

Graph Learning, Sampling & Filtering for Image & Signal Estimation

Gene Cheung

York University

Toronto, Canada

Acknowledgement

• Graph and Image Signal Processing (GISP) Lab (York University, Toronto, Canada)

- Post-docs: Cheng Yang*, Xue Zhang
- Grad students: Saghar Bagheri, Fengbo Lan, Huy Vu
- Visiting researchers: Weng-tai Su (NTHU), Chinthaka Dinesh (SFU), Fen Wang (Xidian)

Collaborators

- Richard Wildes, Michael Brown (York Univ., Canada)
- Ivan V. Bajic (Simon Fraser Univ., Canada)
- Antonio Ortega (Univ. of Southern California, USA)
- Stanley Chan (Purdue Univ., USA)
- ➢ Wai-Tian Tan (Cisco, USA)
- Jiahao Pang, Dong Tian (InterDigital, USA)
- Yuji Nakatsukasa (Oxford Univ., UK)
- Vladimir Stankovic (Univ. of Strathclyde, UK)
- Wei Hu, Wen Gao (Peking Univ., China)
- Chia-Wen Lin (NTHU, Taiwan)
- > Yonina C. Eldar (Weizmann Inst. of Science, Israel)

Outline

> What is Graph Signal Processing?

- Graph spectrum
- Graph Fourier transform (GFT), graph Laplacian regularizer (GLR)

Graph Learning

- Precision / Graph Laplacian Matrix Estimation (w/ eigen-structure constraint)
- Feature Graph Learning: Gershgorin Disc Perfect Alignment (GDPA)
- > Application: Semi-supervised classifier learning

Graph Sampling

- Gershgorin Disc Alignment Sampling (GDAS)
- Application: Sampling for matrix completion, 3D point cloud sub-sampling

Graph Filtering

- ➢ Signal-dependent GLR, GTV
- Application: Image denoising

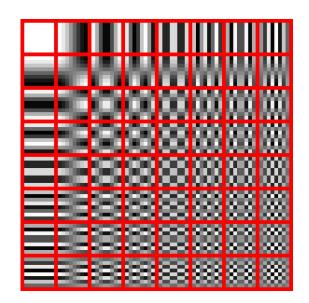
Outline

> What is Graph Signal Processing?

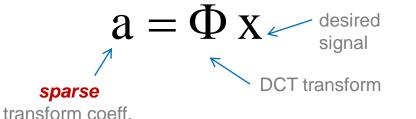
- Graph spectrum
- Graph Fourier transform (GFT), graph Laplacian regularizer (GLR)
- Graph Learning
 - Precision / Graph Laplacian Matrix Estimation (w/ eigen-structure constraint)
 - Feature Graph Learning: Gershgorin Disc Perfect Alignment (GDPA)
 - > Application: Semi-supervised classifier learning
- Graph Sampling
 - Gershgorin Disc Alignment Sampling (GDAS)
 - > Application: Sampling for matrix completion, 3D point cloud sub-sampling
- Graph Filtering
 - Signal-dependent GLR, GTV
 - > Application: Image denoising

Digital Signal Processing

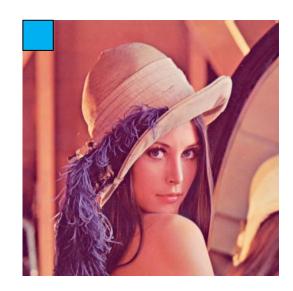
- Discrete signals on *regular* data kernels.
 - Ex.1: audio on regularly sampled timeline.
 - Ex.2: image on 2D grid.
- Harmonic analysis tools (transforms, wavelets):
 - Compression, restoration, segmentation, etc.



2D DCT basis



f(x)



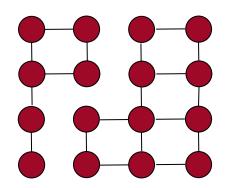
f(x,y)

Graph Signal Processing

- Signals on *irregular* data kernels described by graphs.
 - Graph: nodes and edges.
 - Edges reveals node-to-node relationships.
- 1. Harmonic Analysis of graph signals.
- 2. Embed pairwise (dis)similarity info into edge weights.
 - Eigenvectors provide global info aggregated from local info.

f(n)

signal on graph kernel



signal on graph kernel

[1] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst, "Graph signal processing: Overview, challenges, and applications," *Proceedings of the IEEE*, vol. 106, no. 5, pp. 808–828, 2018.

[2] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, "**Graph spectral image processing**," *Proceedings of the IEEE*, vol. 106, no. 5, pp. 907–930, 2018.

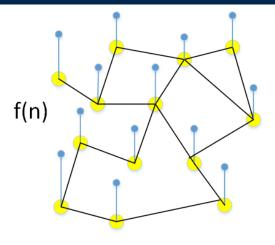
Graph Signal Processing

- Signals on *irregular* data kernels described by graphs.
 - Graph: nodes and edges.
 - Edges reveals node-to-node relationships.
- 1. Harmonic Analysis of graph signals.
- 2. Embed pairwise (dis)similarity info into edge weights.
 - Eigenvectors provide global info aggregated from local info.

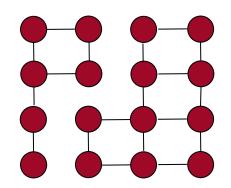
Graph Signal Processing (GSP) provides spectral analysis tools for signals residing on graphs.

[1] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Vandergheynst, "**Graph signal processing: Overview**, **challenges**, **and applications**," *Proceedings of the IEEE*, vol. 106, no. 5, pp. 808–828, 2018.

[2] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, "**Graph spectral image processing**," *Proceedings of the IEEE*, vol. 106, no. 5, pp. 907–930, 2018.



signal on graph kernel



signal on graph kernel

Graph Fourier Transform (GFT)

Graph Laplacian:

- Adjacency Matrix W: entry W_{i,j} has non-negative edge weight w_{i,j} connecting nodes i and j.
- Degree Matrix D: diagonal matrix w/ entry D_{i,i} being sum of column entries in row i of W.

$$D_{i,i} = \sum_{i} W_{i,j}$$

- Combinatorial Graph Laplacian L: L = D W
 - L is related to 2nd derivative.

$$L_{3,:} \mathbf{x} = -x_2 + 2x_3 - x_4$$
$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

 $\mathbf{L} = \begin{bmatrix} w_{1,2} & -w_{1,2} & 0 & 0\\ -w_{1,2} & w_{1,2} + 1 & -1 & 0\\ 0 & -1 & 2 & -1\\ 0 & 0 & -1 & 1 \end{bmatrix}$

undirected graph

 $\mathbf{W} = \begin{bmatrix} 0 & w_{1,2} & 0 & 0 \\ w_{1,2} & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

 $\mathbf{D} = \begin{bmatrix} w_{1,2} & 0 & 0 & 0 \\ 0 & w_{1,2} + 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

• L is a differential operator on graph.

Graph Fourier Transform (GFT)

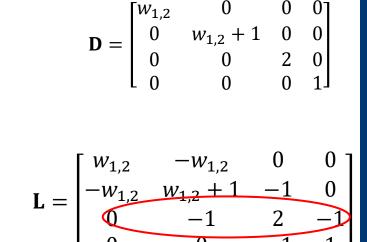
Graph Laplacian:

- Adjacency Matrix W: entry W_{i,j} has non-negative edge weight w_{i,j} connecting nodes i and j.
- Degree Matrix D: diagonal matrix w/ entry D_{i,i} being sum of column entries in row i of W.

$$D_{i,i} = \sum_{i} W_{i,j}$$

- Combinatorial Graph Laplacian L: L = D W
 - L is related to 2nd derivative.

$$L_{3,:} \mathbf{x} = -x_2 + 2x_3 - x_4$$
$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$



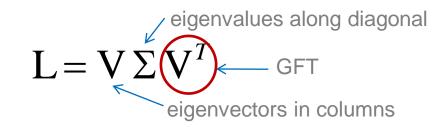
undirected graph

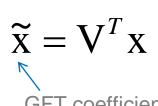
 $\mathbf{W} = \begin{bmatrix} 0 & w_{1,2} & 0 & 0 \\ w_{1,2} & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

• L is a differential operator on graph.

Graph Spectrum from GFT

Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

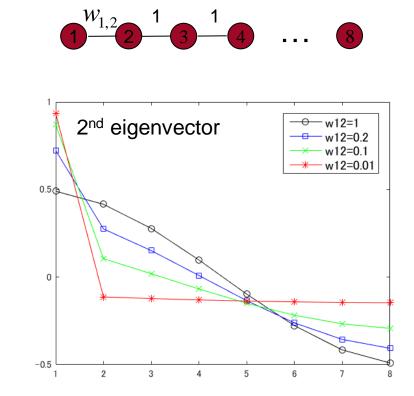




GFT coefficients

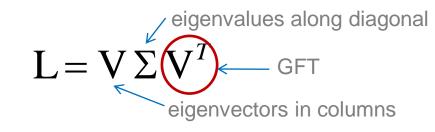
- 1. Eigenvectors aggregate info from edge weights.
 - Constant 1st eigenvector is DC.
 - # zero-crossings increases as λ increases.
- **2.** Eigenvalues (≥ 0) as graph frequencies.

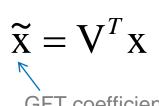
GFT defaults to *DCT* for un-weighted connected line. GFT defaults to *DFT* for un-weighted connected circle.



Graph Spectrum from GFT

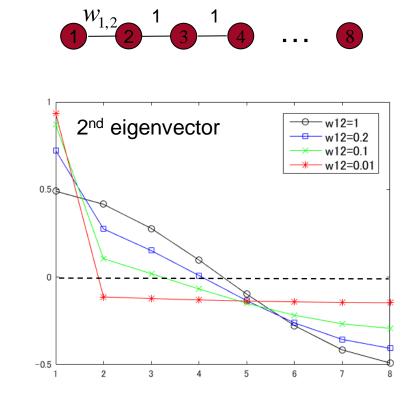
Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.



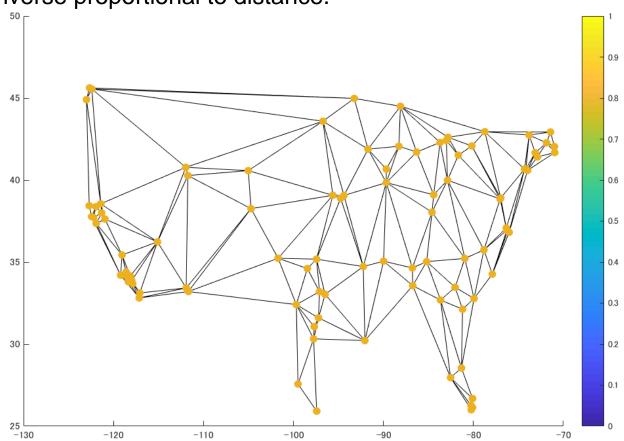


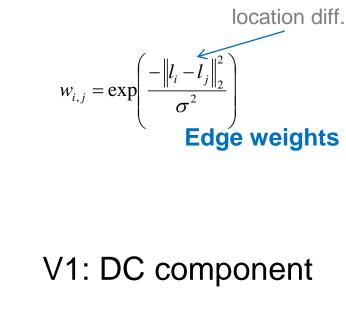
- 1. Eigenvectors aggregate info from edge weights.
 - Constant 1st eigenvector is DC.
 - # zero-crossings increases as λ increases.
- **2.** Eigenvalues (≥ 0) as graph frequencies.

GFT defaults to *DCT* for un-weighted connected line. GFT defaults to *DFT* for un-weighted connected circle.



