

Interpretable Lightweight Transformer via Unrolling of Learned Graph Smoothness Priors

Gene Cheung York University, Toronto, Canada

Acknowledgement

- Graph and Image Signal Processing (GISP) Lab (York University, Toronto, Canada)
 - Grad students: Saghar Bagheri, Tam Thuc Do, Yeganeh Gharedaghi, Niruhan Viswarupan, Parham Eftekhar, Seyed Alireza Hosseini
 - Co-supervised students: Sadid Sahami (NTHU)
 - Visiting researcher: Fei Chen (Fudan)

Collaborators

- Michael Brown, Andrew Eckford, Pirathayini Srikantha (York Univ., Canada)
- Ivan V. Bajic (Simon Fraser Univ., Canada)
- > Antonio Ortega (Univ. of Southern California, USA)
- Phil Chou (Google, USA)
- Tim Eadie (Growers Edge, USA)
- Wei Hu (Peking Univ., China), Jin Zeng (Tongji Univ., China)
- Vicky H. Zhao (Tsinghua Univ., China)
- Chia-Wen Lin (NTHU, Taiwan)
- Kazuya Kodama (NII, Japan), Yuichi Tanaka (Osaka Univ. Japan)

111111

CISCO

Outline

GSP Overview

- Graph frequencies from eigen-pairs
- Graph Construction
- Low-pass Graph Filter for Image Denoising
- GSP + Algorithm Unrolling
- Unrolling GLR/GTV for Image Interpolation
- Unrolling GGTV for Image Denoising
- Conclusion

Interpretable Neural Nets with fewer parameters \rightarrow less training data required

Outline

GSP Overview

- Graph frequencies from eigen-pairs
- Graph Construction
- Low-pass Graph Filter for Image Denoising
- GSP + Algorithm Unrolling
- Unrolling GLR/GTV for Image Interpolation
- Unrolling GGTV for Image Denoising
- Conclusion

Graph Signal Processing

[1] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst, "Graph signal processing: Overview, challenges, and applications," *Proceedings of the IEEE*, vol. 106, no. 5, pp. 808–828, 2018.

LASSONDE

Graph Fourier modes: eigenvectors of graph Laplacian matrix L = D - W.

 $L = V \underbrace{\sum_{i=1}^{r} \sqrt{T}}_{eigenvectors in columns}$ Graph Fourier Transform (GFT)

GFT defaults to *DCT* for un-weighted connected line. GFT defaults to *DFT* for un-weighted connected circle.

- 1. Eigenvectors are (*global*) aggregates of (*local*) edge weights.
 - More variations for larger eigenvalues.
- **2.** Eigenvalues (≥ 0) as graph frequencies.

[1] G. Cheung, E. Magli, Y. Tanaka, M. Ng, "Graph Spectral Image Processing," Proceedings of the IEEE, vol. 106, no. 5, pp. 907-930, May 2018. .

Weather stations from 100 most populated cities. Graph connections from Delaunay Triangulation*. Edge weights inverse proportional to distance.

*https://en.wikipedia.org/wiki/Delaunay triangulation

Weather stations from 100 most populated cities. Graph connections from Delaunay Triangulation*. Edge weights inverse proportional to distance.

V2: 1st AC component

Weather stations from 100 most populated cities. Graph connections from Delaunay Triangulation*. Edge weights inverse proportional to distance.

Weather stations from 100 most populated cities. Graph connections from Delaunay Triangulation*. Edge weights inverse proportional to distance.

Outline

- GSP Overview
 - Graph frequencies from eigen-pairs
- Graph Construction
- Low-pass Graph Filter for Image Denoising
- GSP + Algorithm Unrolling
- Unrolling GLR/GTV for Image Interpolation
- Unrolling GGTV for Image Denoising
- Conclusion

Graph Construction

- Graph captures *pairwise relationships*.
 - 1. Domain knowledge.
 - 2. Correlations.
 - **3**. Feature distance.
- Graph Learning from Data:
 - 1. Learn sparse **inverse covariance matrix** from observations [1].
 - Graphical Lasso, CLIME.
 - 2. Learn metric to determine feature distance [2].

