

Graph Learning, Sampling \& Filtering for Image \& Signal Estimation

Gene Cheung
York University
Toronto, Canada
March 9, 2021

Acknowledgement

- Graph and Image Signal Processing (GISP) Lab (York University, Toronto, Canada)

> Post-docs: Cheng Yang*, Xue Zhang
$>$ Grad students: Saghar Bagheri, Fengbo Lan, Huy Vu
$>$ Visiting researchers: Weng-tai Su (NTHU), Chinthaka Dinesh (SFU), Fen Wang (Xidian)

$>$ Collaborators

$>$ Richard Wildes, Michael Brown (York Univ., Canada)
\Rightarrow Ivan V. Bajic (Simon Fraser Univ., Canada)
$>$ Antonio Ortega (Univ. of Southern California, USA)
$>$ Stanley Chan (Purdue Univ., USA)
> Wai-Tian Tan (Cisco, USA)
$>$ Jiahao Pang, Dong Tian (InterDigital, USA)
> Yuji Nakatsukasa (Oxford Univ., UK)
$>$ Vladimir Stankovic (Univ. of Strathclyde, UK)
\Rightarrow Wei Hu, Wen Gao (Peking Univ., China)
$>$ Weng-tai Su, Chia-Wen Lin (NTHU, Taiwan)
> Yonina C. Eldar (Weizmann Inst. of Science, Israel)

Outline

$>$ What is Graph Signal Processing?
$>$ Graph spectrum
$>$ Graph Fourier transform (GFT), graph Laplacian regularizer (GLR)
$>$ Graph Learning
$>$ Precision / Graph Laplacian Matrix Estimation (w/ eigen-structure constraint)
$>$ Feature Graph Learning: Gershgorin Disc Perfect Alignment (GDPA)

- Application: Semi-supervised classifier learning
$>$ Graph Sampling
$>$ Gershgorin Disc Alignment Sampling (GDAS)
- Application: Sampling for matrix completion, 3D point cloud sub-sampling

$>$ Graph Filtering

$>$ Signal-dependent GLR, GTV
> Application: Image denoising

Outline

$>$ What is Graph Signal Processing?
$>$ Graph spectrum
$>$ Graph Fourier transform (GFT), graph Laplacian regularizer (GLR)
$>$ Graph Learning
> Precision / Graph Laplacian Matrix Estimation (w/ eigen-structure constraint)
$>$ Feature Graph Learning: Gershgorin Disc Perfect Alignment (GDPA)
> Application: Semi-supervised classifier learning
> Graph Sampling
> Gershgorin Disc Alignment Sampling (GDAS)
> Application: Sampling for matrix completion, 3D point cloud sub-sampling
$>$ Graph Filtering
$>$ Signal-dependent GLR, GTV
> Application: Image denoising

Digital Signal Processing

- Discrete signals on regular data kernels.
- Ex.1: audio on regularly sampled timeline.
- Ex.2: image on 2D grid.

- Harmonic analysis tools (transforms, wavelets):
- Compression, restoration, segmentation, etc.

2D DCT basis

Graph Signal Processing

- Signals on irregular data kernels described by graphs.
- Graph: nodes and edges.
- Edges reveals node-to-node relationships.

1. Harmonic Analysis of graph signals.
2. Embed pairwise (dis)similarity info into edge weights.
$f(n)$
 signal on graph kernel
signal on graph kernel
 challenges, and applications," Proceedings of the IEEE, vol. 106, no. 5, pp. 808-828, 2018.
[2] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, "Graph spectral image processing," Proceedings of the IEEE, vol. 106, no. 5, pp. 907-930, 2018.

Graph Signal Processing

- Signals on irregular data kernels described by graphs.
- Graph: nodes and edges.
- Edges reveals node-to-node relationships.

1. Harmonic Analysis of graph signals.
2. Embed pairwise (dis)similarity info into edge weights.
$f(n)$
 signal on graph kernel

signal on graph kernel challenges, and applications," Proceedings of the IEEE, vol. 106, no. 5, pp. 808-828, 2018.
[2] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, "Graph spectral image processing," Proceedings of the IEEE, vol. 106, no. 5, pp. 907-930, 2018.