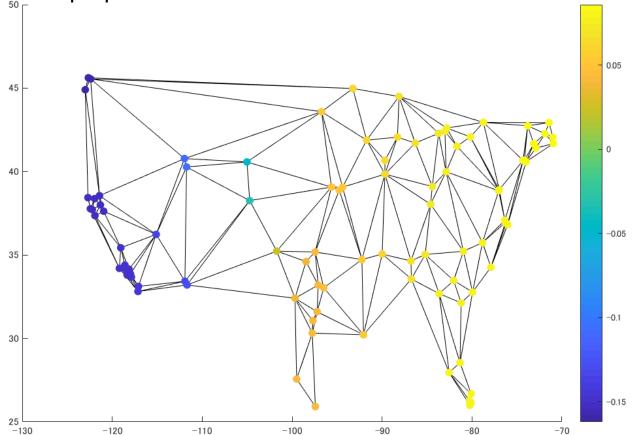
Weather stations from 100 most populated cities. Graph connections from Delaunay Triangulation*. Edge weights inverse proportional to distance.

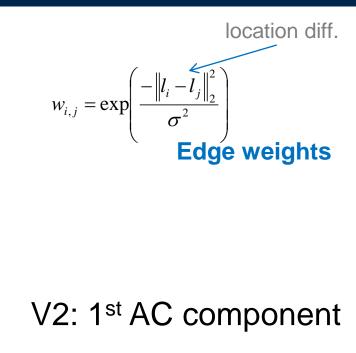




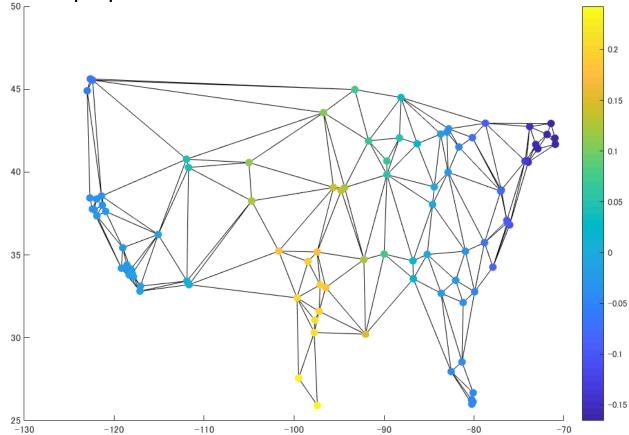
*https://en.wikipedia.org/wiki/Delaunay triangulation

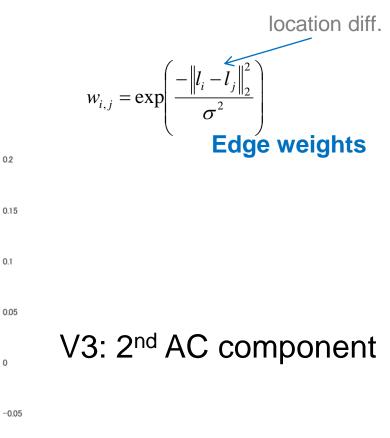
Weather stations from 100 most populated cities. Graph connections from Delaunay Triangulation*. Edge weights inverse proportional to distance.



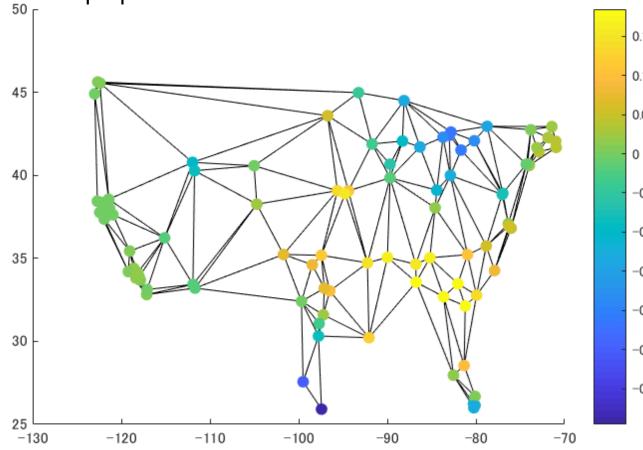


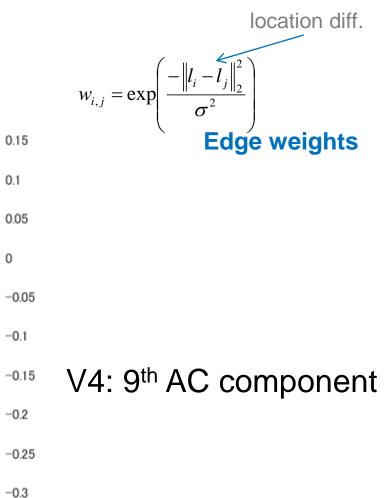
Weather stations from 100 most populated cities. Graph connections from Delaunay Triangulation*. Edge weights inverse proportional to distance.





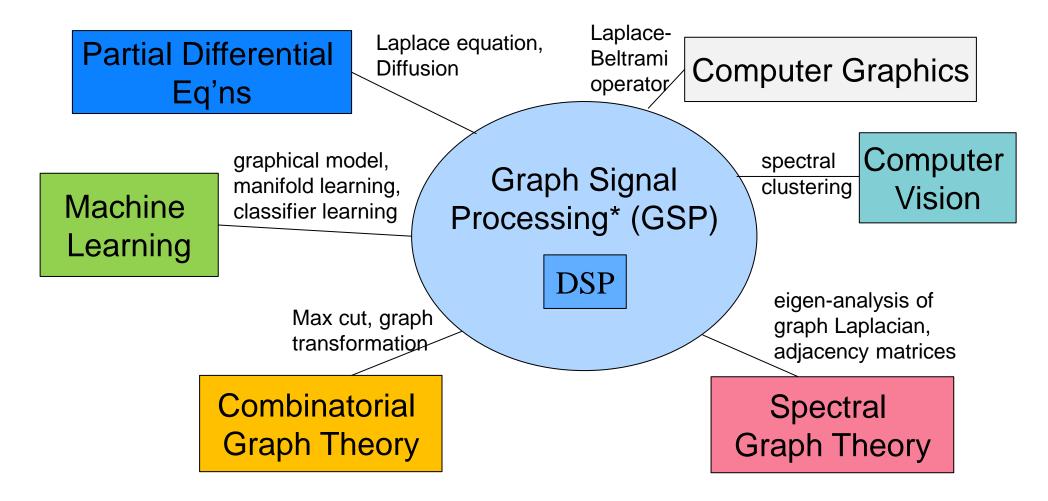
Weather stations from 100 most populated cities. Graph connections from Delaunay Triangulation*. Edge weights inverse proportional to distance.





GSP and **Graph-related** Research

GSP: SP framework that unifies concepts from multiple fields.



Outline

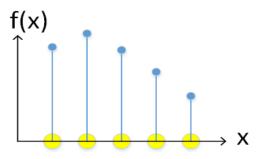
- > What is Graph Signal Processing?
 - ► Graph spectrum
 - Sraph Fourier transform (GFT), graph Laplacian regularizer (GLR)

Graph Learning

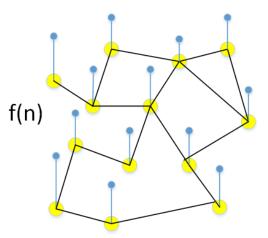
- Precision / Graph Laplacian Matrix Estimation (w/ eigen-structure constraint)
- Feature Graph Learning: Gershgorin Disc Perfect Alignment (GDPA)
- > Application: Semi-supervised classifier learning
- Graph Sampling
 - Gershgorin Disc Alignment Sampling (GDAS)
 - > Application: Sampling for matrix completion, 3D point cloud sub-sampling
- Graph Filtering
 - Signal-dependent GLR, GTV
 - > Application: Image denoising

What is a good graph?

- Graph Signal Processing (GSP) provides spectral analysis tools for signals on <u>fixed</u> graphs.
- Graph captures *pairwise relationships*.
 - 1. Domain knowledge.
 - 2. Correlations.
 - 3. Feature distance.
- Goal:
 - 1. Learn inverse covariance matrix from limited data.
 - 2. Learn metric to determine feature distance.



signal on line kernel



signal on graph kernel

Sparse Precision Matrix Estimation: GLASSO

Given *empirical covariance matrix* Σ, Graphical Lasso computes positive-definite (PD) *precision matrix* Θ:

$$\max_{\Theta} \quad \log \det \Theta - \mathsf{Tr}(\Sigma \Theta) - \rho \, \|\Theta\|_1$$

- 1st and 2nd terms are likelihood.
- 3rd term promotes **sparsity**.
- Solved via **block-coordinate descent** (BCD) algorithm.

[1] Friedman J, Hastie T, Tibshirani R. "Sparse inverse covariance estimation with the graphical lasso," Biostatistics. 2008; 9(3): 432-441.

Sparse Precision Matrix Estimation: GLASSO

Given *empirical covariance matrix* Σ, Graphical Lasso computes positive-definite (PD) *precision matrix* Θ:

$$\max_{\Theta} \quad \log \det \Theta - \mathsf{Tr}(\Sigma \Theta) - \rho \, \|\Theta\|_1$$

- 1st and 2nd terms are likelihood.
- 3rd term promotes **sparsity**.
- Solved via **block-coordinate descent** (BCD) algorithm.

α-incoherence condition

[1] Friedman J, Hastie T, Tibshirani R. "Sparse inverse covariance estimation with the graphical lasso," Biostatistics. 2008; 9(3): 432-441.

Graph Laplacian Estimation

- Assume precision matrix is:
 - Generalized graph Laplacian (GGLs),
 - Diagonally dominant generalized graph Laplacian (DDGLs), or
 - Combinatorial graph Laplacian (CGLs).
- Given empirical covariance matrix S, computes Laplacian Θ:

$$\min_{\Theta} \operatorname{Tr}(\Theta \mathbf{K}) - \log \det \Theta \text{ subject to } \Theta \in \mathcal{L}_g(A)$$

- $\mathbf{K} = \mathbf{S} + \mathbf{H}$, **H** is regularization matrix.
- $L_g(A)$ ensures Θ is GGL.
- Solved via **block-coordinate descent** (BCD) algorithm.

[1] H. E. Egilmez, E. Pavez and A. Ortega, "Graph Learning From Data Under Laplacian and Structural Constraints," in *IEEE Journal of Selected Topics in Signal Processing*, vol. 11, no. 6, pp. 825-841, Sept. 2017

Graph Laplacian Estimation w/ Eigen-Structure Constraint

• Assume graph Laplacian matrix L has:

Pre-determined first K eigenvectors.

- Define convex cone \mathcal{H}_{u}^{+} of PSD matrices with same first K eigenvectors.
- Design projection operator to \mathcal{H}_{u}^{+} inspired by Gram-Schmidt procedure.
- Given *empirical covariance matrix* S, computes *Laplacian* L:

$$\min_{\mathbf{L}\in\mathcal{H}_{\mathbf{u}}^{+}} \operatorname{Tr}(\mathbf{L}\bar{\mathbf{C}}) - \log \det \mathbf{L} + \rho \|\mathbf{L}\|_{1}$$

• Solve via alternating BCD and projection algorithm.

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with *K* Eigenvector Prior via Iterative GLASSO and Projection," accepted to *IEEE International Conference on Acoustics, Speech and Signal Processing*, Toronto, Canada, June 2021.

Graph Laplacian Estimation w/ Eigen-Structure Constraint

• Assume graph Laplacian matrix **L** has:

Pre-determined first *K* eigenvectors.

