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Abstract—We address the problem of real-time encoding mul-
tiview video for interactive multiview live video streaming, where
clients can interactively switch views during video playback.
In other words, as a client is playing back successive frames
(in time), it sends requests to the server to switch to different
views while continuing uninterrupted temporal playback. Noting
that standard tools for random access (i.e., I-frame insertion)
can be bandwidth-inefficient for view switching, we propose
an algorithm to select and encode an optimal combination
of I- and/or redundant P-frames in order to facilitate view
switching for a given computation constraint. We show in our
experiments that we can generate redundant frame structures
offering a range of useful tradeoff points between transmission
and computation, including ones that outperform simple I-frame
insertion structures by up to 32.9% in terms of bandwidth
efficiency, if we are willing to double computational resources
devoted to encoding.

I. INTRODUCTION

Multiview video consists of sequences of spatially related

pictures captured simultaneously and periodically by multiple

closely spaced cameras. Much of the previous research on

multiview video focuses on compression, where the goal is

optimized rate-distortion performance to encode all views

across all time jointly [1], [2].

In this paper, we focus instead on the interactive mul-

tiview live video streaming (IMVS-live) scenario, where a

frame structure for live-captured multiview video is chosen

and frames are encoded in real-time into the structure by a

server, during a live streaming session, for streaming clients

to interactively request desired views. More specifically, each

client watches and requests one view at a time out of many

available views, while the video is played forward in time; this

results in a different traversal of views across time for each

client. The IMVS-live server must be capable of supporting a

possibly large group of streaming clients, each with its own

unique view traversal, given limited computation resources.

Our objective is to design a frame structure to support a de-

sired level of view interactivity for streaming clients in IMVS-

live while minimizing expected transmission bandwidth, given

a fixed computation resource. The level of view interactivity

is determined by the view switching period M ; i.e., view

switching can only take place at multiples of M frames.

A natural approach to enable this kind of interactive view

switching is to make use of standard random access tools,

i.e., making every M -th frame (in all views) an I-frame. Our

work is based on the observation that random access and

view switching are fundamentally different functionalities, and

thus efficient tools for one problem may not provide the best

solution for the other. For random access to a frame, one

can make no assumptions about which frames are available

at the decoder; independently coded I-frames are therefore

well suited for this purpose. View switching, on the other

hand, arises when temporal playback is not interrupted, i.e.,

successive frames are displayed, but one wishes to switch point

of view. The key difference is that the decoder has access to

some of the frames immediately preceding the requested frame

(albeit from a different view) in time. Thus, since consecutive

frames in different views tend to be correlated, using an I-

frame for switching can be bandwidth-inefficient.

The main focus of our work is then to study alternatives

for view switching that are more bandwidth-efficient than

simple I-frame insertions. Note that our proposed tools do

not support random access, which is needed for late clients to

join live streaming sessions already in progress. Thus, random

access I-frames can be inserted at join session period M ′, in

combination with our proposed view-switching tools, and it

will be up to the system designer to select the appropriate

parameters M and M ′ for a given live application, where

typically M ≪ M ′.

The design of a multiview frame structure to permit view

interactivity in IMVS-live involves a tradeoff between the

expected transmission rate and the computation cost required

to encode frames into the structure. At one extreme, one could

encode every switching point as an I-frame (and subsequent

M − 1 frames in the same view as P-frames), so that only

K encoders are required for K total views. In this case,

clients play back frames produced by one of the encoders and

switching views can be done by switching encoders at frame

positions that are multiples of M . While computation cost is

minimal (K is the minimum number of encoders needed to

produce K independently encoded views), the frequent trans-

mission of I-frame can be bandwidth-inefficient. At another

extreme, a system could be designed with dedicated encoders

for each client, so that as a client interactively selects a view

traversal, the corresponding set of frames is encoded. While

this results in minimum transmission cost (view switching is

achieved via a cross-view P-frame), the computation required

is prohibitive when the number of clients is large.



Clearly, between these two extremes more practical multi-

view frame structures can be selected to obtain different trade

offs between transmission and computation costs. Recently,

for non-live IMVS scenarios, redundant P-frames [3] and

distributed source coding (DSC) frames [4] have been used

to trade off transmission with storage costs. In a live scenario,

we observe that they offer similar tradeoffs between expected

transmission cost and volume of data generated (and hence

corresponding computation required), and hence are suitable as

view-switching tools for IMVS-live as well. In this paper, we

develop an algorithm that finds a good frame structure using

redundant P-frames and I-frames trading off transmission and

computation. We show in our experiments that our algorithm

can offer a range of useful tradeoff points; in particular, we

show that in some cases our algorithm generated structures

reducing expected transmission rate by up to 32.9% as com-

pared to I-frame insertion, while requiring double encoder

computation resources.

