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Graph Signal Processing
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=== Graph Signal Processing (GSP) studies spectral \ Grg;;dgc;;o;;fz

Processing

=== analysis tools for signals residing on graphs. 5 i S

[1] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst, “Graph signal processing: Overview, challenges, and applications,” Proceedings of
the IEEE, vol. 106, no. 5, pp. 808-828, 2018.

SCHOOL OF ENGINEERING

/ILASSONDE

4 Gene Cheung (genec@yorku.ca)




Graph sampling [1]: Choose a node subset, so that the
entire signal can be reconstructed.
graph signal

Graph sampling strategies extend Nyquist sampling
to graph data kernel.

- Bandlimited or smooth signal assumption.

[1] Y. Tanaka et al., “Sampling signals on graphs: From theory to applications,” IEEE Signal Process. Mag., vol. 37, no. 6, pp. 14-30, 2020.




Existing graph sampling methods

Eigen-decomposition-based methods [1,2] eigen-decomposition-free methods
Computational expensive Spectral proxies (SP) [3]
Neumann series (NS) [4]
Localization operator (LO) [5]
Gershgoring disc alignment (GDA) [6]

Positive graphs only!

[1] M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, “Signals on graphs: Uncertainty principle and sampling,” IEEE TSP, vol. 64, no. 18, pp. 4845-4860, 2016.

[2] S. Chen, R. Varma, A. Sandryhaila, and J. Kovavcevic, “Discrete signal processing on graphs: Sampling theory,” IEEE TSP, vol. 63, no. 24, pp. 6510-6523, 2015.

[3] A. Anis et al., “Efficient sampling set selection for bandlimited graph signals using graph spectral proxies,” IEEE TSP, vol. 64, no. 14, pp.3775-3789, 2016.

[4] F. Wang et al., “Low-complexity graph sampling with noise and signal reconstruction via Neumannseries,” IEEE TSP, vol. 67, no. 21, pp. 5511-5526, 2019.

[5] A. Sakiyama, Y. Tanaka, T. Tanaka, and A. Ortega, “Eigendecomposition-free sampling set selection for graph signals,” IEEE TSP, vol. 67, no. 10, pp. 2679-2692, 2019.
[6] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, and W. Gao, Fast graph sampling set selection using Gershgorin disc alignment,” IEEE TSP, vol. 68, pp. 2419-2434, 2020.
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Motivation 2

* Previous works designed for positive graphs.

Temperatu re sensor network

2D image pixels
o—0o—  —0—0

3D geometry

oO—0 O0—0O

* Voting records in a Parliament — anti-correlation represented as negative edges [1, 2].

“Yes'’.
“Yeg’ 1
g _]J“No” ‘ -1\ “No”

[1] W.-T. Su, G. Cheung, and C.-W. Lin, “Graph Fourier transform with negative edges for depth image coding,” IEEE ICIP, 2017, pp. 1682—-1686.
[2] G. Cheung et al., “Robust semisupervised graph classifier learning with negative edge weights,” IEEE TSIPN, vol. 4, no. 4, pp. 712-726, 2018.
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Key ldea

Balanced Signed Graph [1]: a signed graph with no cycles of odd number of

negative edges.
- A natural definition of graph frequencies.
« more amenable to efficient sampling than unbalanced graphs.

[1] D. Easley and J. Kleinberg, “Networks, crowds, and markets: Reasoning about a Highly Connected World”, vol. 8, Cambridge university press, 2010.
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* Frequencies
« 1D data kernel (DCT)
« Positive line graph
« Balanced signed graph
« Graph Estimation
« Signed Graph Sampling Strategy
« Sampling objective
« Gershgorin circle theorem, GDA-based sampling
« 3-step signed graph sampling recipe
* Results
« Conclusion
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Definitions in GSP

O 1 <> 1 <>
« Adjacency matrix (W): W(i, j) = W(j,i) = wi;

Edge weight between node i and node j 0 1 0 1 0 0
W = ll 0 1] D=|0 2 0}
- Diagonal Degree matrix (D): D(i,i) = >, w; ; 0 1 0 0 0 1
1 -1 0
« Combinatorial graph Laplacian matrix (L): L=D - W L= [—1 2 —1]
o -1 1
- Generalized graph Laplacian Matrix:£ = D — W + diag(W) Q " . . :
To account for self-loops T = [_21 _21 _04
0 -1 1