Ex:

- 1. 1st e-vector is constant for image coding.
- 2. 1st e-vector is PWC for voting in Senate.
- 3. Sparse first *K* e-vectors for transform coding.
- Define convex cone \mathcal{H}_{u}^{+} of PSD matrices with same first K eigenvectors.
- Design projection operator to \mathcal{H}_{u}^{+} inspired by Gram-Schmidt procedure.
- Given empirical covariance matrix S, computes Laplacian L:

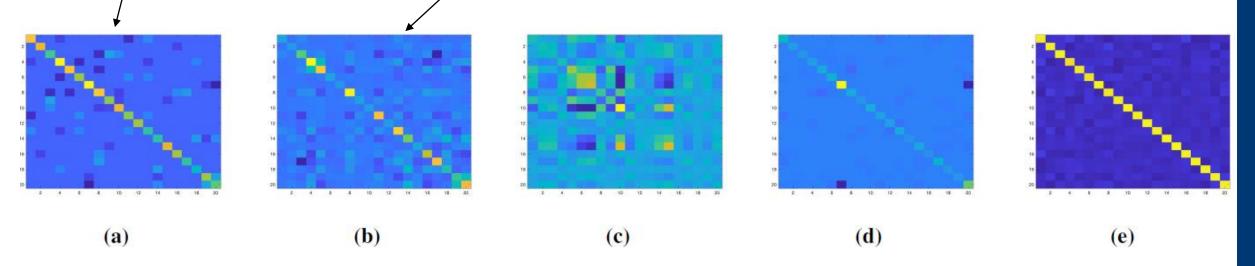
 $\min_{\mathbf{L}\in\mathcal{H}_{\mathbf{u}}^{+}} \ \operatorname{Tr}(\mathbf{L}\bar{\mathbf{C}}) - \log\det\mathbf{L} + \rho \; \|\mathbf{L}\|_{1}$

• Solve via alternating BCD and projection algorithm.

[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with *K* Eigenvector Prior via Iterative GLASSO and Projection," accepted to *IEEE International Conference on Acoustics, Speech and Signal Processing*, Toronto, Canada, June 2021.

Graph Laplacian Estimation: results

- Randomly located 20 nodes in 2D space. Use the Erdos-Renyi model to determine connectivity with probability 0.6. Compute edge weights using a Gaussian kernel. Remove weights <0.75. Flip sign of each edge with probability 0.5. K=1.
- (a) Ground Truth Laplacian L, (b) Proposed Proj-Lasso with K = 1, (c) GLASSO, (d) DDGL and (e) GL-SigRep.



[1] S. Bagheri, G. Cheung, A. Ortega, F. Wang, "Learning Sparse Graph Laplacian with *K* Eigenvector Prior via Iterative GLASSO and Projection," accepted to *IEEE International Conference on Acoustics, Speech and Signal Processing*, Toronto, Canada, June 2021.

Metric Learning for Graph Construction

• Construct graph when ≤ 1 signal observation, but

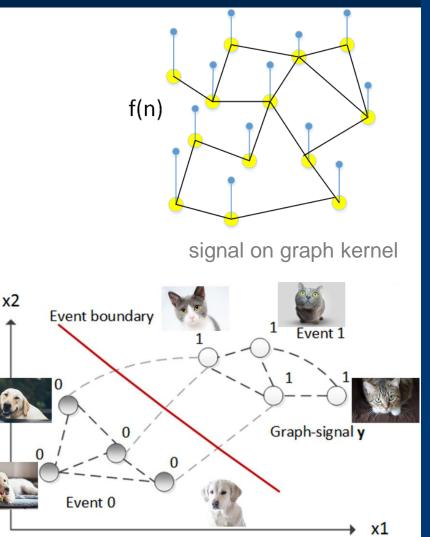
Each node has K-dimension feature vector.

- Example: <u>semi-supervised graph classifier</u>
 - Each node *i* has feature vector $\mathbf{f}_i \in \mathbb{R}^K$
 - Use PSD metric matrix M, establish Mahalanobis
 distance:

 $\delta_{ij} = (\mathbf{f}_i - \mathbf{f}_j)^\top \mathbf{M} (\mathbf{f}_i - \mathbf{f}_j)$

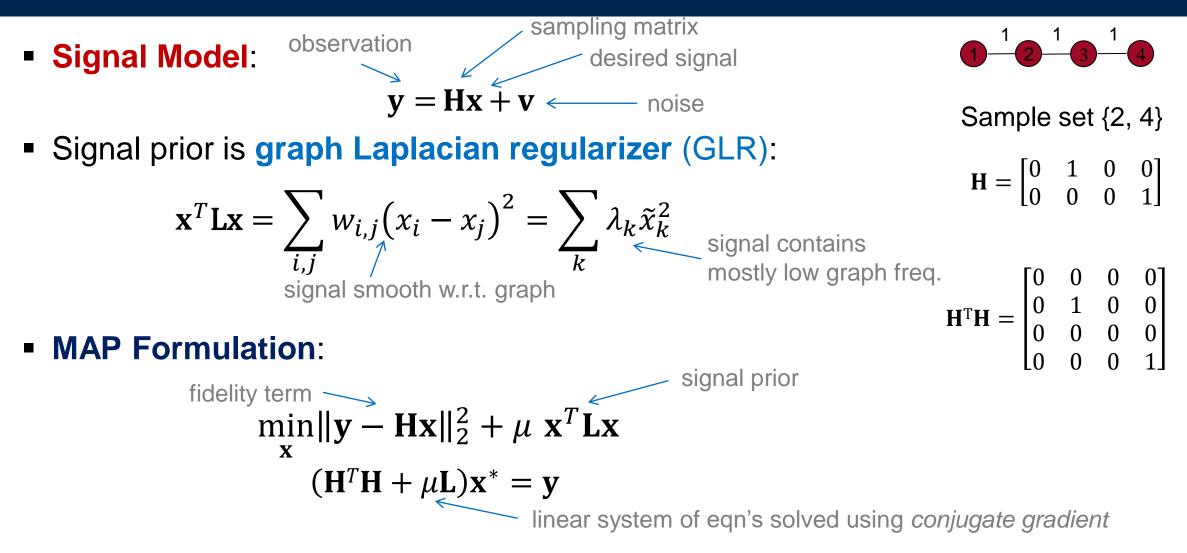
• Compute positive edge weight using exp:

$$w_{ij} = \exp\left(-\delta_{ij}\right)$$



[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to *IEEE Transactions on Pattern Analysis and Machine Intelligence*, June 2020.

Signal Reconstruction using GLR



[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," *IEEE TIP*, vol. 26, no.4, pp.1770-1785, April 2017.
 [2] C. Yang, G. Cheung, V. Stankovic, "Alternating Binary Classifier and Graph Learning from Partial Labels," *APSIPA ASC 2018*, Hawaii, USA, November 2018.

Metric Learning for Graph Construction

for convex, differentiable $Q(\mathbf{M})$.

• For example, Graph Laplacian Regularizer (GLR):

$$Q(\mathbf{M}) = \mathbf{x}^{\top} \mathbf{L}(\mathbf{M}) \mathbf{x} = \sum_{(i,j) \in \mathcal{E}} w_{ij} (x_i - x_j)^2$$

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to *IEEE Transactions on Pattern Analysis and Machine Intelligence*, June 2020.

Metric Learning for Graph Construction

Optimal **metric matrix M**: upper bound on distance PSD cone constraint is **hard**! $\min_{\mathbf{M}} Q(\{\delta_{ij}(\mathbf{M})\}) \text{ s.t. } \begin{cases} \operatorname{tr}(\mathbf{M}) \leq C \\ \mathbf{M} \succ 0 \text{ or } \mathbf{M} \succ 0 \end{cases}$ **Naïve Approach:** • Gradient descent via $-\nabla Q(\mathbf{M})$ Projection to PSD cone. for convex, differentiable $Q(\mathbf{M})$. Repeat. **Our Approach**: For example, Graph Laplacian Regularizer (GLR): Convert PSD cone to *K* adaptive linear constraints via **Gershgorin** Disc Alignment (GDA). $Q(\mathbf{M}) = \mathbf{x}^{\top} \mathbf{L}(\mathbf{M}) \mathbf{x} = \sum w_{ij} (x_i - x_j)^2$ Min $Q(\mathbf{M})$ w/ linear constraints. Repeat. $(i,j) \in \mathcal{E}$

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to *IEEE Transactions on Pattern Analysis and Machine Intelligence*, June 2020.

Gershgorin Circle Theorem

Gershgorin Circle Theorem:

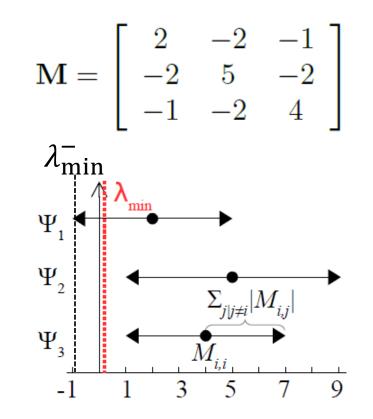
- Row *i* of **M** maps to a **Gershgorin disc** w/ centre M_{ii} and radius R_i $R_i = \sum_{j \neq i} |M_{ij}|$
- λ_{\min} is lower-bounded by <u>smallest disc left-end</u>:

$$\lambda_{\min}^{-}(\mathbf{M}) \triangleq \min_{i} M_{i,i} - R_i \leq \lambda_{\min}$$

To ensure PSDness, apply linear constr's

$$M_{i,i} - \sum_{j \neq i} |M_{ij}| \ge 0, \qquad \forall i$$

[1] R. S. Varga, Gershgorin and His Circles, Springer, Dec 2004.



Gershgorin Circle Theorem

Gershgorin Circle Theorem:

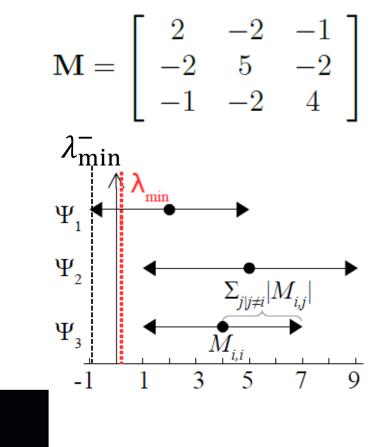
- Row *i* of **M** maps to a **Gershgorin disc** w/ centre M_{ii} and radius R_i $R_i = \sum_{j \neq i} |M_{ij}|$
- λ_{\min} is lower-bounded by <u>smallest disc left-end</u>:

$$\lambda_{\min}^{-}(\mathbf{M}) \triangleq \min_{i} M_{i,i} - R_i \leq \lambda_{\min}$$

To ensure PSDness, apply linear constr's

$$M_{i,i} - \sum_{j \neq i} |M_{ij}| \ge 0, \qquad \forall i$$

[1] R. S. Varga, Gershgorin and His Circles, Springer, Dec 2004.



Geršgorin and His Circles

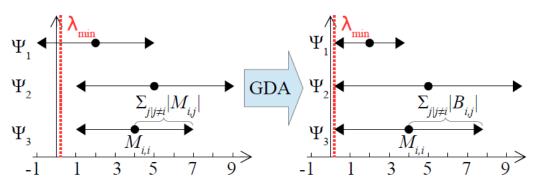
Gershgorin Disc Perfect Alignment (GDPA)

• Consider **similarity transform** of **M** (same eigenvalues!):

 $\mathbf{B} = \mathbf{S} \mathbf{M} \mathbf{S}^{-1} \longleftarrow \text{ similarity transform}$ diagonal matrix w/ scale factors s_i

- Different **S**'s induce different lower bounds $\lambda_{\min}^{-}(\mathbf{B})$!
- Which **S** do we to use??