The outline of the paper is as follows. We first review related

work in Section II. We then discuss IMVS-live system and

models in Section III. We formulate the problem of designing

a multiview frame structure for IMVS-live in Section IV

and present our algorithm in Section V. We discuss our

experiments in Section VI.

II. RELATED WORK

As mentioned, much of the previous research in multiview

video has focused on efficient compression of all frames of

all views [1], [2]. Using such structures directly to facilitate

view switching in IMVS-live poses two problems. First, each

client watches only one view at a time, thus compressing and

sending frames of more than one view (which may be required

for correct decoding at client due to cross-view prediction) is

bandwidth-inefficient. Second, even if one eliminates cross-

view predictions and inserts random access I-frames for all

views every M -frame interval, server will still need to send a

leading I-frame every M frames for each view switch. Clearly,

for small M this again leads to bandwidth inefficiency.

In contrast, we study the bandwidth-optimal design of frame

structures for interactive view switching during live streaming.

Specifically, our formulation explicitly seeks to minimize the

expected transmission rate during an IMVS-live session for

given desired view interactivity, at the expense of a modest

and controlled increase in computation.

Study of the conflicting requirements of interactivity and

compression has been considered in the context of interactive

light field streaming using DSC [5], SP-frames [6], and rerout-

ing [7], where multiple blocks are transmitted to correctly

decode and display a single block. Our IMVS-live work differs

in that we allow multiple decoded versions of a single original

picture (at the expense of increased in computation), so that

multiple decoding paths demanding the same view frame can

each have their own versions of inter-coded frames, without

resorting to a more transmission-expensive intra-coded frame.

We have previously posed the IMVS problem for the offline

encoding scenario, where content is pre-encoded a priori and

streamed to clients at a later time. In that case we considered

the tradeoff between transmission and storage costs using

redundant P-frames [3] and DSC frames [4], whereas here, for

the IMVS-live scenario, tradeoffs between transmission and

computation costs are considered.

III. SYSTEM & INTERACTION MODELS
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Fig. 1. Interactive Multiview Live Video Streaming System

A. System Model

The system model we consider for the IMVS-live scenario

is shown in Fig. 1. A Multiview Video Source simultaneously

captures multiple pictures of different views at regular in-

tervals. An example of a multiview sequence of two views

across four time instants is shown in Fig. 2(a). A Video Server

sequentially grabs the captured uncompressed pictures from

Multiview Video Source and encodes them in real-time based

on a frame structure designed a priori by an algorithm to

be discussed in Section V. Using the same encoded MV

frame structure T , Video Server can serve a large number

of streaming clients without further encoding/transcoding.

B. View Interaction Model

In what follows, we will use the term frame to denote a

specific coded version of a picture and use the term picture for

the corresponding original captured image. Thus, our system

will have redundant encodings, in the sense that there may

be multiple frames representing a given picture. We assume

a view interaction model where, upon watching any decoded

version of the picture F o
i,j , corresponding to time instant i and

view j, an interactive client will request a coded version of

picture F o
i+1,k of view k and next time instant i + 1, where

j − 1 ≤ k ≤ j +1, with view transition probability αj(k); we

call this interactivity forward view switching1.

Note that a significant difference between our setting and

that of interactive light field streaming [5], [6], [7] is that in

the latter case the user is free to explore a static scene in

all directions, while here we play forward in time with only

limited switching possibilities (i.e., among neighboring views).

Though our interactive model presumes a client’s desire to

switch views at single-frame level, our model encompasses the

more general case of a view switching period M ; in that case

a “frame” Fi,j in our model would represent M consecutive

frames in the same view j (a carefully chosen P- or I-frame

determined by our optimization followed by M−1 consecutive

P-frames of the same view).

1We assume here that continuous forward playback of live video is
desirable, so that viewers are synchronized in time with the live event.



IV. IMVS-LIVE PROBLEM FORMULATION

We now formulate our IMVS-live problem. We present

definitions of key terms, then formally define the optimization.

A. Definitions
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(a) Multiview Video Sequence (b) Frame Structure

Fig. 2. Example of Redundant Frame Structure. I- and P-frames are drawn as
circles and rectangles, respectively. A solid edge from Fi+1,k to Fi,j in (b)
means a P-frame Fi+1,k is predictively coded using reference frame Fi,j . A
dotted edge from Fi,j to Fi+1,k in (b) means a schedule G dictates transition
to Fi+1,k if view k is requested after viewing Fi,j .