Graph Fourier Transform (GFT)

Graph Laplacian:

- Adjacency Matrix W: entry $W_{i, j}$ has non-negative edge weight $w_{i, j}$ connecting nodes i and j.
- Degree Matrix D: diagonal matrix w/ entry $D_{i, i}$ being sum of column entries in row i of \mathbf{W}.

$$
D_{i, i}=\sum_{i} W_{i, j}
$$

- Combinatorial Graph Laplacian L: L = D - W
- L is related to $2^{\text {nd }}$ derivative.

$$
\begin{aligned}
& L_{3,:} \mathrm{X}=-x_{2}+2 x_{3}-x_{4} \\
& f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
\end{aligned}
$$

- L is a differential operator on graph.

$$
\begin{aligned}
\mathbf{W} & =\left[\begin{array}{cccc}
0 & w_{1,2} & 0 & 0 \\
w_{1,2} & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \\
\mathbf{D} & =\left[\begin{array}{cccc}
w_{1,2} & 0 & 0 & 0 \\
0 & w_{1,2}+1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\mathbf{L}=\left[\begin{array}{cccc}
w_{1,2} & -w_{1,2} & 0 & 0 \\
-w_{1,2} & w_{1,2}+1 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

Graph Fourier Transform (GFT)

Graph Laplacian:

- Adjacency Matrix W: entry $W_{i, j}$ has non-negative edge weight $W_{i, j}$ connecting nodes i and j.
- Degree Matrix D: diagonal matrix w/ entry $D_{i, i}$ being sum of column entries in row i of \mathbf{W}.

$$
D_{i, i}=\sum_{i} W_{i, j}
$$

- Combinatorial Graph Laplacian L: L = D - W
- \mathbf{L} is related to $2^{\text {nd }}$ derivative.

$$
\begin{aligned}
& L_{3,:} \mathrm{X}=-x_{2}+2 x_{3}-x_{4} \\
& f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
\end{aligned}
$$

- L is a differential operator on graph.

$$
\begin{aligned}
& \mathbf{W}=\left[\begin{array}{cccc}
0 & w_{1,2} & 0 & 0 \\
w_{1,2} & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& \mathbf{D}=\left[\begin{array}{cccc}
w_{1,2} & 0 & 0 & 0 \\
0 & w_{1,2}+1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\mathbf{L}=\left[\begin{array}{cccc}
w_{1,2} & -w_{1,2} & 0 & 0 \\
-w_{1,2} & w_{1,2}+1 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

Graph Spectrum from GFT

Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

$$
\mathrm{L}=\mathrm{V}_{\checkmark} \sum_{\text {eigenvectors in columns }}^{\swarrow \mathrm{V}^{T}} \quad \underset{\text { eigenvalues along diagonal }}{\sim} \quad \underset{\mathrm{X}}{\sim}=\mathrm{V}^{T} \mathbf{X}
$$

1. Eigenvectors aggregate info from edge weights.

- Constant $1^{\text {st }}$ eigenvector is DC.
- \# zero-crossings increases as λ increases.

2. Eigenvalues (≥ 0) as graph frequencies.

GFT defaults to DCT for un-weighted connected line.
 GFT defaults to DFT for un-weighted connected circle.

Graph Spectrum from GFT

Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

$$
\mathrm{L}=\mathrm{V}_{\checkmark} \sum_{\text {eigenvectors in columns }}^{\swarrow \mathrm{V}^{T}} \quad \underset{\text { eigenvalues along diagonal }}{\sim} \quad \underset{\mathrm{X}}{\sim}=\mathrm{V}^{T} \mathbf{X}
$$

1. Eigenvectors aggregate info from edge weights.

- Constant $1^{\text {st }}$ eigenvector is DC.
- \# zero-crossings increases as λ increases.

2. Eigenvalues (≥ 0) as graph frequencies.

GFT defaults to DCT for un-weighted connected line.
 GFT defaults to DFT for un-weighted connected circle.

Graph Frequency Examples (US Temperature)

Weather stations from 100 most populated cities.
Graph connections from Delaunay Triangulation*.
Edge weights inverse proportional to distance.

$$
w_{i, j}=\exp \left(\frac{-\| l_{i}-\overleftarrow{l_{j} \|_{2}^{2}}}{\sigma^{2}}\right)_{\text {Edge weights }}
$$

V1: DC component

Graph Frequency Examples (US Temperature)

Weather stations from 100 most populated cities. Graph connections from Delaunay Triangulation*.
Edge weights inverse proportional to distance.

$w_{i, j}=\exp \left(\frac{-\| l_{i}-\overleftarrow{l_{\|} \|_{2}^{2}}}{\sigma^{2}}\right)$
Edge weights

V2: $1^{\text {st }} \mathrm{AC}$ component

Graph Frequency Examples (US Temperature)

Weather stations from 100 most populated cities.
Graph connections from Delaunay Triangulation*. Edge weights inverse proportional to distance.

V3: $2^{\text {nd }}$ AC component

Graph Frequency Examples (US Temperature)

Weather stations from 100 most populated cities. Graph connections from Delaunay Triangulation*. Edge weights inverse proportional to distance.

GSP and Graph-related Research

GSP: SP framework that unifies concepts from multiple fields.