 [1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and Projection," *IEEE International Conference on Acoustics, Speech and Signal Processing*, Toronto, Canada, June 2021 (best student paper finalist).
 [2] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," *IEEE TPAMI*, 2022. ılıılı cısco

Signed Graphs

• Most GSP works assume **positive graphs**.

Voting records in a Parliament — *anti-correlation* represented as negative edges [1,2].

[1] C. Dinesh, G. Cheung, I. V. Bajic, "Point Cloud Sampling via Graph Balancing and Gershgorin Disc Alignment," *IEEE TPAMI* vol. 45, no.1, pp. 868-886, January 2023.
 [2] C. Dinesh, G. Cheung, S. Bagheri, I. V. Bajic, "Efficient Signed Graph Sampling via Balancing & Gershgorin Disc Perfect Alignment," submitted to *IEEE TPAMI*, January 2023.

Directed Graphs

• Describes *causal* relationships.

[1] Y. Li, H. V. Zhao, G. Cheung, "Eigen-Decomposition-Free Directed Graph Sampling via Gershgorin Disc Alignment," ICASSP'23, Rhodes, Greece, June 2023.

[1] C. Dinesh, G. Cheung, F. Chen, Y. Li, H. V. Zhao, "Modeling Viral Information Spreading via Directed Acyclic Graph Diffusion," IEEE Globecom, Malaysia, December 2023.

Outline

- GSP Overview
 - Graph frequencies from eigen-pairs
- Graph Construction
- Low-pass Graph Filter for Image Denoising
- GSP + Algorithm Unrolling
- Unrolling GLR/GTV for Image Interpolation
- Unrolling GGTV for Image Denoising
- Conclusion

Spectral Graph Filter for Image Denoising

- Graph Laplacian Regularizer (GLR) $\mathbf{x}^T \mathbf{L} \mathbf{x}$ is a smoothness measure.
- Denoising has simplest formation model y = x + z, thus formulation

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," *IEEE TIP*, vol. 26, no.4, pp.1770-1785, April 2017.
 [2] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," *IEEE ICCV*, 1998.

OGLR Denoising Results: visual comparison

• Subjective comparisons ($\sigma_{I} = 40$)

Original

Noisy, 16.48 dB

K-SVD, 26.84 dB

BM3D, 27.99 dB

PLOW, 28.11 dB

OGLR, 28.35 dB

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.

OGLR Denoising Results: visual comparison

• Subjective comparisons ($\sigma_{I} = 30$)

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.

Outline

- GSP Overview
 - Graph frequencies from eigen-pairs
- Graph Construction
- Low-pass Graph Filter for Image Denoising
- GSP + Algorithm Unrolling
- Unrolling GLR/GTV for Image Interpolation
- Unrolling GGTV for Image Denoising
- Conclusion

GSP with Algorithm Unrolling

- Algorithm Unrolling: implements each iteration of an iterative algorithm as neural layer + parameter tuning [2].
 - e.g., ISTA to LISTA [1].
 - <u>100% mathematically interpretable</u>.
 - Train *fewer* parameters.
 - Robust to covariate shift.

• "White-box" transformer by unrolling sparse rate reduction algorithm [3].

Our approach:

- 1. design GSP algorithms,
- 2. unroll + parameter tuning.

[1] J. K. Gregor and Y. LeCun, "Learning fast approximations of sparse coding," *ICML*, Madison, WI, USA, 2010, ICML'10, p. 399–406.

[2] V. Monga, Y. Li, and Yonina C. Eldar, "Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing," *IEEE Signal Processing Magazine*, vol. 38, no. 2, pp. 18–44, 2021.

[3] Y. Yu, S. Buchanan, D. Pai, T. Chu, Z. Wu, S. Tong, B.D. Haeffele, Y. Ma, "White-box transformers via sparse rate reduction," ArXiv abs/2306.01129 (2023).