1) Redundant Frame Structure: We assume we are design-

ing a structure a priori for a to-be-encoded multiview sequence

of K views and N time switching instants2. Assume also that

view transition probabilities αj(k)’s are known a priori, that

each starting frame, F0,k, has probability wk, and each Fi,j

can only transition to frames of neighboring views Fi+1,k ,

max(1, j − 1) ≤ k ≤ min(K, j + 1). Fig. 2(a) shows an

example multiview sequence where N = 3 and K = 2.

One can construct a redundant frame structure T comprised

of coded I- and P-frames, denoted as Ii,j’s and Pi,j’s, to

represent a multiview sequence and enable IMVS-live. Here a

P-frame Pi,j is a predictively coded frame using a selected

Fi−1,k as predictor. A structure representing the example

multiview sequence in Fig. 2(a) is shown in Fig. 2(b).

A structure T forms a set of dependency trees with I-frames

as root nodes. T is redundant in that an original picture F o
i,j

can be represented by multiple frames Fi,j ’s. In Fig. 2(b),

F o
2,1 is represented by P-frame P2,1 and I-frame I2,1. Multiple

Fi,j ’s are used to avoid coding drift.

2) Frame-to-frame Schedule: Associated with a structure

T is a frame-to-frame schedule G, which determines which

frame Fi+1,k should be sent by the server, given that the

viewer has just observed Fi,j and requested view k. We denote

a scheduled frame-to-frame transition as Fi,j
G
⇒ Fi+1,k. For

given structure T , there exists only one3 logical schedule

G described below. For desired view k, if there exists a

P-frame Pi+1,k predicted from Fi,j , then schedule G will

2Given join session and view switching periods M ′ and M , respectively,

where M ′ > M , we have N =

⌊

M′

M

⌋

− 1.
3If rerouting [3] is permitted, where an alternative P-frame Pi+1,k , whose

predictor Fi,j is not the currently observed frame by the client, is sent along
with its predecessors Fi,j etc for client decoding, then there are more than
one logical schedule. In Fig. 2(b), I0,2 can transit to P1,1 if server sends
both I0,1 and P1,1. We do not consider rerouting in this paper.

schedule Pi+1,k since it is for this transition that Pi+1,k was

constructed. If Pi+1,k predicted from Fi,j does not exist, then

G would schedule an I-frame Ii+1,k.

3) Computation Cost: For a given frame structure T , we

can define the corresponding maximum computation cost

during encoding, S(T ), by searching for the maximum number

of encoded frames in T across all time instants:

S(T ) = max
i

∑

Fi,j∈T

1 (1)

In Fig. 2(b), the computation cost of the redundant frame

structure T shown is 4. This cost represents the maximum

number of “encoders” that need to be operating simultaneously

at any point in time (under the assumption that all frames

corresponding to time i are encoded simultaneously.)

4) Transmission Cost: Given a structure T and associated

schedule G, we can define a corresponding transmission cost

as the expected transmission rate given transition probabilities

αj(k)’s and frame sizes |Fi,j |’s for all frames in T . We

assume the size of an I-frame for given view j is a constant:

|Ii,j | = rI
j . In contrast, size of a P-frame depends also on the

frame used for prediction. Assuming Pi,j is encoded using as

a predictor Fi−1,k, the corresponding size is |Pi,j | = rP
j (k).

The expected transmission cost C(T ) is a weighted sum

of the starting I-frames |I0,k|’s, 1 ≤ k ≤ K , and recursive

transmission costs c(I0,k)’s, where c(Fi,j) is the expected

future transmission cost given that a client has just viewed

frame Fi,j . c(Fi,j) in turn can be written as a weighted sum

of recursive transition costs Φ(Fi,j , k)’s of possible transitions

to other views k’s in time instant i + 1:

C(T ) =
∑

k

wk

(

r
I
0,k + c(I0,k)

)

c(Fi,j) =

min(K,j+1)
∑

k=max(1,j−1)

αi,j(k)Φ(Fi,j , k) (2)

The recursive transition cost Φ(Fi,j , k) is the expected

transmission cost from Fi,j to scheduled Fi+1,k and beyond.