Outline

> What is Graph Signall Processing?
> Graph spectrum
$>$ Graph Fourier transform (GFT), graph Laplacian regularizer (GLR)
$>$ Graph Learning
$>$ Precision / Graph Laplacian Matrix Estimation (w/ eigen-structure constraint)
$>$ Feature Graph Learning: Gershgorin Disc Perfect Alignment (GDPA)

- Application: Semi-supervised classifier learning
$>$ Graph Sampling
> Gershgorin Disc Alignment Sampling (GDAS)
> Application: Sampling for matrix completion, 3D point cloud sub-sampling
$>$ Graph Filtering
> Signal-dependent GLR, GTV
> Application: Image denoising

What is a good graph?

- Graph Signal Processing (GSP) provides spectral analysis tools for signals on fixed graphs.

- Graph captures pairwise relationships.
signal on line kernel
- Correlations.
- Feature distance.
- Goal:

1. Learn inverse covariance matrix from limited data.
2. Learn metric to determine feature distance.

signal on graph kernel

Sparse Precision Matrix Estimation: GLASSO

- Given empirical covariance matrix Σ, Graphical Lasso computes positive-definite (PD) precision matrix Θ :

$$
\max _{\Theta} \log \operatorname{det} \Theta-\operatorname{Tr}(\Sigma \Theta)-\rho\|\Theta\|_{1}
$$

- $1^{\text {st }}$ and $2^{\text {nd }}$ terms are likelihood.
- $3^{\text {rd }}$ term promotes sparsity.
- Solved via block-coordinate descent (BCD) algorithm.

Sparse Precision Matrix Estimation: GLASSO

- Given empirical covariance matrix Σ, Graphical Lasso computes positive-definite (PD) precision matrix Θ :

$$
\max _{\Theta} \log \operatorname{det} \Theta-\operatorname{Tr}(\Sigma \Theta)-\rho\|\Theta\|_{1}
$$

- $1^{\text {st }}$ and $2^{\text {nd }}$ terms are likelihood.
- $3^{\text {rd }}$ term promotes sparsity.
- Solved via block-coordinate descent (BCD) algorithm.

Graph Laplacian Estimation

- Assume precision matrix is:
- Generalized graph Laplacian (GGLs),
- Diagonally dominant generalized graph Laplacian (DDGLs), or
- Combinatorial graph Laplacian (CGLs).
- Given empirical covariance matrix S, computes Laplacian Θ :

$$
\min _{\Theta} \operatorname{Tr}(\Theta \mathbf{K})-\log \operatorname{det} \Theta \text { subject to } \Theta \in \mathcal{L}_{g}(A)
$$

- $\mathrm{K}=\mathbf{S}+\mathbf{H}, \mathbf{H}$ is regularization matrix.
- $\mathrm{L}_{g}(\mathrm{~A})$ ensures Θ is $G G L$.
- Solved via block-coordinate descent (BCD) algorithm.

Graph Laplacian Estimation w/ Eigen-Structure Constraint

- Assume graph Laplacian matrix \mathbf{L} has:

Pre-determined first K eigenvectors.

- Define convex cone \mathcal{H}_{u}^{+}of PSD matrices sharing same K eigenvectors.
- Design projection operator to $\mathcal{H}_{\mathrm{u}}^{+}$inspired by Gram-Schmidt procedure.
- Given empirical covariance matrix S, computes Laplacian L:

$$
\min _{\mathbf{L} \in \mathcal{H}_{\mathbf{u}}^{+}} \operatorname{Tr}(\mathbf{L} \overline{\mathbf{C}})-\log \operatorname{det} \mathbf{L}+\rho\|\mathbf{L}\|_{1}
$$

- Solve via alternating BCD and projection algorithm.

Graph Laplacian Estimation w/ Eigen-Structure Constraint

- Assume graph Laplacian matrix \mathbf{L} has:

Pre-determined first K eigenvectors.

```
Ex:
1. 1}\mp@subsup{1}{}{\mathrm{ st }}\textrm{e}\mathrm{ -vector is constant for image coding.
2. }\mp@subsup{1}{}{\mathrm{ st }}\textrm{e}\mathrm{ -vector is PWC for voting in Senate.
3. Sparse first K e-vectors for transform coding.
```

- Define convex cone \mathcal{H}_{u}^{+}of PSD matrices sharing same K eigenvectors.
- Design projection operator to $\mathcal{H}_{\mathrm{u}}^{+}$inspired by Gram-Schmidt procedure.
- Given empirical covariance matrix S, computes Laplacian L:

$$
\min _{\mathbf{L} \in \mathcal{H}_{+}^{+}} \operatorname{Tr}(\mathbf{L} \overline{\mathbf{C}})-\log \operatorname{det} \mathbf{L}+\rho\|\mathbf{L}\|_{1}
$$

- Solve via alternating BCD and projection algorithm.

Graph Laplacian Estimation: results

- Randomly located 20 nodes in 2D space. Use the Erdos-Renyi model [23] to determine connectivity with probability 0.6 . Compute edge weights using a Gaussian kernel. Remove weights <0.75. Flip sign of each edge with probability 0.5 . $K=1$.
- (a) Ground Truth Laplacian L , (b) Proposed Proj-Lasso with $K=1$, (c) GLASSO, (d) DDGL and (e) GL-SigRep .