GLR for Image Interpolation

- Formulate interpolation problem using GLR as objective: GLR $interpolation \mathbf{x}^{\top}\mathbf{L}\mathbf{x}$, s.t. $\mathbf{H}\mathbf{x} = \mathbf{y}$ interpolation observation
 - Define corresponding unconstrained Lagrangian function:

$$f(\mathbf{x}, \boldsymbol{\mu}) = \mathbf{x}^\top \mathbf{L} \mathbf{x} + \boldsymbol{\mu}^\top (\mathbf{H} \mathbf{x} - \mathbf{y})$$

• Take derivative w.r.t. x and μ , set to zero, get **linear system**:

$$\underbrace{\begin{bmatrix} 2\mathbf{L} & \mathbf{H}^{\mathsf{T}} \\ \mathbf{H} & \mathbf{0}_{K,K} \end{bmatrix}}_{\mathbf{P}} \begin{bmatrix} \mathbf{x} \\ \mu \end{bmatrix} = \begin{bmatrix} \mathbf{0}_{N,N} \\ \mathbf{y} \end{bmatrix} \text{ or } \underbrace{\mathbf{L}_{\bar{\mathcal{S}},\bar{\mathcal{S}}} \mathbf{x}_{\bar{\mathcal{S}}} = -\mathbf{L}_{\bar{\mathcal{S}},\mathcal{S}} \mathbf{y}}_{\text{index set of non-samples}} \text{ index set of samples}$$

• Can interpret output \mathbf{x}^* as LP filter of upsampled input, $\mathbf{L}^{-1}\mathbf{H}^{\top}\mathbf{L}_{S}^{\#}\mathbf{y}$.

GTV for Image Interpolation

- Formulate interpolation problem using GTV as objective: $GTV \longrightarrow GTV$ sampling matrix $min_x \|Cx\|_1$, s.t. Hx = y observation
- Rewrite as standard form of *linear programming* (LP):

$$\min_{\mathbf{z},\mathbf{x},\mathbf{q}} \mathbf{1}_{M}^{\mathsf{T}} \mathbf{z}, \quad \text{s.t.} \underbrace{\begin{bmatrix} \mathbf{I}_{M} & -\mathbf{C} & -(\mathbf{I}_{M} \ \mathbf{0}_{M,M}) \\ \mathbf{I}_{M} & \mathbf{C} & -(\mathbf{0}_{M,M} \ \mathbf{I}_{M}) \\ \mathbf{0}_{K,M} & \mathbf{H} & \mathbf{0}_{K,2M} \end{bmatrix}}_{\mathbf{A}} \begin{bmatrix} \mathbf{z} \\ \mathbf{x} \\ \mathbf{q} \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbf{0}_{M} \\ \mathbf{0}_{M} \\ \mathbf{y} \end{bmatrix}}_{\mathbf{b}}, \quad \mathbf{q} \ge \mathbf{0}_{2M}$$

- Solve sparse LP (SLP) via ADMM in linear time [2].
- Can interpret output as LP filter of upsampled input:

upsampling operator

$$\overset{\text{LP filter}}{(\mathbf{C}^{\top}\mathbf{C} + \mathbf{H}^{\top}\mathbf{H})}\mathbf{x}^{t+1} = \frac{1}{2\gamma}\mathbf{C}^{\top}\left(\boldsymbol{\mu}_{a}^{t} - \boldsymbol{\mu}_{b}^{t} + \boldsymbol{\mu}_{d}^{t} - \boldsymbol{\mu}_{e}^{t}\right) - \frac{1}{\gamma}\mathbf{H}^{\top}\boldsymbol{\mu}_{c}^{t} - \frac{1}{2}\mathbf{C}^{\top}(\tilde{\mathbf{q}}_{1}^{t} - \tilde{\mathbf{q}}_{2}^{t}) + \mathbf{H}^{\top}\mathbf{y}$$

[1] Do, Tam Thuc, et al. "Interpretable Lightweight Transformer via Unrolling of Learned Graph Smoothness Priors." accepted to *NeurIPS*'24.
 [2] Sinong Wang and Ness Shroff, "A new alternating direction method for linear programming," *NeurIPS*'17.