For given Fi+1,k, it is a sum of size of Fi+1,k, and subsequent

recursive transmission cost c(Fi+1,k) after transition:

Φ(Fi,j , k) = |Fi+1,k| + c(Fi+1,k) where Fi,j
G
⇒ Fi+1,k (3)

B. Optimization Problem Defined

We can now define the IMVS-live problem as follows:

find a structure T in feasible space4 Θ that possesses the

smallest expected transmission cost C(T ) while a computation

constraint S̄ is observed:

min
T ∈Θ

C(T ) s.t. S(T ) ≤ S̄ (4)

4The feasible space is the set of structures that enable all permissible
transitions from frame Fi,j to frame Fi+1,k, where transitions have been
constrained depending on desirable application characteristics, e.g., j and k

may be constrained to be neighboring views.



V. IMVS-LIVE ALGORITHM

We now present an algorithm that constructs a redundant

frame structure T for the IMVS-live optimization problem

presented in Section IV. The algorithm is greedy in nature,

and hence the algorithmic complexity is comparatively low.

In words, the algorithm constructs structure T and associated

frame-to-frame schedule G from front to back, where at each

time instant we iteratively identify a transition that would reap

the largest decrease in transmission cost by branching to a new

P-frame instead of an I-frame, until the available computation

resource is depleted.

We first note that the transmission cost of a structure T ,

C(T ), can be written as a function of display probabilities

q(Fi,j)’s—the probability that Fi,j is selected for display:

C(T ) =
∑

Fi,j∈T

q(Fi,j)|Fi,j | (5)

For given structure T , q(Fi,j)’s can be calculated from front

to back as follows. First, we are given initial probabilities for

starting I-frames I0,k’s, wj’s. Second, a client will branch from

Fi,j to a P-frame Pi+1,k with display probability q(Fi,j)αj(k).
Finally, a client can branch to an I-frame Ii+1,k from multiple

frames in previous instant; the display probability of Ii+1,k is

the sum of all transition probabilities from these frames.

We can now present the algorithm in details as follow:

1) Initiate T with K I-frames I0,k’s for instant i := −1.
2) i := i + 1. Create K I-frames Ii+1,k’s and schedule all

feasible transitions to Ii+1,k’s. Calculate display probabilities
q(Ii+1,k)’s. Initiate computation unit S := K.

3) While (S < S̄),

a) Find a transition Fi,j
G

⇒ Ii+1,k s.t. if branches to a P-
frame Pi+1,k instead of I-frame Ii+1,k, it will decrease
transmission cost maximally; i.e., max q(Fi,j)(r

I
k −

rP
k (j)). Create Pi+1,k. Schedule Fi,j to branch to Pi+1,k

instead of Ii+1,k. S := S + 1.
b) If the number of transitions to I-frame Ii+1,k where the

maximal transition was removed is now one, then replace
Ii+1,k with P-frame Pi+1,k .

4) if (i < N − 1), goto step 2.

VI. EXPERIMENTS

For MV video data, we downloaded three consecutive views

of the 100-frame ballroom sequence from [8] captured at

25fps and down-scaled to QCIF (176× 144). In addition, we

modified the game client of Internet game warsow [9] to

render and capture a 100-frame sequence of three views si-

multaneously at 10fps, each displaced by 30o. The motivation

is to supply two very different data sets with different frame

rates and camera distances.

For each sequence, we averaged the first five I-frames and

P-frames predicted from previous frames of various views to

generate rI
j ’s and rP

j (k)’s as inputs to our algorithm, using

H.264 JM version 12.4 [10] as the default codec. For transition

probabilities αj(k)’s, we assume frame Fi,1 remains at the

same view Fi+1,1 with probability 1 − α, and transitions to

neighboring views Fi+1,0 and Fi+1,2 with probability α/2
each. Frame Fi,0 (Fi,2) transition to the single neighboring

view Fi,1 with the same probability α. We assumed α = 0.1,

starting probabilities for each frame I0,k wk = 1/3 for each

of the three views, and switching instants N = 9.
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Fig. 3. Tradeoffs between Transmission and Computation Costs

For a given fixed structure generated by our algorithm,

we encoded the 100-frame test sequences into the structure

M frames at a time and computed the transmission and

computation costs. In Fig. 3, we see the performance of our al-

gorithm (IP) for different switching period against the default

random access I-frame insertion approach (RA-I). We see

indeed that transmission and computation units can be traded

off gracefully. In particular, at twice the computation, our

proposed algorithm generated structures that reduced expected

transmission costs by 32.9% and 20.1% for ballroom and

warsow when M = 3, and by by 24.3% and 14.3% for

ballroom and warsow when M = 5. We observe that our

algorithm reaps the most gain when the cameras are spatially

close, frame rates are high, and switch periods are small.
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