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Interpretable Neural Nets with fewer 

parameters → less training data required
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Frequency analysis  

[1] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst, “Graph signal processing: Overview, challenges, and applications,” Proceedings of 

the IEEE, vol. 106, no. 5, pp. 808–828, 2018.

signal on graph kernel
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Graph Signal Processing
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Graph kernels  Graph Signal Processing  =+

Newton decomposed 

white light into color 

components (1730).

2D-DCT basis

Graph Signal Processing (GSP) studies spectral 

analysis tools for signals residing on graphs.



2nd eigenvector

1 2 3 4 8…2,1w 1 1

TVVL =

eigenvalues along diagonal

eigenvectors in columns

Graph Fourier Transform (GFT)

Graph Fourier modes: eigenvectors of graph Laplacian matrix L = D - W.

GFT defaults to DCT for un-weighted connected line.

GFT defaults to DFT for un-weighted connected circle.

1. Eigenvectors are (global) aggregates of (local) edge weights.

▪ More variations for larger eigenvalues.

2. Eigenvalues (≥ 0) as graph frequencies.
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Graph Spectrum
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[1] G. Cheung, E. Magli, Y. Tanaka, M. Ng, "Graph Spectral Image Processing," Proceedings of the IEEE, vol. 106, no. 5, pp. 907-930, May 2018. .
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*https://en.wikipedia.org/wiki/Delaunay triangulation

Weather stations from 100 most populated cities.

Graph connections from Delaunay Triangulation*.

Edge weights inverse proportional to distance.
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Graph Frequency Examples (US Temperature)
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V2: 1st AC component

location diff.















 −−
=

2

2

2
, exp



ji

ji

ll
w

Edge weights

Weather stations from 100 most populated cities.

Graph connections from Delaunay Triangulation*.

Edge weights inverse proportional to distance.

8

Graph Frequency Examples (US Temperature)
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V3: 2nd AC component
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Graph Frequency Examples (US Temperature)
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V4: 9th AC component

location diff.
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Edge weights inverse proportional to distance.

10

Graph Frequency Examples (US Temperature)
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Graph Construction
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• Graph captures pairwise relationships.

1. Domain knowledge.

2. Correlations.

3. Feature distance. 

• Graph Learning from Data:

1. Learn sparse inverse covariance matrix from 

observations [1].

▪ Graphical Lasso, CLIME.

2. Learn metric to determine feature distance [2].

Gene Cheung (genec@yorku.ca)

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and 

Projection," IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, June 2021 (best student paper finalist).

[2] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," IEEE TPAMI, 2022.



• Most GSP works assume positive graphs.

• Voting records in a Parliament              anti-correlation represented as negative edges [1,2]. 
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Signed Graphs

[1] C. Dinesh, G. Cheung, I. V. Bajic, "Point Cloud Sampling via Graph Balancing and Gershgorin Disc Alignment," IEEE TPAMI vol. 45, no.1, pp. 868-886, January 2023.
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[2] C. Dinesh, G. Cheung, S. Bagheri, I. V. Bajic, "Efficient Signed Graph Sampling via Balancing & Gershgorin Disc Perfect Alignment," submitted to IEEE TPAMI, January 2023.



Directed Graphs

Gene Cheung (genec@yorku.ca)14

(a) Following Network in Twitter/X (b) Paper Citation Network

[1] Y. Li, H. V. Zhao, G. Cheung, "Eigen-Decomposition-Free Directed Graph Sampling via Gershgorin Disc Alignment," ICASSP’23, Rhodes, Greece, June 2023.

[1] C. Dinesh, G. Cheung, F. Chen, Y. Li, H. V. Zhao, "Modeling Viral Information Spreading via Directed Acyclic Graph Diffusion," IEEE Globecom, Malaysia, December 2023.

• Describes causal relationships..
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Spectral Graph Filter for Image Denoising
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• Graph Laplacian Regularizer (GLR) 𝐱𝑇𝐋𝐱 is a smoothness measure.

• Denoising has simplest formation model 𝐲 = 𝐱 + 𝐳, thus formulation

min
𝐱

𝐲 − 𝐱 2
2 + 𝜇 𝐱𝑇𝐋𝐱

𝐈+𝜇𝐋 𝐱∗ = 𝐲

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.

[2] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” IEEE ICCV, 1998.
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𝐱𝑇𝐋𝐱 = ෍

(𝑖,𝑗)∈𝐸

𝑤𝑖,𝑗 𝑥𝑖 − 𝑥𝑗
2
=෍

𝑘

𝜆𝑘 ෤𝑥𝑘
2

smooth signal low-pass signal
𝐱∗ = 𝐈+𝜇𝐋 −1𝐲

𝐱∗ = 𝐕diag 1+𝜇𝜆1, 1+𝜇𝜆2, …
−1𝐕𝑇𝐲

low-pass filter!