Graph Learning from Data

Graph Edge Definition: exponential of feature distance.

• With random walk **normalization**, then

$$\bar{w}_{i,j} = \frac{\exp(-d(i,j))}{\sum_{l|(i,l)\in\mathcal{E}} \exp(-d(i,l))}.$$
edge set stemming from node *i*

Self-Attention in Transformer

• Graph Edge Definition: exponential of feature distance.

$$w_{i,j} = \exp\left(-d(i,j)\right), \quad d(i,j) = (\mathbf{f}_i - \mathbf{f}_j)^\top \mathbf{M}(\mathbf{f}_i - \mathbf{f}_j)$$

• With normalization, then

$$\bar{w}_{i,j} = \frac{\exp(-d(i,j))}{\sum_{l|(i,l)\in\mathcal{E}} \exp(-d(i,l))}.$$

 Self-Attention Mechanism in Transformer: dot product of linear transformed embeddings, using key and query matrices, K and Q:

> 1. Graph learning with normalization from data is a self-attention mechanism! $(\mathbf{K}\mathbf{x}_i)$.

transformed dot product

Output Embedding in Transformer

• Output Embedding in transformer: using value matrix V,

$$\mathbf{y}_i = \sum_{l=1}^N a_{i,l} \mathbf{x}_l \mathbf{V}$$

- Interpretation:
 - Pairwise similarities (affinities) define *directed* graph.
 - Value matrix define filter response.

2. Unrolling of graph-based algorithm leads

- Graph Approach: to lightweight, interpretable transformer!
 - Undirected sparse graph via low-dimensional feature vectors **f**_i.
 - Derived low-pass filter from optimization (no learning!).

Unrolling GTV-based ADMM Alg. for Image Interpolation

Experiments: Unrolled GLR/GTV for Demosaicking

Method	Params#	McM	Kodak	Urban100	
		PSNR SSIM	PSNR SSIM	PSNR SSIM	
Bilinear	-	29.71 0.9304	28.22 0.8898	24.18 0.8727	
RST-B [46]	931763	34.85 0.9543	38.75 0.9857	32.82 0.973	
RST-S [46]	3162211	35.84 0.961	39.81 0.9876	33.87 0.9776	
Menon [47]	-	32.68 0.9305	38.00 0.9819	31.87 0.966	
Malvar [48]	-	32.79 0.9357	34.17 0.9684	29.00 0.9482	
iGLR	-	29.39 0.8954	27.50 0.8487	23.13 0.8406	
iGTV	-	30.43 0.8902	28.66 0.8422	24.91 0.8114	
uGLR	323410	36.09 0.9650	37.88 0.9821	33.60 0.9772	
uGTV	323435	36.59 0.9665	39.11 0.9855	34.01 0.9792	

Table 2: Demosaicking performance for different models, trained on 10k sample dataset.

- **Demosaicking**: fill in missing color pixels.
- Compared with two variants of RSTCANet employing Swin Transformer [1].
- Models trained on subset of DIV2K with 10K of 64x64 patches and same number of epochs (30).
- uGTV employed 10% parameters of RSTCANet w/ comparable demosaicking performance.

[1] Wenzhu Xing and Karen Egiazarian, "Residual swin transformer channel attention network for image demosaicing," 10th EUVIP. IEEE, 2022, pp. 1–6.

Experiments: Unrolled GLR/GTV for Demosaicking

	McM						
Method	PSNR						
	$\sigma = 10$	$\sigma = 20$	$\sigma = 30$	$\sigma = 50$			
RST-B	28.01	22.7	19.34	15.03			
uGLR	28.24	22.84	19.49	15.203			
uGTV	28.31	22.89	19.56	15.38			

Table 1: Demosaicking performance in noisy scenario, where models are trained on noiseless dataset.