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to *IEEE Transactions on Pattern Analysis and Machine Intelligence*, June 2020.



$$\mathbf{M} = \begin{bmatrix} 2 & -2 & -1 \\ -2 & 5 & -2 \\ -1 & -2 & 4 \end{bmatrix}$$

Gershgorin Disc Perfect Alignment (GDPA)

• Consider **similarity transform** of **M** (same eigenvalues!):

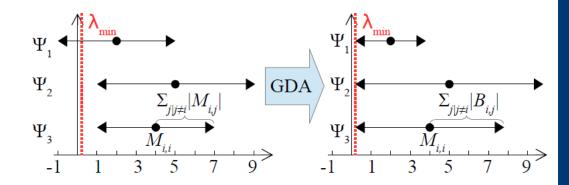
 $\mathbf{B} = \mathbf{S} \mathbf{M} \mathbf{S}^{-1} \longleftarrow \text{ similarity transform}$ diagonal matrix w/ scale factors s_i

• Different **S**'s induce different lower bounds $\lambda_{\min}^{-}(\mathbf{B})$!

Which **S** do we to use??

Theorem 1: Let **M** be a generalized graph Laplacian matrix corresponding to an irreducible, positive graph **G**. Denote by **v** the first eigenvector of **M** corresponding to the smallest eigenvalue λ_{\min} . Then by computing scalars $s_i = \frac{1}{v_i}$, $\forall i$, all Gershgorin disc left-ends of $\mathbf{B} = \mathbf{S} \mathbf{M} \mathbf{S}^{-1}$, $\mathbf{S} = diag(s_1, \dots, s_N)$, are aligned at λ_{\min} .

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to *IEEE Transactions on Pattern Analysis and Machine Intelligence*, June 2020.



 $\mathbf{M} = \begin{vmatrix} 2 & -2 & -1 \\ -2 & 5 & -2 \\ -1 & -2 & 4 \end{vmatrix}$

Metric Optimization via GDPA

• Original diagonal opt w/ <u>PSD cone constraint</u>:

$$\min_{\{M_{ii}\}} Q(\mathbf{M})$$

s.t. $\mathbf{M} \succ 0; \quad \sum_{i} M_{ii} \leq C; \quad M_{ii} > 0, \forall i$

• Revised **diagonal** opt w/ *linear constraints*:

$$\min_{\{M_{ii}\}} Q\left(\mathbf{M}\right)$$

s.t. $M_{ii} \ge \sum_{j \mid j \neq i} \left| \frac{s_i^t M_{ij}}{s_j^t} \right| + \rho, \forall i; \quad \sum_i M_{ii} \le C$

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to *IEEE Transactions on Pattern Analysis and Machine Intelligence*, June 2020.

original metric optimization

 $\min_{\mathbf{M}} Q(\{\delta_{ij}(\mathbf{M})\}) \text{ s.t. } \begin{cases} \operatorname{tr}(\mathbf{M}) \leq C \\ \mathbf{M} \succ 0 \text{ or } \mathbf{M} \succeq 0 \end{cases}$

Metric Optimization via GDPA

• Original diagonal opt w/ <u>PSD cone constraint</u>:

$$\min_{\{M_{ii}\}} Q(\mathbf{M})$$

s.t. $\mathbf{M} \succ 0; \quad \sum_{i} M_{ii} \le C; \quad M_{ii} > 0, \forall i$

• Revised diagonal opt w/ *linear constraints*:

$$\begin{split} \min_{\{M_{ii}\}} Q\left(\mathbf{M}\right) & \text{scalars } s_{i} \text{ computed from } 1^{\text{st}} \text{ e-vector} \\ \text{of last sol'n } \mathbf{M} \\ \text{s.t.} \quad M_{ii} \geq \sum_{j \mid j \neq i} \left| \frac{s_{i}^{t} M_{ij}}{s_{j}^{t}} \right| + \rho, \forall i; \quad \sum_{i} M_{ii} \leq C \end{split}$$

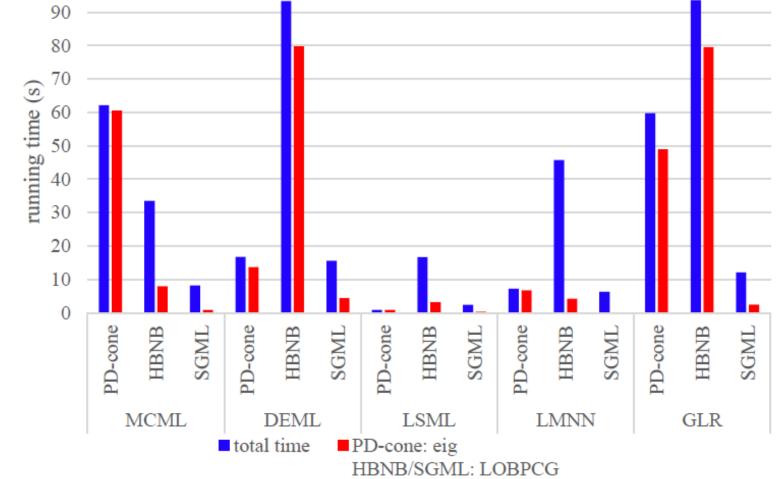
[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to *IEEE Transactions on Pattern Analysis and Machine Intelligence*, June 2020.

original metric optimization

 $\min_{\mathbf{M}} Q(\{\delta_{ij}(\mathbf{M})\}) \text{ s.t. } \begin{cases} \operatorname{tr}(\mathbf{M}) \leq C \\ \mathbf{M} \succ 0 \text{ or } \mathbf{M} \succeq 0 \end{cases}$

Metric Learning Results (speed)

 Running time comparison against PD-cone and HBNB¹, for different metrics, using Madelon dataset.



[1] W. Hu, X. Gao, G. Cheung, and Z. Guo, "Feature graph learning for 3D point cloud denoising," *IEEE TSP*, vol. 68, pp. 2841-2856, 2020.

Metric Learning Results (accuracy)

• Using a GLR objective, SGML achieved the best classification results in 7 out of 14 datasets and remained competitive for 12 out of 14 datasets.

Datasets	RVML	PLML	mmLMNN	GMML	DMLMJ	SCML	DMLE	R2LML	LMLIR		SGML (prop.)	
	[50]	[51]	[1]	[33]	[52]	[53]	[32]	[54]	[49]	3-NN	Mahalanobis	Graph
australian	83.0 ± 1.6	80.5 ± 1.1	82.5 ± 2.6	84.4 ± 1.0	83.9 ± 1.3	82.3 ± 1.4	82.6 ± 1.5	84.7 ± 1.3	85.1 ± 1.9	83.3 ± 1.2	84.8 ± 1.3	85.3 ± 1.7
breastcancer	95.8 ± 1.1	96.4 ± 0.9	96.7 ± 1.0	97.3 ± 0.8	96.6 ± 0.8	97.0 ± 0.9	97.0 ± 1.1	97.0 ± 0.7	96.4 ± 2.1	97.6 ± 1.0	98.0 ± 0.6	97.6 ± 0.7
diabetes	71.0 ± 2.6	68.5 ± 2.0	72.2 ± 1.9	74.2 ± 2.6	71.5 ± 3.1	71.5 ± 2.2	72.6 ± 2.0	73.8 ± 1.4	75.9 ± 1.9	71.6 ± 1.8	70.5 ± 2.5	70.3 ± 1.4
fourclass	70.5 ± 1.4	72.4 ± 2.4	75.6 ± 1.4	76.1 ± 1.9	76.1 ± 1.9	75.5 ± 1.4	75.6 ± 1.4	76.1 ± 1.9	79.9 ± 0.9	74.5 ± 2.4	71.1 ± 1.6	78.0 ± 1.2
german	71.7 ± 1.8	70.0 ± 2.9	68.9 ± 1.8	71.6 ± 1.1	69.3 ± 2.7	70.9 ± 2.7	72.0 ± 2.1	72.9 ± 1.8	73.7 ± 1.6	71.6 ± 1.7	70.9 ± 1.3	70.0 ± 0.0
haberman	66.7 ± 2.3	67.1 ± 3.1	69.0 ± 2.7	71.2 ± 3.4	68.5 ± 3.2	69.2 ± 2.5	70.8 ± 3.5	71.1 ± 3.4	74.4 ± 3.7	68.8 ± 3.9	66.6 ± 6.3	73.6 ± 0.3
heart	77.7 ± 4.1	75.1 ± 3.2	79.4 ± 3.7	81.2 ± 2.7	80.6 ± 2.8	79.0 ± 3.2	77.9 ± 3.1	82.0 ± 3.8	83.1 ± 3.2	81.0 ± 3.4	83.2 ± 3.6	83.6 ± 3.5
ILPD	68.0 ± 2.9	67.4 ± 3.0	66.8 ± 2.1	67.1 ± 2.2	68.0 ± 1.6	68.0 ± 2.9	68.8 ± 2.7	65.9 ± 2.2	69.6 ± 2.7	65.2 ± 2.4	59.1 ± 2.4	71.3 ± 0.2
liverdisorders	64.6 ± 3.9	62.2 ± 2.5	62.0 ± 3.5	63.8 ± 5.4	60.9 ± 3.8	61.7 ± 4.6	61.8 ± 2.7	66.8 ± 3.7	66.7 ± 3.6	69.5 ± 3.3	68.8 ± 5.9	72.1 ± 3.0
monk1	89.2 ± 2.7	96.6 ± 2.7	90.3 ± 2.6	75.0 ± 2.6	87.7 ± 3.8	97.5 ± 0.9	99.9 ± 0.3	89.2 ± 1.5	95.0 ± 7.2	84.6 ± 5.1	66.3 ± 3.0	71.1 ± 3.7
pima	69.5 ± 1.7	68.4 ± 2.2	72.5 ± 2.7	73.0 ± 1.8	71.1 ± 2.8	71.1 ± 2.6	72.1 ± 2.4	72.3 ± 1.5	74.6 ± 2.0	73.4 ± 1.3	73.6 ± 2.0	69.2 ± 1.5
planning	55.1 ± 7.4	60.8 ± 5.5	54.7 ± 0.9	65.2 ± 5.5	64.3 ± 2.9	61.9 ± 5.0	60.1 ± 5.5	63.9 ± 3.4	67.5 ± 6.5	62.8 ± 4.1	48.8 ± 4.8	71.3 ± 0.7
voting	95.8 ± 1.3	95.5 ± 1.0	95.4 ± 0.9	95.2 ± 1.9	95.3 ± 1.1	95.0 ± 1.3	93.1 ± 1.9	96.3 ± 1.2	93.2 ± 3.9	96.4±1.4	94.3 ± 2.0	94.8 ± 1.6
WDBC	96.6 ± 1.3	96.4 ± 0.9	97.4±1.0	96.7 ± 0.8	97.3 ± 1.9	97.0 ± 0.9	96.7 ± 0.5	96.9 ± 1.7	96.6 ± 1.0	96.6 ± 0.9	94.8 ± 1.2	96.2 ± 1.1
Average	76.7	76.9	77.3	77.9	77.9	78.4	78.6	79.2	80.8	78.4	75.1	78.9
# of best	0	0	1	0	0	0	1	0	5	1	1	5

[1] C. Yang, G. Cheung, W. Hu, "Signed Graph Metric Learning via Gershgorin Disc Alignment," submitted to *IEEE Transactions on Pattern Analysis and Machine Intelligence*, June 2020.