Solvable in linear 

time via CG



OGLR Denoising Results:  visual comparison
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• Subjective comparisons (             )40 =I

Original Noisy, 16.48 dB K-SVD, 26.84 dB

BM3D, 27.99 dB PLOW, 28.11 dB OGLR, 28.35 dB

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.
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OGLR Denoising Results:  visual comparison
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[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.

• Subjective comparisons (             )30 =I

Original Noisy, 18.66 dB BM3D, 33.26 dB NLGBT, 33.41dB OGLR, 34.32 dB
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GSP with Algorithm Unrolling
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• Algorithm Unrolling: implements each iteration of an iterative algorithm as neural 

layer + parameter tuning [2].

• e.g., ISTA to LISTA [1].

• 100% mathematically interpretable.

• Train fewer parameters.

• Robust to covariate shift.

• “White-box” transformer by unrolling sparse rate reduction algorithm [3].

[1] J. K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” ICML, Madison, WI, USA, 2010, ICML’10, p. 399–406.

[2] V. Monga, Y. Li, and Yonina C. Eldar, “Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing,” IEEE Signal Processing 

Magazine, vol. 38, no. 2, pp. 18–44, 2021.

[3] Y. Yu, S. Buchanan, D. Pai, T. Chu, Z. Wu, S. Tong, B.D. Haeffele, Y. Ma, “White-box transformers via sparse rate reduction,” ArXiv abs/2306.01129 (2023).
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Our approach: 

1. design GSP algorithms, 

2. unroll + parameter tuning.



GLR for Image Interpolation
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• Formulate interpolation problem using GLR as objective:

• Define corresponding unconstrained Lagrangian function:

• Take derivative w.r.t. x and μ, set to zero, get linear system:

• Solve via Conjugate Gradient (CG) in linear time*.

• Can interpret output       as LP filter of upsampled input,                     . 
[1] Do, Tam Thuc, et al. "Interpretable Lightweight Transformer via Unrolling of Learned Graph Smoothness Priors." accepted to NeurIPS’24.

Gene Cheung (genec@yorku.ca)

sampling matrixGLR

observation

or

Lagrange multiplier

index set of samples

index set of non-samples

upsampling operator

LP filter



GTV for Image Interpolation
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• Formulate interpolation problem using GTV as objective:

• Rewrite as standard form of linear programming (LP):

• Solve sparse LP (SLP) via ADMM in linear time [2].

• Can interpret output as LP filter of upsampled input:

[1] Do, Tam Thuc, et al. "Interpretable Lightweight Transformer via Unrolling of Learned Graph Smoothness Priors." accepted to NeurIPS’24.

[2] Sinong Wang and Ness Shroff, “A new alternating direction method for linear programming,” NeurIPS’17.

Gene Cheung (genec@yorku.ca)

sampling matrixGTV

observation

upsampling operator

LP filter



Graph Learning from Data 
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• Graph Edge Definition: exponential of feature distance.

• With random walk normalization, then

Gene Cheung (genec@yorku.ca)

[1] Do, Tam Thuc, et al. "Interpretable Lightweight Transformer via Unrolling of Learned Graph Smoothness Priors." accepted to NeurIPS’24.

PSD metric matrix

feature vector
(computed via feature function

from input embedding)
Mahalanobis distanceedge weight

edge set stemming from node i



Self-Attention in Transformer 
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• Graph Edge Definition: exponential of feature distance.

• With normalization, then

• Self-Attention Mechanism in Transformer: dot product of linear transformed 

embeddings, using key and query matrices, K and Q:

Gene Cheung (genec@yorku.ca)

1. Graph learning with normalization 

from data is a self-attention mechanism!

[1] Do, Tam Thuc, et al. "Interpretable Lightweight Transformer via Unrolling of Learned Graph Smoothness Priors." accepted to NeurIPS’24.

transformed dot product



Output Embedding in Transformer 
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• Output Embedding in transformer: using value matrix V,

• Interpretation: 

• Pairwise similarities (affinities) define directed graph.

• Value matrix define filter response.

• Graph Approach:

• Undirected sparse graph via low-dimensional feature vectors fi.

• Derived low-pass filter from optimization (no learning!).

Gene Cheung (genec@yorku.ca)

[1] Do, Tam Thuc, et al. "Interpretable Lightweight Transformer via Unrolling of Learned Graph Smoothness Priors." accepted to NeurIPS’24.

2. Unrolling of graph-based algorithm leads 

to lightweight, interpretable transformer!



Unrolling GTV-based ADMM Alg. for Image Interpolation

26 Gene Cheung (genec@yorku.ca)



Experiments: Unrolled GLR/GTV for Demosaicking

27 Gene Cheung (genec@yorku.ca)

• Demosaicking: fill in missing color pixels.

• Compared with two variants of RSTCANet employing Swin Transformer [1].

• Models trained on subset of DIV2K with 10K of 64x64 patches and same number of epochs (30). 

• uGTV employed 10% parameters of RSTCANet w/ comparable demosaicking performance.