Figure 2: Demosaicking performance vs. training size for different models.

- **Demosaicking**: fill in missing color pixels.
- Requires less data to train.
- More robust to covariate shift.

[1] Wenzhu Xing and Karen Egiazarian, "Residual swin transformer channel attention network for image demosaicing," 10th EUVIP. IEEE, 2022, pp. 1–6.

Experiments: Unrolled GLR/GTV for Interpolation

Method	Params#	McM PSNR SSIM	Kodak PSNR SSIM	Urban100 PSNR SSIM
Bicubic	-	29.01 0.8922	26.75 0.8299	22.95 0.7911
MAIN [49]	10942977	32.72 0.822	28.23 0.728	25.46 0.806
SwinIR-lightweight [50]	904744	32.24 0.9354	28.62 0.8794	25.08 0.8553
iGLR	-	28.53 0.8537	26.71 0.8005	22.87 0.7549
iGTV	-	30.41 0.887	28.05 0.832	24.26 0.7855
uGLR	319090	33.31 0.9431	29.10 0.8870	25.94 0.8777
uGTV	319115	33.36 0.9445	29.08 0.8888	26.12 0.8801

Table 3: Interpolation performance for different models, trained on 10k sample dataset.

- Interpolation: interploated a LR image to a corresponding HR image.
- Models trained on subset of DIV2K with 10K of 64x64 patches and same number of epochs (15).
- Outperformed MAIN [1] in all three benchmark datasets by about 0.7 dB.
- uGTV employed 3% parameters of MAIN.

[1] J. Ji, B. Zhong, and K.-K. Ma, "Image interpolation using multi-scale attention-aware inception network," IEEE TIP, vol. 29, pp.9413–9428, 2020.

Unrolling PnP Gradient GLR for Image Restoration

• Linear Image Formation:

 $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$ additive noise

• Regularize ill-posed restoration problem with Gradient GLR [2]:

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \mu \mathbf{x}^{\mathsf{T}} \underbrace{\left(\sum_{k=1}^{N} \mathbf{H}_{k}^{\mathsf{T}} \mathcal{L}_{r,k} \mathbf{H}_{k} + \mathbf{G}_{k}^{\mathsf{T}} \mathcal{L}_{c,k} \mathbf{G}_{k}\right)}_{\mathcal{L}} \mathbf{x}$$

• Introduce extra auxiliary variables, solve using PnP ADMM algorithms [3]:

J. Cai, G. Cheung, F. Chen. "Unrolling Plug-and-Play Gradient Graph Laplacian Regularizer for Image Restoration," submitted to *TIP*.
 F. Chen, G. Cheung and X. Zhang, "Manifold Graph Signal Restoration Using Gradient Graph Laplacian Regularizer," in *IEEE TSP*, 2024.
 S. H. Chan, X. Wang and O. A. Elgendy, "Plug-and-Play ADMM for Image Restoration: Fixed-Point Convergence and Applications," *IEEE TCI*, 2017,

Unrolling PnP Gradient GLR for Image Restoration

TABLE I

AVERAGE PSNR(DB) RESULTS OF DIFFERENT METHODS FOR NOISE

LEVELS 15, 25, and 50 on CBSD68 [47] dataset.