Outline

- > What is Graph Signal Processing?
 - ► Graph spectrum
 - Scraph Fourier transform (GFT), graph Laplacian regularizer (GLR)
- Graph Learning
 - Precision / Graph Laplacian Matrix Estimation (w/ eigen-structure constraint)
 - Feature Graph Learning: Gershgorin Disc Perfect Alignment (GDPA)
 - > Application: Semi-supervised classifier learning

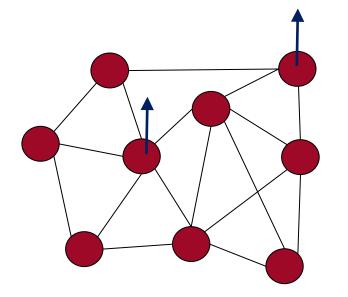
Graph Sampling

- Gershgorin Disc Alignment Sampling (GDAS)
- > Application: Sampling for matrix completion, 3D point cloud sub-sampling
- Graph Filtering
 - Signal-dependent GLR, GTV
 - > Application: Image denoising

Graph Sampling (with and without noise)

Q: How to choose best samples for graph-based reconstruction?

- Existing graph sampling strategies extend Nyquist sampling to graph data kernels:
 - Assume *bandlimited* signal.
 - Greedily select most "informative" samples by computing extreme eigenvectors of sub-matrix.
 - Computation-expensive.

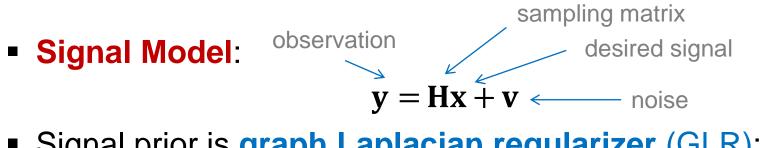


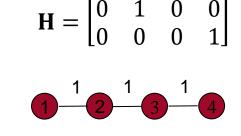
ASSONDE

[1] A. Anis, A. Gadde, and A. Ortega, "Efficient sampling set selection for bandlimited graph signals using graph spectral proxies," *IEEE Transactions on Signal Processing*, vol. 64, no. 14, pp. 3775–3789, 2016.

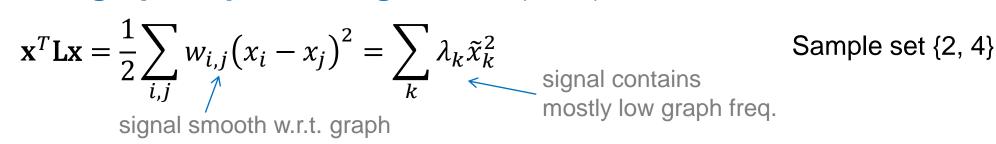
[2] Y. Tanaka, Y. C. Eldar, A. Ortega, G. Cheung, "Sampling on Graphs: From Theory to Applications," *IEEE Signal Processing Magazine*, vol. 37, no.6, pp.14-30, November 2020.

Signal Reconstruction using GLR

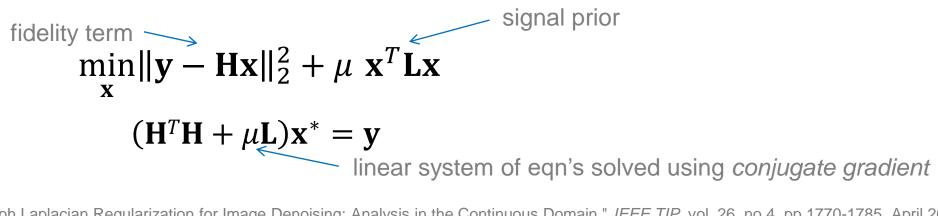




Signal prior is graph Laplacian regularizer (GLR):



MAP Formulation:



[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.

Stability of Linear System

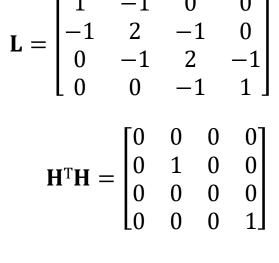
• Examine solution's linear system:

 $(\mathbf{H}^T \mathbf{H} + \mu \mathbf{L}) \mathbf{x}^* = \mathbf{y}$
coefficient matrix **B**

- Stability depends on condition number ($\lambda_{max}/\lambda_{min}$) of **B**.
- λ_{max} is upper-bounded by $1+\mu 2^*d_{max}$.
- **Goal**: select **H** to maximize $\lambda_{\min}(\mathbf{B})$ (w/o computing eigen-pairs)! Also minimizes worst-case MSE:

$$\|\widehat{\mathbf{x}} - \mathbf{x}\|_{2} \le \mu \left\|\frac{1}{\lambda_{min}(\mathbf{B})}\right\|_{2} \|\mathbf{L}(\mathbf{x} + \widetilde{\mathbf{n}})\|_{2} + \|\widetilde{\mathbf{n}}\|_{2}$$

[1] Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, W. Gao, "Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment," vol. 68, pp. 2419-2434, *IEEE Transactions on Signal Processing*, March 2020.



Sample set {2, 4}

Gershgorin Circle Theorem

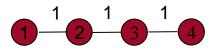
Gershgorin Circle Theorem:

 Row *i* of L maps to a Gershgorin disc w/ centre L_{ii} and radius R_i

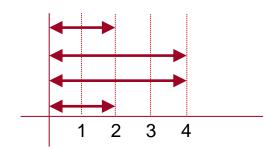
$$R_i = \sum_{j \neq i} |L_{ij}|$$

 λ_{min} is lower-bounded by smallest left-ends of Gershgorin discs:

 $\min_i \ L_{i,i} - R_i \le \lambda_{\min}$



$$\mathbf{L} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$



<u>Graph Laplacian L has all Gershgorin disc left-ends at 0</u> \rightarrow L is PSD.

Main Idea: Select samples to max smallest disc left-end of coefficient matrix **B**:

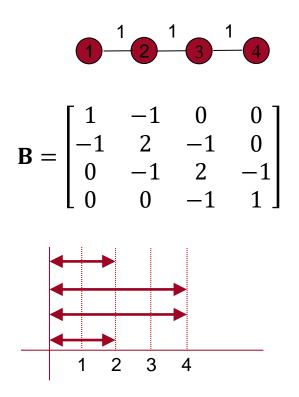
$$\mathbf{B} = \mathbf{H}^T \mathbf{H} + \mu \mathbf{L} \quad \longleftarrow \text{ coeff. matrix}$$

- Sample node \rightarrow shift disc.
- Consider similarity transform of **B** (same eigenvalues!):

C = S B S⁻¹ ← similarity transform diagonal matrix w/ scale factors

• Scale row \rightarrow **expand** disc radius.

 \rightarrow **shrink** neighbors' disc radius.



Sample set { } Scale factor {1,1,1,1}

Main Idea: Select samples to max smallest disc left-end of coefficient matrix **B**:

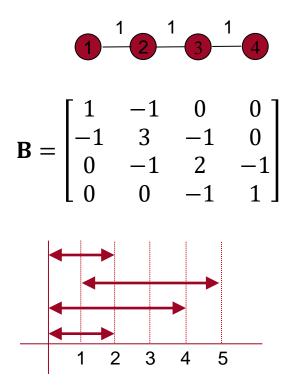
 $\mathbf{B} = \mathbf{H}^T \mathbf{H} + \mu \mathbf{L} \quad \longleftarrow \text{ coeff. matrix}$

- Sample node \rightarrow shift disc.
- Consider similarity transform of **B** (same eigenvalues!):

C = S B S⁻¹ ← similarity transform diagonal matrix w/ scale factors

• Scale row \rightarrow **expand** disc radius.

 \rightarrow **shrink** neighbors' disc radius.



Sample set {2} Scale factor {1,1,1,1}

Main Idea: Select samples to max smallest disc left-end of coefficient matrix **B**:

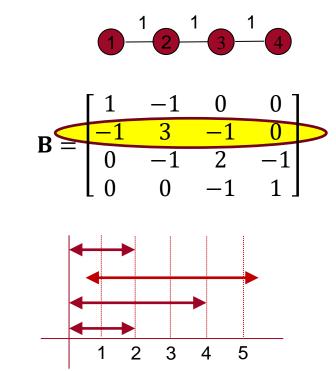
$$\mathbf{B} = \mathbf{H}^T \mathbf{H} + \mu \mathbf{L} \quad \longleftarrow \text{ coeff. matrix}$$

- Sample node \rightarrow shift disc.
- Consider similarity transform of **B** (same eigenvalues!):

C = S B S⁻¹ ← similarity transform diagonal matrix w/ scale factors

• Scale row \rightarrow **expand** disc radius.

 \rightarrow **shrink** neighbors' disc radius.



Sample set {2} Scale factor {1,s₂,1,1}

Main Idea: Select samples to max smallest disc left-end of coefficient matrix **B**:

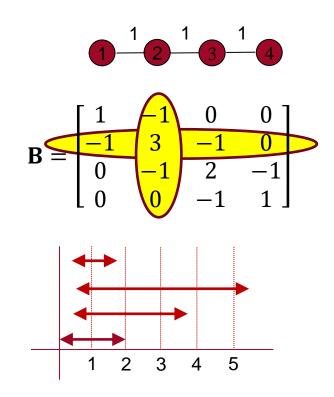
$$\mathbf{B} = \mathbf{H}^T \mathbf{H} + \mu \mathbf{L} \quad \longleftarrow \text{ coeff. matrix}$$

- Sample node \rightarrow shift disc.
- Consider similarity transform of **B** (same eigenvalues!):

C = S B S⁻¹ ← similarity transform diagonal matrix w/ scale factors

• Scale row \rightarrow **expand** disc radius.

 \rightarrow **shrink** neighbors' disc radius.



Sample set {2} Scale factor {1,s₂,1,1}

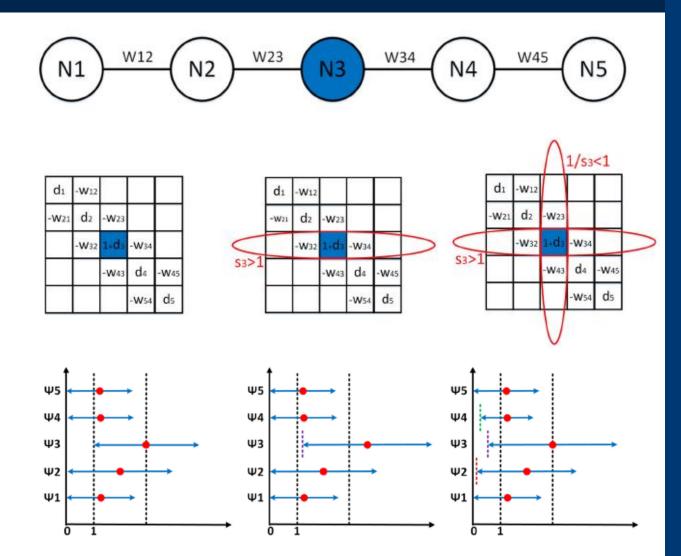
Solving Dual Sampling Problem: align discs @ T

Breadth First Iterative Sampling (BFIS):

- Given initial node set, threshold *T*.
- 1. Sample chosen node *i* (shift disc)
- 2. Scale row *i* (expand disc radius *i* to *T*)
- If disc left-end of connected node j > T, Scale row j (expand disc radius j to T) Else,

Add node *j* to node set.

- 4. Goto step 1 if node set not empty.
- 5. Output sample set and count *K*.



[1] Y. Bai, G. Cheung, F. Wang, X. Liu, W. Gao, "Reconstruction-Cognizant Graph Sampling Using Gershgorin Disc Alignment," *IEEE International Conference on Acoustics, Speech and Signal Processing*, Brighton, UK, May 2019.