[1] A. Ortega et al., “Graph signal processing: Overview, challenges, and applications,” Proc. IEEE, vol. 106, no. 5, pp. 808-828, May 2018.
4%50»1 DE | YORKNI

uuuuuuu E
uuuuuuuuuu

10 Gene Cheung (genec@yorku.ca)




Frequencies for 1D Regular Kernel

Discrete Cosine Transform (DCT)

a
- Eigenvectors of 2" difference matrices: [c
o | | [ a b |
Minimize Rayleigh quotient _1 9 1
boundary rows
T = Y @
. (o
-1 2 -1
i c d |

« Two boundary conditions:
« Dirichlet (signal 0 at boundary, anti-symmetric extension) [a
c
« Neumann (derivative 0 at boundary, symmetric extension)

« Two locations to apply conditions:
« Midpoint (half-way bet'n discrete samples)
« Meshpoint (at discrete samples) [a

[1] G. Strang, “The discrete cosine transform,” SIAM review, vol. 41, no.1, pp. 135-147, 1999.
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Frequencies for Positive Line Graph
« Graph Laplacian matrix:

W12
[~ Hﬁ"LQ —E’VLQ 0 0
- “Wia Wiz +Was —Was 0 boundary rows
0 0 —E’VN—LN WTN_LN_
* Applying interior equation to node 1.:
(ﬁ}{) 1 = _I"i'fr[]_._ 10 + (1-’1—"’70 1 + I—"Vl 2 )JS’1 — I’Iﬁ 2I2
« Dirichlet (signal O at boundary) at midpoint: 2Wo 1
(£x)1 = (2Wo1 + Wi)zy — Wi ozs Wip (O W

An external node connected with weight w leads to a self-loop
of weight 2w at corresponding boundary node.

Eigenvectors of a generalized graph Laplacian Z for a positive
graph G with self-loops are graph frequency components.
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Frequencies for Balanced Signed Graph

Cartwright-Harary Theorem [2]: A signed graph is balanced iff nodes can be colored to red and
blue, s.t. a positive (negative) edge connects nodes of the same (different) color.

« Mapping bet'n balanced signed graph G and positive graph G”.
« Graph Laplacians related by similarity transform: (same e-val) s

1,

r— L1 L2 |I, O R T e I e
— _O —IT [.:il—g EQQ 0 _I?‘ . Ib 0 V" No(c:)e)index No?Ce)index
_ [ L1 £12] ET10 _I.| K
Ly Lo |

Eigenvectors of a generalized graph Laplacian Z for a balanced
signed graph G with self-loops are graph frequency components.

[1] D. Easley and J. Kleinberg, “Networks, crowds, and markets: Reasoning about a Highly Connected World”, vol. 8, Cambridge university press, 2010.




Graph Estimation

Signed Graph Sampling Strategy
« Sampling objective
« Gershgorin circle theorem, GDA-based sampling
« 3-step signed graph sampling recipe

Results

Conclusion
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Graph Laplacian Estimation

« Given empirical covariance matrix C, we compute £ using GLASSO [1] formulation:

{ mﬁin Tr(LC) — logdet L + p || L]|1 }

« Solve via a variant of the Block Coordinate Descent (BCD) [2] algorithm.

* In general, solution Z is generalized graph Laplacian for unbalanced signed graph.

[1] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance estimation with the graphical lasso,” Biostatistics (Oxford, England), vol. 9, pp. 432-41, 08, 2008.
[2] S. J. Wright, “Coordinate descent algorithms,” Math. Program., vol. 151, no. 1, pp. 3—-34, 2015.
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Signal Reconstruction from Samples

desired signal

/

« Signal Model: y = HX + e+— noise

1 1 _ 1
OO OO

observed signal  sampling matrix

Sample set {2, 4}

- Reconstruct signal x* € RY fromsamples y € RM, M < N : H = [g (1) g 2]
[ x = argmin |[Hx — IY||§ T ,LLXT,C)S\]
f
Sampling matrix Graph Laplacian Regularizer (GLR)

« System of Linear Equations for Solution:

(HTH + ,uzz) x*=H'y

B
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Sampling Objective

(HTH + ,uﬁ) x*=H'y

h L can be upper-bounded by a small value

Amax(B)
Amin(:B)

 Stability depends on the condition number: C

can be close to 0 if H is not carefully chosen

« Upper bound of the condition number can be minimized by maximizing Amin(B) .

max Amin(B)

« Select H to maximize Amin(B) H | Tr(H T H)< M<«—— sub-sampling budget

« Theorem: Maximizing Amin(B) minimizes an MSE upper bound bet’'n original and reconstructed signal [1].