[1] Wenzhu Xing and Karen Egiazarian, “Residual swin transformer channel attention network for image demosaicing,” 10th EUVIP. IEEE, 2022, pp. 1–6.



Experiments: Unrolled GLR/GTV for Demosaicking

28 Gene Cheung (genec@yorku.ca)

• Demosaicking: fill in missing color pixels.

• Requires less data to train.

• More robust to covariate shift.

[1] Wenzhu Xing and Karen Egiazarian, “Residual swin transformer channel attention network for image demosaicing,” 10th EUVIP. IEEE, 2022, pp. 1–6.



Experiments: Unrolled GLR/GTV for Interpolation

29 Gene Cheung (genec@yorku.ca)

• Interpolation: interploated a LR image to a corresponding HR image.

• Models trained on subset of DIV2K with 10K of 64x64 patches and same number of epochs (15).

• Outperformed MAIN [1] in all three benchmark datasets by about 0.7 dB.

• uGTV employed 3% parameters of MAIN.

[1] J. Ji, B. Zhong, and K.-K. Ma, “Image interpolation using multi-scale attention-aware inception network,” IEEE TIP, vol. 29, pp.9413–9428, 2020.



Unrolling PnP Gradient GLR for Image Restoration
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• Linear Image Formation: 

• Regularize ill-posed restoration problem with Gradient GLR [2]:

• Introduce extra auxiliary variables, solve using PnP ADMM algorithms [3]:

[1] J. Cai, G. Cheung, F. Chen. “Unrolling Plug-and-Play Gradient Graph Laplacian Regularizer for Image Restoration,” submitted to TIP.

[2] F. Chen, G. Cheung and X. Zhang, "Manifold Graph Signal Restoration Using Gradient Graph Laplacian Regularizer," in IEEE TSP, 2024.

[3] S. H. Chan, X. Wang and O. A. Elgendy, "Plug-and-Play ADMM for Image Restoration: Fixed-Point Convergence and Applications," IEEE TCI, 2017,

Gene Cheung (genec@yorku.ca)

degradation matrix

additive noise

GLR on pixel row/col gradients

Lagrange multiplieraux var.



Unrolling PnP Gradient GLR for Image Restoration

31 Gene Cheung (genec@yorku.ca)



Experiments: Unrolling PnP GGLR for Image Denoising

32 Gene Cheung (genec@yorku.ca)

• Trained on Gaussian noise.

• Employ <1% parameters of 

Restormer [1] w/ 

comparable denoising 

performance.

[1] S. W. Zamir et al., “Restormer: Efficient transformer for high-resolution image restoration,” CVPR, pp.5718–5729, 2022.



Experiments: Unrolling PnP GGLR for Image Denoising
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• Trained on Gaussian noise, tested on real noise dataset RENOIR, Nam-CC15.

• UPnPGGLR surpasses Restormer by 0.83dB on RENOIR, by 0.94dB on Nam-CC.

• Restormer is overfitted to Gaussian noise and fails to generalize to real noise.

[1] S. W. Zamir et al., “Restormer: Efficient transformer for high-resolution image restoration,” CVPR, pp.5718–5729, 2022.



Experiments: Unrolling PnP GGLR for Image Denoising
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• DeepGLR and DeepGTV fail to fully remove noises in the restored images.

• UPnPGGLR performs comparably to DRUNet while using <1% of parameters.



Experiments: Unrolling PnP GGLR for Image Denoising
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[1] S. W. Zamir et al., “Restormer: Efficient transformer for high-resolution image restoration,” CVPR, pp.5718–5729, 2022.

• Trained with noise σ = 15 on

BSDS500 dataset and tested at 

various noise levels.

• Shows improved robustness 

to covariate shift.
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Conclusion

• Build parameter-efficient neural nets via unrolling of graph-based algorithms.

• Fewer model parameters → less training data required.

• Main idea: 

1. Graph learning from data with normalization is self-attention.

2. Unrolling of graph algorithms leads to lightweight transformers.

• Future work:

• Analytically study unrolling of different graph smoothness priors.

• Different graphs (directed, signed) as attention mechanism.
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Contact Info

• Homepage:
https://www.eecs.yorku.ca/~genec/index.html

• E-mail:
genec@yorku.ca

• New book:

G. Cheung, E. Magli, (edited) Graph Spectral 

Image Processing, ISTE/Wiley, August 2021.
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GSP:  SP framework that unifies concepts from multiple fields.

Graph Signal

Processing* (GSP)

Combinatorial 

Graph Theory
Spectral 

Graph Theory

Computer 

Vision

Computer Graphics

Machine 

Learning

spectral

clustering

eigen-analysis of 

graph Laplacian, 

adjacency matrices

graphical model, 

manifold learning, 

classifier learning

Laplace-

Beltrami 

operator

Laplace equation,

Diffusion
Partial Differential 

Eq’ns

Max cut, graph 

transformation

DSP

39

GSP and Graph-related Research 
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