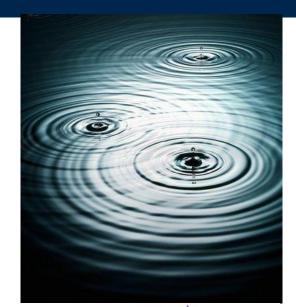
Disc-based Sampling (Intuition)

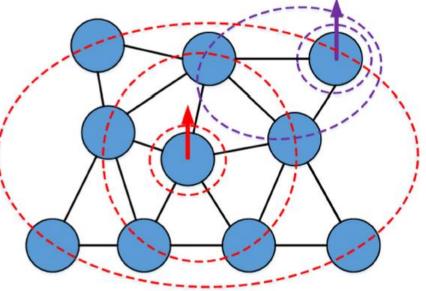
Analogy: throw pebbles into a pond.

Disc Shifting: throw pebble at sample node *i*.

Disc Scaling: ripple to neighbors of node *i*.

Goal: Select min # of samples so ripple at each node is at least *T*.





Disc-based Sampling (Intuition)

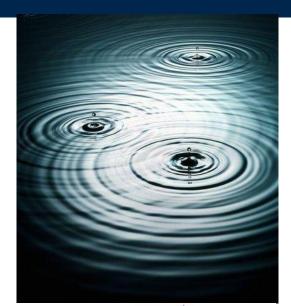
Analogy: throw pebbles into a pond.

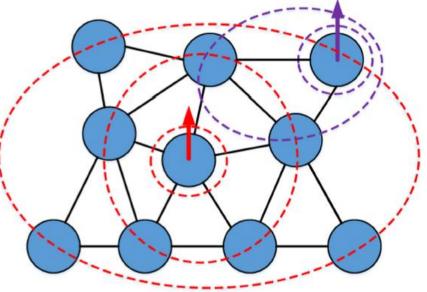
Disc Shifting: throw pebble at sample node *i*.

Disc Scaling: ripple to neighbors of node *i*.

Goal: Select min # of samples so ripple at each node is at least *T*.

Takeaway Message: roughly linear time graph sampling algorithm minimizing a global error obj.





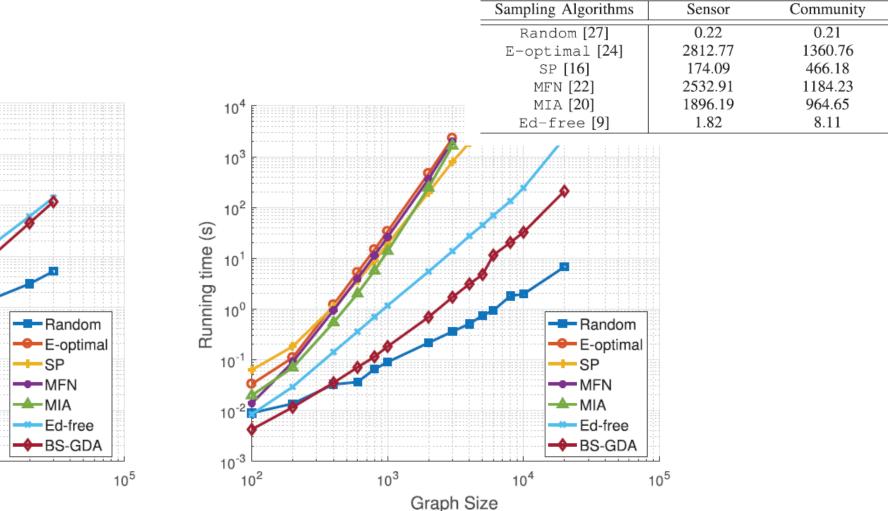
Graph Sampling Results: speed

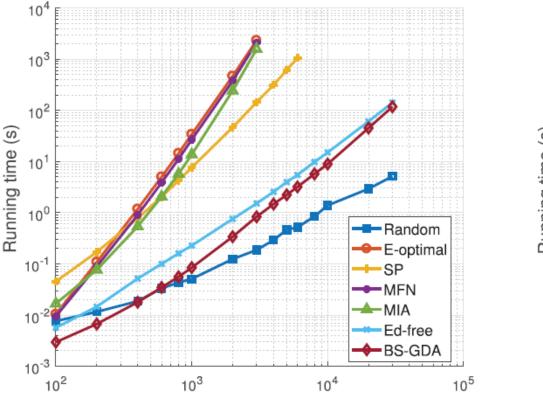
Running time comparisons on two different graphs.
 (a) Random sensor raph. (b) Community graph.

TABLE II SPEEDUP FACTORS OF OUR ALGORITHM WITH RESPECT TO OTHER SAMPLING ALGORITHMS FOR N = 3000

LASSONDE

YORK



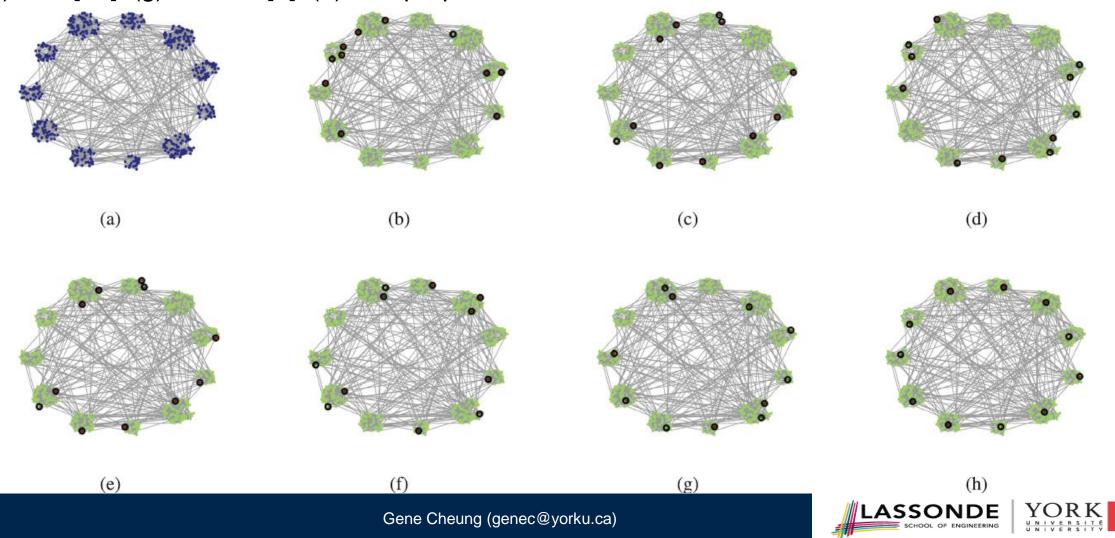


Graph Size

Graph Sampling Results: community graph

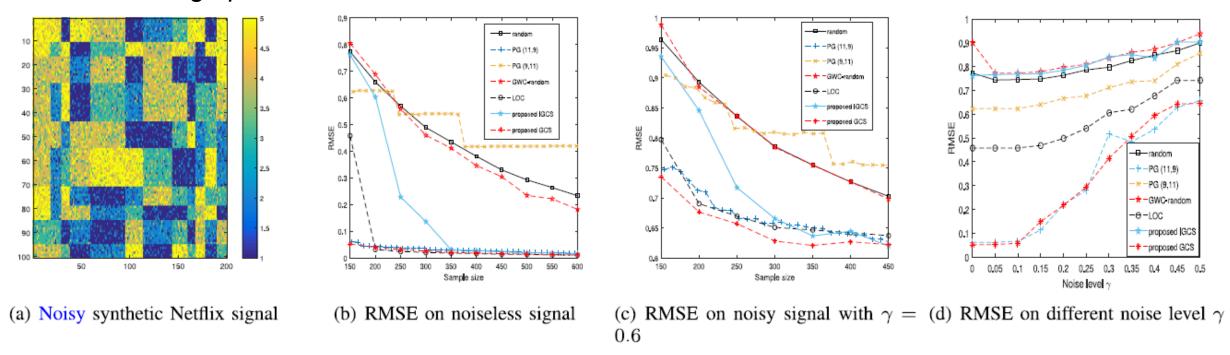
37

Visualization of selected nodes on the community graph (N = 500,K = 11). Black circles denote sampled nodes. (a) Original graph. (b) Random [28].(c) E-optimal [25]. (d) SP [16]. (e) MFN [23]. (f) MIA [20]. (g) Ed-free [9]. (h) The proposed BS-GDA.



Graph Sampling Results: matrix completion

- Pre-select a subset of matrix entries for sampling to maximize matrix completion fidelity.
- Challenge: select sampling set Ω to maximize λ_{\min} of $\tilde{\mathbf{A}}_{\Omega} + \alpha \mathbf{I}_n \otimes \mathbf{L}_r + \beta \mathbf{L}_c \otimes \mathbf{I}_m$
- RMSE of different sampling methods for MC on Synthetic Netflix. The matrix was completed using the double graph smoothness based method.



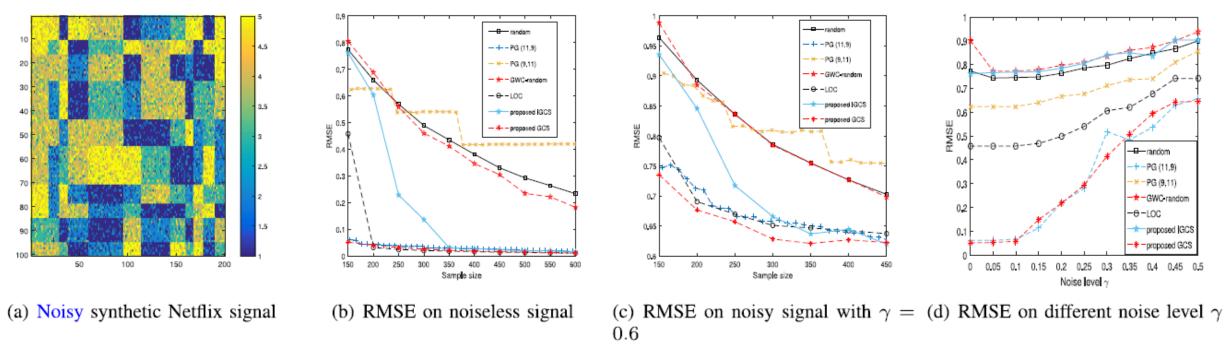
[1] F. Wang, Y. Wang, G. Cheung, C. Yang, "Graph Sampling for Matrix Completion Using Recurrent Gershgorin Disc Shift," vol. 68, pp. 1814-2829, *IEEE Transactions on Signal Processing*, April 2020.

Graph Sampling Results: matrix completion

- Pre-select a subset of matrix entries for sampling to maximize matrix completion fidelity.
- Challenge: select sampling set Ω to maximize λ_{\min} of $\tilde{\mathbf{A}}_{\Omega} + \alpha \mathbf{I}_n \otimes \mathbf{L}_r + \beta \mathbf{L}_c \otimes \mathbf{I}_m$

graph Laplacians for row / column graphs

 RMSE of different sampling methods for MC on Synthetic Netflix. The matrix was completed using the double graph smoothness based method.