[1] Y. Bai, F.Wang, G. Cheung, Y. Y. Nakatsukasa, and W. Gao, “Fast graph sampling set selection using gershgorin disc alignment," IEEE Trans. Signal Process., 2020.
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Gershgorin Circle Theorem

« GCT relates matrix entries to bounds of eigenvalues.

Row 7 of matrix F maps to a Gershgorin disc with centre ¢; = F(z,¢) and radious r; = Zj 4 \F(z,7)|

F= |2 5 2 S
1 2 4 151 « * 4 .

T0 2 4 6 8 10

Amin (F) is lower-bounded by the smallest left-end of Gershgorin discs:

[%in(F) £ minc; —r; < /\min(F)]

(4

[1] [1] R. S. Varga, Gershgorin and his circles, Springer, 2004.
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GDA-based Sampling for Positive Graphs

- We focus on maximizing Amin(B) HTH + uc

l @ W 2 /2\ w23 3 w3 4
[ max )\min(B)] \_/ O C

H| TT(HTH)<M

1/s5 <1 1/5, <1 1/s5 <1
dy |—wy, d, —Wi2 / \ d, |Fw,
L T
TWai| dy |~Was “Wai| dp [~Was 53> Wi dy |was|
 Given Gershgorin disc left-ends of L is at the same exact value, wsa [y | (g vy (s e
GDA-based graph sampling [1]: Select samples to max smallest disc W] dy \(C/ 4 Wi L
left-end Amin(B) of coefficient matrix B via: w ) o
 Disc shifting (choosing sample i). w4 ° o e bl To—
- Disc scaling (estimating influence on neighbors given sample i). % — " . U3 a
2 ol i io—— (2 ®
T.*Dl ® 'llilf/‘[ L 'l;f)l —
1 1 1
O Challenge: Disc left-ends of £ are not at the same exact value. N (© ®

[1] Y. Bai, F.Wang, G. Cheung, Y. Y. Nakatsukasa, and W. Gao, “Fast graph sampling set selection using gershgorin disc alignment," IEEE Trans. Signal Process., 2020.
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Signed Graph Sampling

Theorem [1]: Gershgorin disc left-ends of a generalized graph Laplacian matrix £z corresponding to a
balanced graph Gz can be aligned exactly to Amin(£B) via similar trasnform S£zS™' , where §; = 1/v;
, and v is the first eigenvector of L5 corresponding to Amin(LB).

Sampling Strategy:

1. Approximate ¢ = (V,€, W) with a balanced graph Gz = (V, &g, W) while satisfying the
following condition:

[)\mln(HTH + ;I'-L‘CB) E )\min(HTH + I-Lﬁ)]

2. Given balanced graph, perform similarity transform £, =S£gS™! so that disc left-ends of £,
are aligned exactly at Amin(£p) = Amin(LB)-

3. Employ GDA sampling method [2] on £, to maximize A, (H'H + uL,).

[1] C. Yang, G. Cheung, W. Hu, “Graph Metric Learning via Gershgorin Disc Alignment," |[EEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1-15, 2021.
[2] Y. Bai, FWang, G. Cheung, Y. Y. Nakatsukasa, and W. Gao, “Fast graph sampling set selection using gershgorin disc alignment,” IEEE Trans. Signal Process., 2020
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Graph Balancing Algorithm: Overview

O Construct balanced graph by adding one node at a time to a balanced node set S .