(a)

(b)

(c)

(d)

(e)

Metric Learning for Graph Construction

- Construct graph when ≤ 1 signal observation, but

Each node has K-dimension feature vector.

- Example: semi-supervised graph classifier
- Each node i has feature vector $\mathbf{f}_{i} \in \mathbb{R}^{K}$
- Use PSD metric matrix M, establish Mahalanobis distance:

$$
\delta_{i j}=\left(\mathbf{f}_{i}-\mathbf{f}_{j}\right)^{\top} \mathbf{M}\left(\mathbf{f}_{i}-\mathbf{f}_{j}\right)
$$

- Compute positive edge weight using exp:

$$
w_{i j}=\exp \left(-\delta_{i j}\right)
$$

signal on graph kernel

Signal Reconstruction using GLR

- Signal Model:
observation
- Signal prior is graph Laplacian regularizer (GLR):

$$
\mathbf{x}^{T} \mathrm{Lx}=\frac{1}{2} \sum_{i, j} w_{i, j}\left(x_{i}-x_{j}\right)^{2}=\sum_{k} \lambda_{k} \tilde{x}_{k}^{2}{ }_{\text {signal smooth w.r.t. graph }}^{\longleftrightarrow} \quad \begin{gathered}
\text { signal contains } \\
\text { mostly low graph freq. }
\end{gathered}
$$

- MAP Formulation:

Sample set $\{2,4\}$

$$
\mathbf{H}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\mathbf{H}^{\mathrm{T}} \mathbf{H}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

fidelity term

$$
\begin{gathered}
\min _{\mathbf{x}}\|\mathbf{y}-\mathbf{H x}\|_{2}^{2}+\mu \mathbf{x}^{T} \overleftrightarrow{\mathbf{L} \mathbf{x}} \\
\quad\left(\mathbf{H}^{T} \mathbf{H}+\mu \mathbf{L}\right) \mathbf{x}^{*}=\mathbf{y}
\end{gathered}
$$

Metric Learning for Graph Construction

- Optimal metric matrix M:

$$
\min _{\mathbf{M}} Q\left(\left\{\delta_{i j}(\mathbf{M})\right\}\right) \text { s.t. }\left\{\begin{array}{l}
\operatorname{tr}(\mathbf{M}) \leq C \\
\mathbf{M} \succ 0 \text { or } \mathbf{M} \succeq 0
\end{array}\right.
$$

for convex, differentiable $Q(\mathbf{M})$.

- For example, Graph Laplacian Regularizer (GLR):

$$
Q(\mathbf{M})=\mathbf{x}^{\top} \mathbf{L}(\mathbf{M}) \mathbf{x}=\sum_{(i, j) \in \mathcal{E}} w_{i j}\left(x_{i}-x_{j}\right)^{2}
$$

Metric Learning for Graph Construction

- Optimal metric matrix M:

$$
\min _{\mathbf{M}} Q\left(\left\{\delta_{i j}(\mathbf{M})\right\}\right) \text { s.t. }\left\{\begin{array}{l}
\operatorname{tr}(\mathbf{M}) \leq C \\
\mathbf{M} \succ 0 \text { or } \mathbf{M} \succeq 0
\end{array}\right.
$$

for convex, differentiable $Q(\mathbf{M})$.

- For example, Graph Laplacian Regularizer (GLR):

$$
Q(\mathbf{M})=\mathbf{x}^{\top} \mathbf{L}(\mathbf{M}) \mathbf{x}=\sum_{(i, j) \in \mathcal{E}} w_{i j}\left(x_{i}-x_{j}\right)^{2}
$$

Our Approach:

- Convert PSD cone to K adaptive linear constraints via Gershgorin Disc Alignment (GDA).
- $\operatorname{Min} Q(\mathbf{M}) \mathrm{w} /$ linear constraints.
- Repeat.

Gershgorin Circle Theorem

Gershgorin Circle Theorem:

- Row i of \mathbf{M} maps to a Gershgorin disc w/ centre $M_{i i}$ and radius R_{i}

$$
R_{i}=\sum_{j \neq i}\left|M_{i j}\right|
$$

- $\lambda_{\text {min }}$ is lower-bounded by smallest disc left-end:

$$
\lambda_{\min }^{-}(\mathbf{M}) \triangleq \min _{i} M_{i, i}-R_{i} \leq \lambda_{\min }
$$

- To ensure PSDness, apply linear constr's

$$
\mathbf{M}=\left[\begin{array}{ccc}
2 & -2 & -1 \\
-2 & 5 & -2 \\
-1 & -2 & 4
\end{array}\right]
$$

$$
M_{i, i}-\sum_{j \neq i}\left|M_{i j}\right| \geq 0
$$

Gershgorin Circle Theorem

Gershgorin Circle Theorem:

- Row i of \mathbf{M} maps to a Gershgorin disc w/ centre $M_{i i}$ and radius R_{i}

$$
R_{i}=\sum_{j \neq i}\left|M_{i j}\right|
$$

- $\lambda_{\text {min }}$ is lower-bounded by smallest disc left-end:

$$
\lambda_{\min }^{-}(\mathbf{M}) \triangleq \min _{i} M_{i, i}-R_{i} \leq \lambda_{\min }
$$

- To ensure PSDness, apply linear constr's

$$
M_{i, i}-\sum_{j \neq i}\left|M_{i j}\right| \geq 0
$$

Gershgorin Disc Perfect Alignment (GDPA)

- Consider similarity transform of \mathbf{M} (same eigenvalues!):

$$
\mathbf{B}=\mathbf{S} \mathbf{M} \mathbf{S}^{-1} \longleftarrow \text { similarity transform }
$$

$$
\mathbf{M}=\left[\begin{array}{ccc}
2 & -2 & -1 \\
-2 & 5 & -2 \\
-1 & -2 & 4
\end{array}\right]
$$

- Different S's induce different lower bounds $\lambda_{\min }^{-}(\mathbf{B})$

Gershgorin Disc Perfect Alignment (GDPA)

- Consider similarity transform of \mathbf{M} (same eigenvalues!):

$$
\mathbf{B}=\mathbf{S} \mathbf{M} \mathbf{S}^{-1}
$$

\qquad similarity transform
diagonal matrix w/ scale factors s_{i}

- Different S's induce different lower bounds $\lambda_{\mathrm{min}}^{-}(\mathbf{B})$

Theorem 1: Let \mathbf{M} be a generalized graph Laplacian matrix corresponding to an irreducible, positive graph \mathbf{G}. Denote by \mathbf{v} the first eigenvector of \mathbf{M} corresponding to the smallest eigenvalue $\lambda_{\text {min }}$. Then by computing scalars $s_{i}=\frac{1}{v_{i}}, \forall i$, all Gershgorin disc left-ends of $\mathbf{B}=\mathbf{S} \mathbf{M S}^{-1}, \mathbf{S}=\operatorname{diag}\left(s_{1}, \ldots, s_{N}\right)$, are aligned at $\lambda_{\text {min }}$.

Metric Optimization via GDPA

- Original diagonal opt w/ PSD cone constraint: $\quad \min _{\mathbf{M}} Q\left(\left\{\delta_{i j}(\mathbf{M})\right\}\right)$ s.t. $\left\{\begin{array}{l}\operatorname{tr}(\mathbf{M}) \leq C \\ \mathbf{M} \succ 0 \text { or } \mathbf{M} \succeq 0\end{array}\right.$

$$
\begin{array}{ll}
\min _{\left\{M_{i i}\right\}} & Q(\mathbf{M}) \\
\text { s.t. } \quad \mathbf{M} \succ 0 ; \quad \sum_{i} M_{i i} \leq C ; \quad M_{i i}>0, \forall i
\end{array}
$$

- Revised diagonal opt w/ linear constraints:

$$
\begin{aligned}
& \min _{\left\{M_{i i}\right\}} Q(\mathbf{M}) \\
& \text { s.t. } \quad M_{i i} \geq \sum_{j \backslash j \neq i}\left|\frac{s_{i}^{t} M_{i j}}{s_{j}^{t}}\right|+\rho, \forall i ; \quad \sum_{i} M_{i i} \leq C
\end{aligned}
$$

Metric Optimization via GDPA

- Original diagonal opt w/ PSD cone constraint:

$$
\min _{\mathbf{M}} Q\left(\left\{\delta_{i j}(\mathbf{M})\right\}\right) \text { s.t. }\left\{\begin{array}{l}
\operatorname{tr}(\mathbf{M}) \leq C \\
\mathbf{M} \succ 0 \text { or } \mathbf{M} \succeq 0
\end{array}\right.
$$

$$
\begin{array}{ll}
\min _{\left\{M_{i i}\right\}} & Q(\mathbf{M}) \\
\text { s.t. } \quad \mathbf{M} \succ 0 ; \quad \sum_{i} M_{i i} \leq C ; \quad M_{i i}>0, \forall i
\end{array}
$$

original metric optimization

- Revised diagonal opt w/ linear constraints:

Metric Learning Results (speed)

- Running time comparison against PD-cone and HBNB1, for different metrics, using Madelon dataset.

Metric Learning Results (accuracy)

- Using a GLR objective, SGML achieved the best classification results in 7 out of 14 datasets and remained competitive for 12 out of 14 datasets.