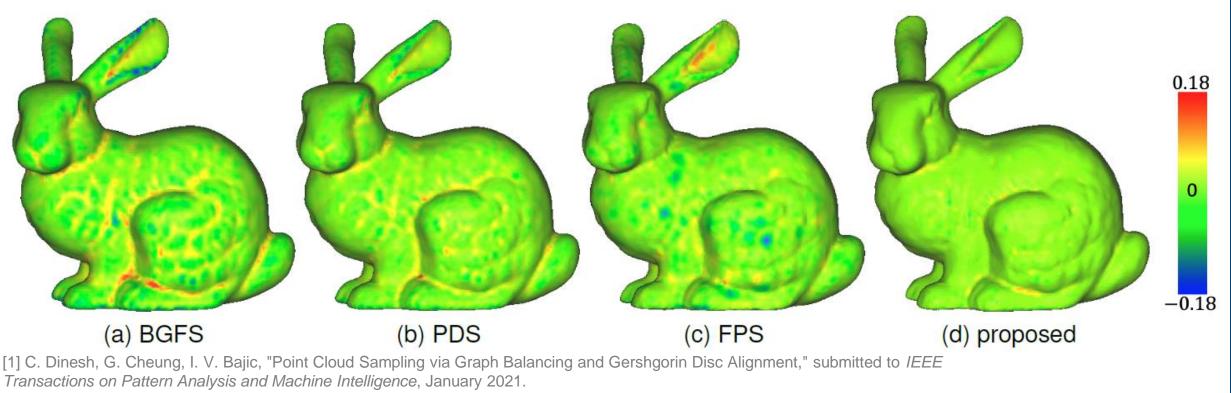


[1] F. Wang, Y. Wang, G. Cheung, C. Yang, "Graph Sampling for Matrix Completion Using Recurrent Gershgorin Disc Shift," vol. 68, pp. 1814-2829, *IEEE Transactions on Signal Processing*, April 2020.

Graph Sampling Results: 3D point cloud sub-sampling

- Reduce 3D point cloud size by sub-sampling while preserving the overall object shape.
- Challenge: select sampling matrix **H** to maximize λ_{\min} of $\mathbf{H}^{\top}\mathbf{H} + \mu \mathcal{L}$

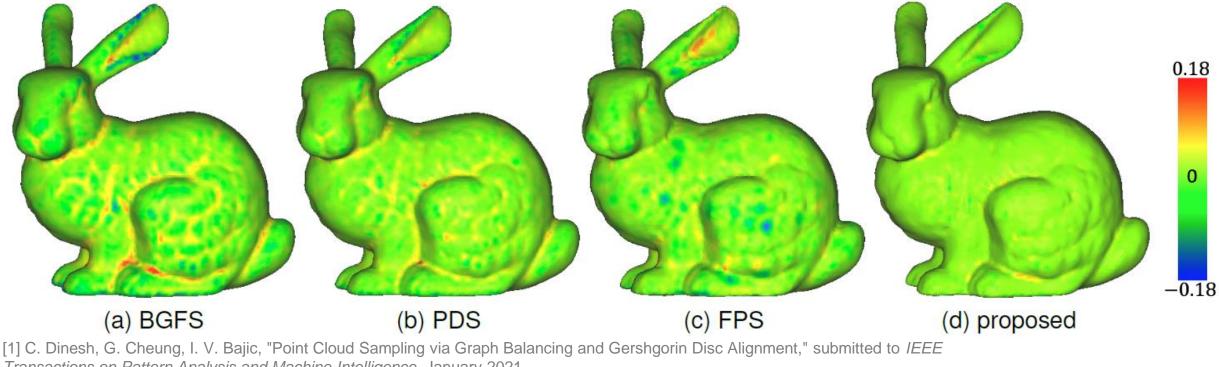
• SR reconstruction results from diff. methods of sub-sampled Bunny under 0.2 sub-sampling ratio.



Graph Sampling Results: 3D point cloud sub-sampling

- Reduce 3D point cloud size by sub-sampling while preserving the overall object shape.

• SR reconstruction results from diff. methods of sub-sampled Bunny under 0.2 sub-sampling ratio.



Transactions on Pattern Analysis and Machine Intelligence, January 2021.

generalized graph Laplacian

Outline

- > What is Graph Signal Processing?
 - ► Graph spectrum
 - Sraph Fourier transform (GFT), graph Laplacian regularizer (GLR)
- Graph Learning
 - Precision / Graph Laplacian Matrix Estimation (w/ eigen-structure constraint)
 - Feature Graph Learning: Gershgorin Disc Perfect Alignment (GDPA)
 - > Application: Semi-supervised classifier learning
- Graph Sampling
 - Gershgorin Disc Alignment Sampling (GDAS)
 - > Application: Sampling for matrix completion, 3D point cloud sub-sampling

Graph Filtering

- Signal-dependent GLR, GTV
- > Application: Image denoising

GLR for Image Denoising: motivation

- Graph Laplacian Regularizer (GLR) $\mathbf{x}^T \mathbf{L} \mathbf{x}$ is a smoothness measure.
- Denoising has simplest formation model y = x + z, thus formulation

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|_2^2 + \mu \ \mathbf{x}^T \mathbf{L} \mathbf{x}$$

 $(\mathbf{I} + \mu \mathbf{L})\mathbf{x}^* = \mathbf{y}$

- To promote Piecewise Smoothness (PWS), L(x) is signal-dependent:
 - Fix L and solve unconstrained QP each iteration.

 $\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|_2^2 + \mu \ \mathbf{x}^T \mathbf{L}(\mathbf{x}) \mathbf{x}$

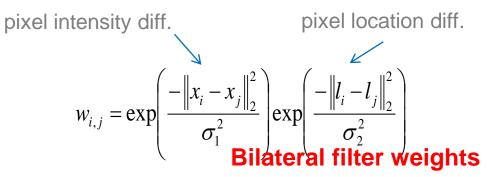
[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," *IEEE TIP*, vol. 26, no.4, pp.1770-1785, April 2017.
 [2] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," *IEEE ICCV*, 1998.

GLR for Image Denoising: motivation

- Graph Laplacian Regularizer (GLR) x^TLx is a smoothness measure.
- Denoising has simplest formation model $\mathbf{y} = \mathbf{x} + \mathbf{z}$, thus formulation

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|_2^2 + \mu \ \mathbf{x}^T \mathbf{L} \mathbf{x}$$

$$(\mathbf{I} + \mu \mathbf{L})\mathbf{x}^* = \mathbf{y}$$



- To promote **Piecewise Smoothness** (PWS), **L**(**x**) is **signal-dependent**:
 - Fix L and solve unconstrained QP each iteration.

 $\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|_2^2 + \mu \ \mathbf{x}^T \mathbf{L}(\mathbf{x}) \mathbf{x}$

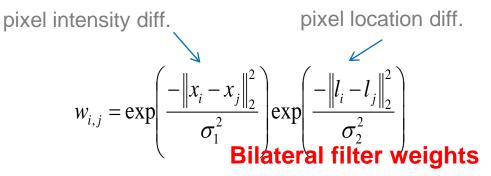
[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," *IEEE TIP*, vol. 26, no.4, pp.1770-1785, April 2017.
 [2] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," *IEEE ICCV*, 1998.

GLR for Image Denoising: motivation

- Graph Laplacian Regularizer (GLR) x^TLx is a smoothness measure.
- Denoising has simplest formation model $\mathbf{y} = \mathbf{x} + \mathbf{z}$, thus formulation

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|_2^2 + \mu \ \mathbf{x}^T \mathbf{L} \mathbf{x}$$

$$(\mathbf{I} + \mu \mathbf{L})\mathbf{x}^* = \mathbf{y}$$



- To promote Piecewise Smoothness (PWS), L(x) is signal-dependent:
 - Fix L and solve unconstrained QP each iteration.

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{x}\|_2^2 + \mu \mathbf{x}^T \mathbf{L}(\mathbf{x}) \mathbf{x} \quad \leftarrow \quad \text{Signal-dependent GLR}$$

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," *IEEE TIP*, vol. 26, no.4, pp.1770-1785, April 2017.
 [2] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," *IEEE ICCV*, 1998.

OGLR Denoising Results: visual comparison

• Subjective comparisons ($\sigma_{\rm I}=40$)

Original

Noisy, 16.48 dB

K-SVD, 26.84 dB

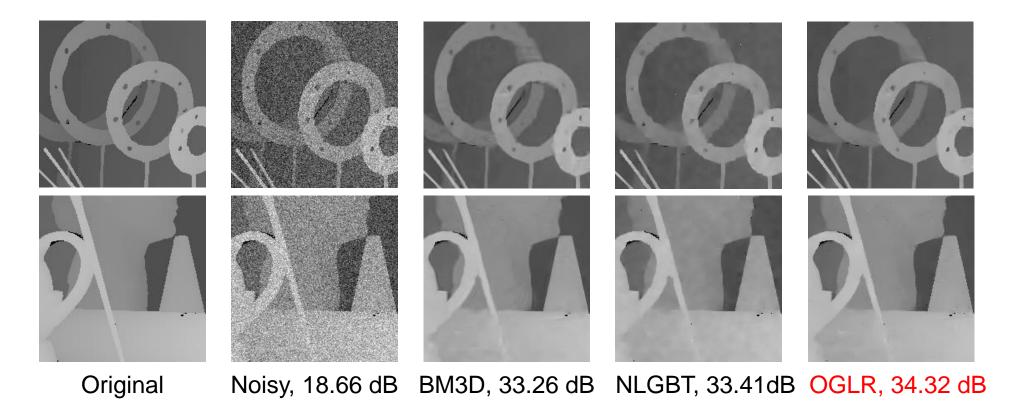
BM3D, 27.99 dB

PLOW, 28.11 dB

[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," *IEEE TIP*, vol. 26, no.4, pp.1770-1785, April 2017.

OGLR Denoising Results: visual comparison

• Subjective comparisons ($\sigma_1 = 30$)



[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain," IEEE TIP, vol. 26, no.4, pp.1770-1785, April 2017.

Deep GLR: motivation

• Recall MAP formulation of denoising w/ GLR:

$$\begin{array}{c} \min_{x} \|y - x\|_{2}^{2} + \mu \ x^{T} L x \\
\begin{array}{c} \text{fidelity term} \end{array} & \quad \text{smoothness prior} \\
\begin{array}{c} \text{is system of linear equations:} \end{array}$$

• Solution is system of linear equations:

Sparse PD

$$(I + \mu L)x^* = y$$
 $x^* = (I + \mu L)^{-1}y$

• Interpretable filter.

[1] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," *IEEE ICCV*, 1998.

Deep GLR: motivation

Recall MAP formulation of denoising w/ GLR: •

$$\begin{array}{c} \min_{x} \|y - x\|_{2}^{2} + \mu \ x^{T} L x \\
\begin{array}{c} \text{fidelity term} \end{array} & \text{smoothness prior} \\
\begin{array}{c} \text{n is system of linear equations:} \\
\end{array} & \begin{array}{c} \text{Sparse PD} \end{array} & \begin{array}{c} \text{LP grap} \end{array}$$

Solution

Sparse PD

$$(I + \mu L)x^* = y$$
 $x^* = (I + \mu L)^{-1}y$

Interpretable filter.

Q: what is the "most appropriate" graph?

[1] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," IEEE ICCV, 1998.

44

Deep GLR: motivation

• Recall MAP formulation of denoising w/ GLR:

$$\min_{x} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \mathbf{x}^{T} \mathbf{L} \mathbf{x}$$
fidelity term smoothness prior

• Solution is system of linear equations:

$$(\mathbf{I} + \mu \mathbf{L})\mathbf{x}^* = \mathbf{y}$$

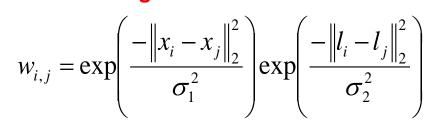
 $\mathbf{x}^* = (\mathbf{I} + \mu \mathbf{L})^{-1} \mathbf{y}$

Bilateral weights

• Interpretable filter.

Q: what is the "most appropriate" graph?