O At each iteration, choose a most beneficial node 7 € C to add to S, while satisfying constraint

[)\min{HTH + }'-LEB) ﬂ )\min(HTH + P:ﬁ)]

1-hop neighbors

- - ~, Balanced node set

®_- = \

T e o - -

[1] C. Dinesh, S. Bagheri, G. Cheung, I. V. Bajic, "Linear-time Sampling on Signed Graphs via Gershgorin Disc Perfect Alignment," IEEE ICASSP, Singapore, May 2022.
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e Results
 Conclusion
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Experimental Setup

Four datasets:

1. Canadian parliament voting records data from 2005 to 2021: voting records of 340 constituencies voted in
3154 elections. The votes are recorded as —1 for “no” and 1 for “yes” and 0 for “abstain / absent”. A signal for

a given vote is defined as
J x € {1,0,—1}°*

2. US Senate voting records data from 2017 to 2020: voting records of 100 senators in 1320 elections.
3. Canadian Car Model Sales Dataset: Canada vehicle model monthly sales for 2019-2022.

4. Almanac of Minutely Power Dataset Version 2 (AMPds2): 2 years of ON/OFF status data sampled at 1-
minute intervals for 15 residential appliances in a Canadian household.

« Randomly selected 90% of signals from each dataset to learn a signed graph [1] and a positive graph [2].
* Remaining 10% were used to test sampling algorithms.

[1] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance estimation with the graphical lasso,” Biostatistics (Oxford, England), vol. 9, pp. 432—-41, 08 2008.
[2] H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from data under Laplacian and structural constraints,” |IEEE JSTSP, vol. 11, no. 6, pp. 825-841, Sep. 2017.
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Experimental Results

o

&)
o
W
6)

#*SP(P) ~LO(S) “GDAS(P) ' #SP(P) “LO(S) ** GDAS(P)
*SP(S) - NS(P) #AGBS(S) #SP(S) - NS(P) ®AGBS(S)
(LII-)l +LO(P) #*NS(S) ®Proposed(S) (LH 0.3 +LO(P) #NS(S) ®Proposed(S)
< 0.4 <
S IS
17 17
S S
o 3
o o

20 40 60 80 100 5 10 15 20 25 30 35 40

Sampling budget Sampling budget
(a) Canadian parliament voting dataset (b) US senate voting dataset

For the Canadian dataset, our scheme reduced the lowest MSE among competitor schemes by
22.2%, 18.2%, 13.5%, 10.4%, for sampling budget 10, 20, 30, 40.
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Experimental Results 2

*+SP(P) +LO(S) * GDAIP)
1.4 +SP(S) NS(P)®AGBS(S)
+SP(P) +LO{S) * GDA(P) :
T ~ +LO(P) #NS(S) ®Proposed(S) i1 »
p-—
= 1 =
- o
0. B
Q 3 - +
k 17 ~
80. s ;
e 0.5 —_g—
0.2
0 0
20 25 30 35 40 45 50 5 6 7 8 9 10
Sampling budget Sampling budget

Similar trends can be observed.
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 Conclusion
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Graph Signal Processing (GSP) studies signals on graphs.

Graph sampling is a fundamental problem in GSP.

Balanced signed graph:

Future Work: Graph sampling for board applications.

Natural frequency interpretation.
Amenable to fast graph sampling:
1. Balance graph.

2. Align Gershgorin disc left-end via similarity transform [1].
3. Run GDA-based sampling algorithm [2].

e.g., video summarization.

Applications:

Image coding,
denoising, deblurring,
Interpolation, contrast
enhancement, light
field image denoising,
3D point cloud
denoising, sub-
sampling, super-
resolution, matrix
completion, semi-
supervised classifier
learning, video
summarization, crop
yield prediction

[1] C. Yang, G. Cheung, W. Hu, “Graph Metric Learning via Gershgorin Disc Alignment," |[EEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1-15, 2021.
[2] Y. Bai, FWang, G. Cheung, Y. Y. Nakatsukasa, and W. Gao, “Fast graph sampling set selection using gershgorin disc alignment,” IEEE Trans. Signal Process., 2020
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« Homepage:
https://www.eecs.yorku.ca/~genec/index.html

e E-mail:
genec@yorku.ca
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Compression, Coding and Protection of Images and Videos

Graph Spectral
Image Processing

Coordinated by
Gene Cheung and Enrico Magli

== WILEY

 New book:
G. Cheung, E. Magli, (edited) Graph Spectral
Image Processing, ISTE/Wiley, August 2021.
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