	RVML	PLML	mmLMNN	GMML	DMLMJ	SCML	DMLE	R2LML	LMLIR	SGML (prop.)		
Datasets	[50]	[51]	[1]	[33]	[52]	[53]	[32]	[54]	[49]	3-NN	Mahalanobis	Graph
australian	83.0 ± 1.6	80.5 ± 1.1	82.5 ± 2.6	84.4 ± 1.0	83.9 ± 1.3	82.3 ± 1.4	82.6 ± 1.5	84.7 ± 1.3	85.1 ± 1.9	83.3 ± 1.2	84.8 ± 1.3	85.3 ± 1.7
breastcancer	95.8 ± 1.1	96.4 ± 0.9	96.7 ± 1.0	97.3 ± 0.8	96.6 ± 0.8	97.0 ± 0.9	97.0 ± 1.1	97.0 ± 0.7	96.4 ± 2.1	97.6 ± 1.0	98.0 ± 0.6	97.6 ± 0.7
diabetes	71.0 ± 2.6	68.5 ± 2.0	72.2 ± 1.9	74.2 ± 2.6	71.5 ± 3.1	71.5 ± 2.2	72.6 ± 2.0	73.8 ± 1.4	75.9 ± 1.9	71.6 ± 1.8	70.5 ± 2.5	70.3 ± 1.4
fourclass	70.5 ± 1.4	72.4 ± 2.4	75.6 ± 1.4	76.1 ± 1.9	76.1 ± 1.9	75.5 ± 1.4	75.6 ± 1.4	76.1 ± 1.9	79.9 ± 0.9	74.5 ± 2.4	71.1 ± 1.6	78.0 ± 1.2
german	71.7 ± 1.8	70.0 ± 2.9	68.9 ± 1.8	71.6 ± 1.1	69.3 ± 2.7	70.9 ± 2.7	72.0 ± 2.1	72.9 ± 1.8	73.7 ± 1.6	71.6 ± 1.7	70.9 ± 1.3	70.0 ± 0.0
haberman	66.7 ± 2.3	67.1 ± 3.1	69.0 ± 2.7	71.2 ± 3.4	68.5 ± 3.2	69.2 ± 2.5	70.8 ± 3.5	71.1 ± 3.4	74.4 ± 3.7	68.8 ± 3.9	66.6 ± 6.3	73.6 ± 0.3
heart	77.7 ± 4.1	75.1 ± 3.2	79.4 ± 3.7	81.2 ± 2.7	80.6 ± 2.8	79.0 ± 3.2	77.9 ± 3.1	82.0 ± 3.8	83.1 ± 3.2	81.0 ± 3.4	83.2 ± 3.6	83.6 ± 3.5
ILPD	68.0 ± 2.9	67.4 ± 3.0	66.8 ± 2.1	67.1 ± 2.2	68.0 ± 1.6	68.0 ± 2.9	68.8 ± 2.7	65.9 ± 2.2	69.6 ± 2.7	65.2 ± 2.4	59.1 ± 2.4	71.3 ± 0.2
liverdisorders	64.6 ± 3.9	62.2 ± 2.5	62.0 ± 3.5	63.8 ± 5.4	60.9 ± 3.8	61.7 ± 4.6	61.8 ± 2.7	66.8 ± 3.7	66.7 ± 3.6	69.5 ± 3.3	68.8 ± 5.9	72.1 ± 3.0
monk1	89.2 ± 2.7	96.6 ± 2.7	90.3 ± 2.6	75.0 ± 2.6	87.7 ± 3.8	97.5 ± 0.9	99.9 ± 0.3	89.2 ± 1.5	95.0 ± 7.2	84.6 ± 5.1	66.3 ± 3.0	71.1 ± 3.7
pima	69.5 ± 1.7	68.4 ± 2.2	72.5 ± 2.7	73.0 ± 1.8	71.1 ± 2.8	71.1 ± 2.6	72.1 ± 2.4	72.3 ± 1.5	74.6 ± 2.0	73.4 ± 1.3	73.6 ± 2.0	69.2 ± 1.5
planning	55.1 ± 7.4	60.8 ± 5.5	54.7 ± 0.9	65.2 ± 5.5	64.3 ± 2.9	61.9 ± 5.0	60.1 ± 5.5	63.9 ± 3.4	67.5 ± 6.5	62.8 ± 4.1	48.8 ± 4.8	71.3 ± 0.7
voting	95.8 ± 1.3	95.5 ± 1.0	95.4 ± 0.9	95.2 ± 1.9	95.3 ± 1.1	95.0 ± 1.3	93.1 ± 1.9	96.3 ± 1.2	93.2 ± 3.9	96.4 ± 1.4	94.3 ± 2.0	94.8 ± 1.6
WDBC	96.6 ± 1.3	96.4 ± 0.9	97.4 ± 1.0	96.7 ± 0.8	97.3 ± 1.9	97.0 ± 0.9	96.7 ± 0.5	96.9 ± 1.7	96.6 ± 1.0	96.6 ± 0.9	94.8 ± 1.2	96.2 ± 1.1
Average	76.7	76.9	77.3	77.9	77.9	78.4	78.6	79.2	80.8	78.4	75.1	78.9
\# of best	0	0	1	0	0	0	1	0	5	1	1	5