[1] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," IEEE ICCV, 1998.



Gene Cheung (genec@yorku.ca)

Deep GLR: unrolling

• Deep GLR:

- 1. Learn features **f**'s using CNN.
- 2. Compute distance from features.
- 3. Compute edge weights using Gaussian kernel.
- 4. Construct graph, solve QP.

$$w_{ij} = \exp\left(-\frac{\operatorname{dist}(i,j)}{2\epsilon^2}\right),$$

$$\operatorname{dist}(i,j) = \sum_{n=1}^{N} \left(\mathbf{f}_n(i) - \mathbf{f}_n(j) \right)^2.$$

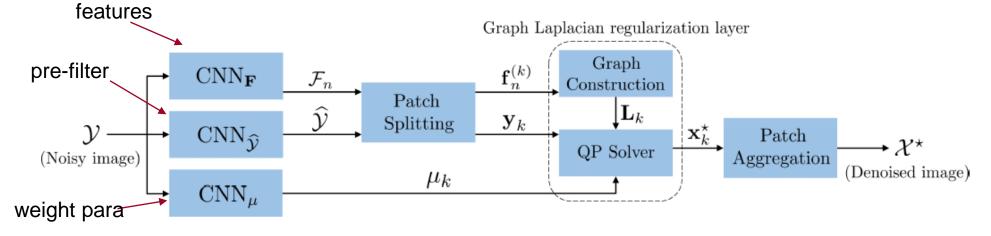


Fig. 1. Block diagram of the proposed GLRNet which employs a graph Laplacian regularization layer for image denoising.

[1] K. Gregor and Y. LeCun, "Learning fast approximations of sparse coding," in *Proc. 27th Int. Conf. Machine Learning*, 2010.

Deep GLR: CNN implementation

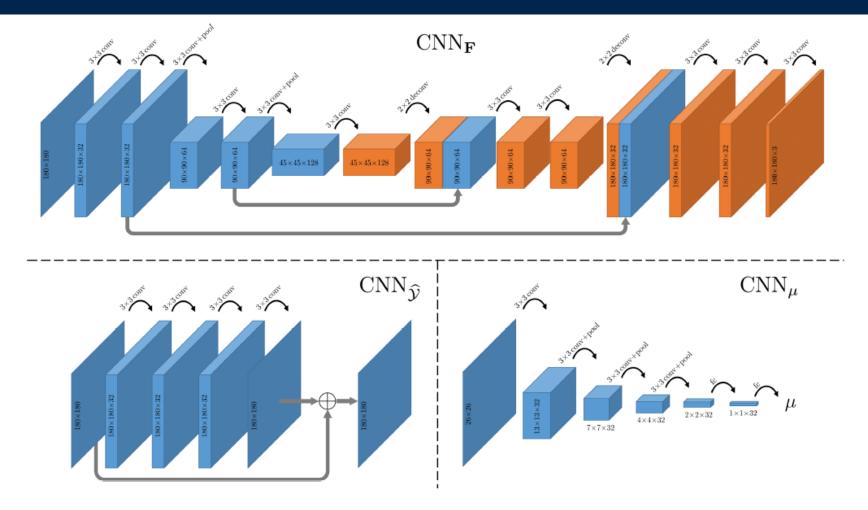


Fig. 3. Network architectures of $\text{CNN}_{\mathbf{F}}$, $\text{CNN}_{\widehat{\mathcal{Y}}}$ and CNN_{μ} in the experiments. Data produced by the decoder of $\text{CNN}_{\mathbf{F}}$ is colored in orange.

[1] J. Zeng et al., "Deep Graph Laplacian Regularization for Robust Denoising of Images," NTIRE Workshop, CVPR 2019.

Gene Cheung (genec@yorku.ca)

Deep GLR: unrolling

Fig. 2. Block diagram of the overall DeepGLR framework.

• Model guarantees numerical stability of solution:

$$(I + \mu L) x^* = y$$

• Thm 1: condition number κ of matrix satisfies [1]:

 $\kappa \leq 1 + 2\,\mu\,d_{\rm max}, \qquad {\rm maximum\ node\ degree}$

• **Observation**: Restricting CNN search space \rightarrow achieve robust learning.

[1] J. Zeng et al., "Deep Graph Laplacian Regularization for Robust Denoising of Images," *NTIRE Workshop, CVPR 2019.*

Deep GLR: numerical comparison

- Trained on AWGN on 5 images, patches of size 26-by-26.
- Batch size is 4, model is trained for 200 epochs.
- Trained for both known and blind noise variance.

Table 3. Average PSNR (dB) and SSIM values for Gaussian noise removal.

Noise			
	CBM3D	CDnCNN	DeepGLR
15	33.49/ 0.9216	33.80/ 0.9268	33.65/ 0.9259
25	30.68/ 0.8675	31.13/ 0.8799	31.03/ 0.8797
50	27.35/ 0.7627	27.91/ 0.7886	27.86/ 0.7924

[1] Kai Zhang et al, "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," *TIP* 2017.[2] Marc Lebrun et al, "The noise clinic: a blind image denoising algorithm," *IPOL* 2015.

Deep GLR: numerical comparison

- Cross-domain generalization.
- Trained on Gaussian noise, tested on low-light images in (RENOIR).
- Competing methods: DnCNN [1], noise clinic [2].
- Outperformed DnCNN by 5.74 dB, and noise clinic by 1.87 dB.

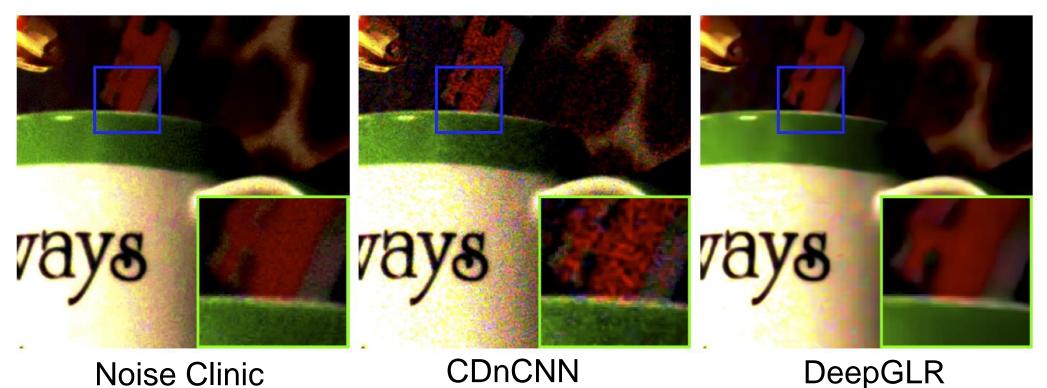
Table 4. Evaluation of cross-domain generalization for real image denoising. The best results are highlighted in boldface.

	Noisy	Method		
Metric		Noise Clinic	CDnCNN	DeepGLR
PSNR	20.36	27.43	24.36	30.10
SSIM	0.1823	0.6040	0.5206	0.8028

[1] Kai Zhang et al, "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," *TIP* 2017.
[2] Marc Lebrun et al, "The noise clinic: a blind image denoising algorithm," *IPOL* 2015.

Deep GLR: visual comparison

- Trained on Gaussian noise, tested on low-light images in (RENOIR).
- Competing methods: DnCNN [1], noise clinic [2].
- Outperformed DnCNN by 5.74 dB, and noise clinic by 1.87 dB.



[1] Kai Zhang et al, "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," *TIP* 2017.[2] Marc Lebrun et al, "The noise clinic: a blind image denoising algorithm," *IPOL* 2015.

Deep GTV: motivation

• **GTV** promotes PWS faster than **GLR**.

$$\begin{split} \min_{x} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \|\mathbf{x}\|_{GTV} & \|\mathbf{x}\|_{GTV} = \sum_{i,j} w_{i,j} |x_{i} - x_{j}| \\ \text{Solve as QP via } \mathbf{L}_{1} \text{-Laplacian:} & \Gamma_{i,j} = \frac{w_{i,j}}{\max\{|x_{i} - x_{j}|, \epsilon\}} \\ \min_{x} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \|\mathbf{x}^{T} \mathbf{L}_{\Gamma} \mathbf{x} & \mathbf{x}^{*} = (\mathbf{I} + \mu |\mathbf{L}_{\Gamma})^{-1} \mathbf{y} \end{split}$$

• Still interpretable LP graph filter.

[1] Y. Bai, G. Cheung, X. Liu, W. Gao, "Graph-Based Blind Image Deblurring from a Single Photograph," *IEEE TIP*, vol. 28, no.3, pp.1404-1418, March 2019.
 [2] H. Vu, G. Cheung, Y. C. Eldar, "Unrolling of Deep Graph Total Variation for Image Denoising," accepted to *IEEE ICASSP*, Toronto, Canada, June 2021.

Deep GTV: algorithm

- Learn feature via CNN for graph construction.
- Obtain graph filter response:

 $\mathbf{x}^* = (\mathbf{I} + \mu \mathbf{L}_{\Gamma})^{-1} \mathbf{y} = \mathbf{U} \operatorname{diag}(1 + \mu \lambda_1, \dots, 1 + \mu \lambda_N)^{-1} \mathbf{U}^T \mathbf{y}$

- Fast filter implementation via Lanczos approx.:
 - 1. Compute tri-diagonal matrix $H_M \in \mathbb{R}^{M \times M}$
 - 2. Compute approx. filter:

 $g(\mathbf{L})\mathbf{y} \approx \|\mathbf{y}\|_2 \mathbf{V}_M g(\mathbf{H}_M) \mathbf{e}_1$

where $g(\mathcal{L}):=Ug(\Lambda)U^*$.

• Interpretable graph filter \rightarrow fast implementation.

[1] J. Zeng et al., "Deep Graph Laplacian Regularization for Robust Denoising of Images," *NTIRE Workshop, CVPR 2019*.
 [2] A. Susnjara, N. Perraudin, D. Kressner1, and P. Vandergheynst, "Accelerated filtering on graphs using Lanczos method," in unpublished, arXiv:1509.04537, 2015.

 $\alpha_1 \quad \beta_2$

Deep GTV: experimental comparison

• Train on Gaussian (σ =50) and test on captured noise

(a) ground-truth

(b) noisy (PSNR: 23.56)

(c) CDnCNN-S (PSNR: 26.83)

(d) DeepGTV (PSNR: 28.82)

	DnCNN-S	DeepAGF	DeepGTV	
# Parameters	0.55M	0.32M	0.12M	save ≥ 80% parameters!

Table 3: Number of trainable parameters

Gene Cheung (genec@yorku.ca)

Conclusion

- Graph is flexible abstraction to convey pairwise similarities.
 - Similarity defined as correlation or feature distance.
 - Graph frequencies contains global notions.
 - Graph is an expression of domain knowledge.
- GSP leverages on mature understanding in SP and linear algebra.
- GSP tools are excellent for building hybrid model-based / data-driven systems.

Applications:

Image coding, denoising, deblurring, interpolation, contrast enhancement, light field image coding, 3D point cloud denoising, enhancement, subsampling, superresolution, inpainting, matrix completion, semi-supervised classifier learning, video summarization

[1] X. Dong*, D. Thanou*, L. Toni, M. Bronstein, P. Frossard, "Graph signal processing for machine learning: A review and new perspectives," *IEEE Signal Processing Magazine*, vol.37, no.6, pp.117-127, Nov., 2020.

Contact Info

• Homepage:

https://www.eecs.yorku.ca/~genec/index.html

• E-mail: genec@yorku.ca

G. Cheung, E. Magli, (edited) *Graph Spectral Image Processing*, ISTE/Wiley, June 2021.