	Method	Paras(M)	CBSD68 [47]			
Trained on Gaussian noise.	Wiethou	-	$\sigma = 15$	$\sigma = 25$	$\sigma = 50$	
	CBM3D [37]	-	33.49/0.922	30.68/0.867	27.35/0.763	
Encylow AD/ no no no lo no of	TWSC [38]	-	33.41/0.918	30.64/0.867	27.43/0.763	
Employ <1% parameters of	NSS [39]	-	33.33/0.918	30.76/0.868	27.61/0.769	
Restormer [1] w/	CDnCNN [26]	0.56	33.90/0.929	31.22/0.883	27.95/0.790	
comparable denoising	IRCNN [48]	4.75	33.87/0.928	31.18/0.882	27.86/0.789	
<u>oomparable actioning</u>	FFDNet [27]	0.67	33.85/0.929	31.22/0.883	27.98/0.792	
<u>pertormance</u> .	DeepGLR [40]	0.93	33.75/0.926	31.13/0.881	27.86/0.791	
	DeepGTV [41]	0.10	31.80/0.927	31.08/0.879	27.90/0.791	
	DRUNet [49]	32.64	34.30/0.934	31.69/0.893	28.51/0.810	
	Restormer [25]	26.11	34.39/0.935	31.78/0.894	28.59/0.813	
	UPnPGGLR	0.23	34.15/0.932	31.42/0.889	28.18/0.802	

[1] S. W. Zamir et al., "Restormer: Efficient transformer for high-resolution image restoration," CVPR, pp.5718–5729, 2022.

•

TABLE II									
EVALUATION OF CROSS-DOMAIN GENERALIZATION FOR REAL IMAGE DENOISING ON RENOIR [50] AND NAM-CC15 [51] DATASETS. THE BEST									TS. THE BEST
RESULTS ARE HIGHLIGHTED IN BOLDFACE.									
Dataset	Method	CDnCNN [26]	IRCNN [48]	FFDNet [27]	DeepGLR [40]	DeepGTV [41]	DRUNet [49]	Restormer [25]	UPnPGGLR
RENOIR [50]	PSNR	26.79	25.77	29.19	30.25	30.14	29.81	29.55	30.38
	SSIM	0.638	0.651	0.762	0.809	0.808	0.784	0.780	0.814
Nam-CC15 [51]	PSNR	33.86	35.68	34.00	35.85	35.98	35.52	35.32	36.26
	SSIM	0.864	0.932	0.906	0.935	0.932	0.927	0.921	0.939

- Trained on Gaussian noise, tested on real noise dataset RENOIR, Nam-CC15.
- UPnPGGLR surpasses Restormer by 0.83dB on RENOIR, by 0.94dB on Nam-CC.
- Restormer is overfitted to Gaussian noise and fails to generalize to real noise.

[1] S. W. Zamir et al., "Restormer: Efficient transformer for high-resolution image restoration," CVPR, pp.5718–5729, 2022.

Fig. 3. Color image denoising results of different methods on image "163085" and image "253027" from CBSD68 dataset with noise level 50.

- DeepGLR and DeepGTV fail to fully remove noises in the restored images.
- UPnPGGLR performs comparably to DRUNet while using <1% of parameters.

• Trained with noise $\sigma = 15$ on BSDS500 dataset and tested at various noise levels.

• Shows improved robustness to *covariate shift*.

[1] S. W. Zamir et al., "Restormer: Efficient transformer for high-resolution image restoration," CVPR, pp.5718–5729, 2022.

Outline

- GSP Overview
 - Graph frequencies from eigen-pairs
- Graph Construction
- Low-pass Graph Filter for Image Denoising
- GSP + Algorithm Unrolling
- Unrolling GLR/GTV for Image Interpolation
- Unrolling GGTV for Image Denoising
- Conclusion

Conclusion

- Build parameter-efficient neural nets via unrolling of graph-based algorithms.
 - Fewer model parameters \rightarrow less training data required.
- Main idea:
 - 1. Graph learning from data with normalization is self-attention.
 - 2. Unrolling of graph algorithms leads to *lightweight* transformers.
- Future work:
 - Analytically study unrolling of different graph smoothness priors.
 - Different graphs (directed, signed) as attention mechanism.

Contact Info

Homepage: ${\color{black}\bullet}$

https://www.eecs.yorku.ca/~genec/index.html

E-mail: ulletgenec@yorku.ca

New book:

G. Cheung, E. Magli, (edited) Graph Spectral *Image Processing*, ISTE/Wiley, August 2021.

Coordinated by

SIE

GSP and Graph-related Research

GSP: SP framework that unifies concepts from multiple fields.