Outline

> What is Graph Signall Processing?
> Graph spectrum
$>$ Graph Fourier transform (GFT), graph Laplacian regularizer (GLR)
$>$ Graph Learning
> Precision / Graph Laplacian Matrix Estimation (w/ eigen-structure constraint)
$>$ Feature Graph Learning: Gershgorin Disc Perfect Alignment (GDPA)
> Application: Semi-supervised classifier learning
$>$ Graph Sampling
$>$ Gershgorin Disc Alignment Sampling (GDAS)

- Application: Sampling for matrix completion, 3D point cloud sub-sampling
$>$ Graph Filtering
> Signal-dependent GLR, GTV
> Application: Image denoising

Graph Sampling (with and without noise)

Q: How to choose best samples for graph-based reconstruction?

- Existing graph sampling strategies extend Nyquist sampling to graph data kernels:
- Assume bandlimited signal.
- Greedily select most "informative" samples by computing extreme eigenvectors of sub-matrix.

- Computation-expensive.

Signal Reconstruction using GLR

- Signal Model:

$$
\mathbf{H}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Signal prior is graph Laplacian regularizer (GLR):

$$
\mathbf{x}^{T} \mathrm{Lx}=\frac{1}{2} \sum_{i, j} w_{i, j}\left(x_{i}-x_{j}\right)^{2}=\sum_{k} \lambda_{k} \tilde{x}_{k}^{2}{ }_{\text {signal smooth w.r.t. graph }}^{\longleftrightarrow} \text { signal contains }
$$

Sample set $\{2,4\}$

- MAP Formulation:
fidelity term \longrightarrow signal prior

$$
\begin{gathered}
\min _{\mathbf{x}}\|\mathbf{y}-\mathbf{H} \mathbf{x}\|_{2}^{2}+\mu \mathbf{x}^{T} \mathbf{L} \mathbf{x} \\
\left(\mathbf{H}^{T} \mathbf{H}+\mu \mathbf{L}\right) \mathbf{x}^{*}=\mathbf{y}
\end{gathered}
$$

Stability of Linear System

- Examine solution's linear system:

$$
\left(\mathbf{H}^{T} \mathbf{H}+\mu \mathbf{L}\right) \mathbf{x}^{*}=\mathbf{y}
$$

coefficient matrix B

$$
\mathbf{L}=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

- Stability depends on condition number $\left(\lambda_{\max } / \lambda_{\min }\right)$ of \mathbf{B}.
- $\lambda_{\max }$ is upper-bounded by $1+\mu 2^{*} d_{\max }$.

Goal: select \mathbf{H} to maximize $\lambda_{\min }(\mathbf{B})$ (w/o computing eigen-pairs)! Also minimizes worst-case MSE:
$\mathbf{H}^{\mathrm{T}} \mathbf{H}=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Sample set \{2, 4\}

$$
\|\hat{\mathbf{x}}-\mathbf{x}\|_{2} \leq \mu\left\|\frac{1}{\lambda_{\min }(\mathbf{B})}\right\|_{2}\|\mathbf{L}(\mathbf{x}+\widetilde{\mathbf{n}})\|_{2}+\|\widetilde{\mathbf{n}}\|_{2}
$$

Gershgorin Circle Theorem

Gershgorin Circle Theorem:

- Row iof \mathbf{L} maps to a Gershgorin disc w/ centre $L_{i i}$ and radius R_{i}

$$
R_{i}=\sum_{j \neq i}\left|L_{i j}\right|
$$

$$
\mathbf{L}=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

- $\lambda_{\text {min }}$ is lower-bounded by smallest left-ends of Gershgorin discs:

$$
\min _{i} L_{i, i}-R_{i} \leq \lambda_{\min }
$$

Graph Laplacian \mathbf{L} has all Gershgorin disc left-ends at 0 $\rightarrow \mathbf{L}$ is PSD.

Gershgorin Disc Alignment Sampling (GDAS)

Main Idea: Select samples to max smallest disc left-end of coefficient matrix B:

$$
\mathbf{B}=\mathbf{H}^{T} \mathbf{H}+\mu \mathbf{L} \longleftarrow \text { coeff. matrix }
$$

- Sample node \rightarrow shift disc.
$\mathbf{B}=\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1\end{array}\right]$
- Consider similarity transform of B (same eigenvalues!):

$\mathbf{C}=\mathbf{S} \mathbf{B} \mathbf{S}^{-1} \longleftarrow$ similarity transform

- Scale row \rightarrow expand disc radius.
\rightarrow shrink neighbors' disc radius.
Sample set \{ \}
Scale factor $\{1,1,1,1\}$

