there a
schedule of nodes with non-conflicting links, such that all
blue nodes are whitened in 1 iteration? We note that the
constructed CPR-b instance can again be easily shown to be
of polynomial size of the IndS instance, as done previously
for the constructed CPR-u instance.

Theorem 2: The CPR-b decision problem is NP-complete.
Proof: Suppose the output of the CPR-b decision prob-

lem is “yes”. Then for each batch i of k, there is a unique
left-node no

i ∈ Nl selected to transmit to right-node i′ ∈ Nr;
uniqueness of left-node in each batch is guaranteed by conflicts
of links terminating at each right-node i′ ∈ Nr, due to (7) and
2nd if statement of (4). For each no

i , we select a vertex ∈ V ,
where vo

i = no
i mod |V|. First, we know these k vertices vo

i ’s
are distinct due to (7) and 3rd if statement of (4). Second,
we know they do not conflict due to 1st if statement of (4).
Hence there exists an independent set of size k in IndS.

Suppose there exists an independent set {vo
0 < . . . <

vo
k−1} ⊂ V in IndS instance of size k. We select k left-nodes ∈
Nl, where for each vi, we pick left-node no

i = i∗|V|+vo
i ∈ Nl

in batch i. Subsequently, each left-node no
i has link vo

i ∗ k + i
connected to right-node i′ ∈ Nr due to (7). We see that these
k links do not conflict: not due to 1st if statement of (4),
since

⌊
vo

i ∗k+i
k

⌋
= vo

i and vo
i ’s do not conflict by assumption;

not due to 2nd if statement of (4), since each link goes to
a different right-node m′ and links are labeled using (7); not
due to 3rd if statement of (4), since

⌊
vo

i ∗k+i
k

⌋
= vo

i and
vo

i ’s are distinct by assumption. Therefore, all k blue nodes
in CPR-b are whitened in 1 iteration. Therefore, “yes” in the
IndS instance implies “yes” in CPR-b instance. Since both
directions of the implication are proven, Theorem 2 is also
proven.

Corollary 2: The CPR-b optimization problem is NP-hard.

VI. OTHER VARIANTS OF COOPERATIVE PEER-TO-PEER
REPAIR

Given both the unicast mode and the broadcast mode of
CPR are both NP-hard, it is easy to show more general settings
which include one or both of the proven cases as special cases
are also NP-hard. We discuss two of these here.

A. CPR: Multicast Mode

One can imagine a multicast mode for CPR, which is like
the unicast mode CPR-u, with the generalization that at a given
time, a node can multicast to any subset of directly connected
nodes that are listening simultaneously. In other words, it
has the same formulation (1) as CPR-u — selecting non-
conflicting links at each iteration — without the requirement
of unicast conflict property on conflict matrix I. It is obvious
that the multicast mode includes the unicast mode as a special
case — one where conflict matrix I satisfies the unicast conflict
property, hence the multicast mode is also NP-hard.

B. CPR: Directed Connectivity Case

It is possible to construct a peer-to-peer connectivity graph
for the unicast and multicast modes using a directed graph
instead of the undirected graph described in Section II. Note,
however, that typical 802.11 MAC unicast behavior dictates
that a node ni can communicate with another node nj only
if nj can also communicate with ni (so that ACK packets
can be properly returned), and this “ni → nj implies nj →
ni” property for node connectivity is modeled best by an
undirected graph. Nevertheless, a more general notion of
directed connectivity is in theory possible, as done in [3]. We
emphasize that this is the general case, since a undirected link
between ni and nj can be modeled by two directed links to
and from ni and nj , but not vice versa. Given the undirected
connectivity cases for unicast and multicast modes are NP-
hard, the directed connectivity cases for unicast and multicast
modes are also NP-hard.

VII. CONCLUSION

In this paper, we formulate the Cooperative Peer-to-peer
Repair problem (CPR) as a discrete optimization problem, and
show that the problem and its many variants are NP-hard.

REFERENCES

[1] Technical Specification Group Services and System Aspects; Multimedia
Broadcast/Multicast Service; Protocols and Codecs (3GPP TS.26.346
version 6.1.0, June 2005.

[2] P. Sharma, S.-J. Lee, J. Brassil, and K. Shin, “Distributed communication
paradigm for wireless community networks,” in IEEE International
Conference on Communications, Seoul, Korea, May 2005.

[3] K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu, “Impact of interference
on multi-hop wireless network performance,” in Proceedings of the
ACM International Conference on Mobile Computing and Networking
(MobiCom 2003), San Diego, CA, September 2003.

[4] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity, Dover, 1998.