Gershgorin Disc Alignment Sampling (GDAS)

Main Idea: Select samples to max smallest disc left-end of coefficient matrix B:

$$
\mathbf{B}=\mathbf{H}^{T} \mathbf{H}+\mu \mathbf{L} \longleftarrow \text { coeff. matrix }
$$

- Sample node \rightarrow shift disc.
- Consider similarity transform of B (same eigenvalues!):

$\mathbf{C}=\mathbf{S} \mathbf{B} \mathbf{S}^{-1} \longleftarrow$ similarity transform

diagonal matrix w/ scale factors

- Scale row \rightarrow expand disc radius.
\rightarrow shrink neighbors' disc radius.
$\mathbf{B}=\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ -1 & 3 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1\end{array}\right]$

Sample set $\{2\}$
Scale factor $\{1,1,1,1\}$

Gershgorin Disc Alignment Sampling (GDAS)

Main Idea: Select samples to max smallest disc left-end of coefficient matrix B:

$$
\mathbf{B}=\mathbf{H}^{T} \mathbf{H}+\mu \mathbf{L} \longleftarrow \text { coeff. matrix }
$$

- Sample node \rightarrow shift disc.
$\mathbf{B} \xlongequal{\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ -1 & 3 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1\end{array}\right]}$
- Consider similarity transform of B (same eigenvalues!):

$$
\mathbf{C}=\mathbf{S} \mathbf{B} \mathbf{S}^{-1} \longleftarrow \text { similarity transform }
$$

Scale row \rightarrow expand disc radius.
\rightarrow shrink neighbors' disc radius.

Sample set $\{2\}$
Scale factor $\left\{1, \mathrm{~s}_{2}, 1,1\right\}$

Gershgorin Disc Alignment Sampling (GDAS)

Main Idea: Select samples to max smallest disc left-end of coefficient matrix B:

$$
\mathbf{B}=\mathbf{H}^{T} \mathbf{H}+\mu \mathbf{L} \longleftarrow \text { coeff. matrix }
$$

- Sample node \rightarrow shift disc.

- Consider similarity transform of B (same eigenvalues!):

$\mathbf{C}=\mathbf{S} \mathbf{B} \mathbf{S}^{-1} \longleftarrow$ similarity transform

\nwarrow diagonal matrix w/ scale factors

- Scale row \rightarrow expand disc radius.
\rightarrow shrink neighbors' disc radius.

Solving Dual Sampling Problem: align discs @ T

Breadth First Iterative Sampling (BFIS):

- Given initial node set, threshold T.

1. Sample chosen node i (shift disc)
2. Scale row i (expand disc radius i to T)
3. If disc left-end of connected node $j>T$,

Scale row j (expand disc radius j to T) Else,
Add node j to node set.
4. Goto step 1 if node set not empty.
5. Output sample set and count K.

Disc-based Sampling (Intuition)

Analogy: throw pebbles into a pond.
Disc Shifting: throw pebble at sample node i.
Disc Scaling: ripple to neighbors of node i.
Goal: Select min \# of samples so ripple at each node is at least T.

Disc-based Sampling (Intuition)

Analogy: throw pebbles into a pond.
Disc Shifting: throw pebble at sample node i.
Disc Scaling: ripple to neighbors of node i.
Goal: Select min \# of samples so ripple at each node is at least T.

Takeaway Message: roughly linear time graph sampling algorithm minimizing a global error obj.

Graph Sampling Results: speed

- Running time comparisons on two different graphs.

TABLE II
(a) Random sensor raph. (b) Community graph.

Speedup Factors of Our Algorithm With Respect To OTHER SAMPLING ALGORITHMS FOR $N=3000$

Graph Sampling Results: community graph

- Visualization of selected nodes on the community graph ($N=500, K=11$). Black circles denote sampled nodes. (a) Original graph. (b) Random [28].(c) E-optimal [25]. (d) SP [16]. (e) MFN [23]. (f) MIA [20]. (g) Ed-free [9]. (h) The proposed BS-GDA.

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Graph Sampling Results: matrix completion

- Pre-select a subset of matrix entries for sampling to maximize matrix completion fidelity.
- Challenge: select sampling set Ω to maximize $\lambda_{\text {min }}$ of $\tilde{\mathbf{A}}_{\Omega}+\alpha \mathbf{I}_{n} \otimes \mathbf{L}_{r}+\beta \mathbf{L}_{c} \otimes \mathbf{I}_{m}$
- RMSE of different sampling methods for MC on Synthetic Netflix. The matrix was completed using the double graph smoothness based method.

(a) Noisy synthetic Netflix signal

(b) RMSE on noiseless signal

(c) RMSE on noisy signal with $\gamma=$ (d) RMSE on different noise level γ

Graph Sampling Results: matrix completion

- Pre-select a subset of matrix entries for sampling to maximize matrix completion fidelity.
- Challenge: select sampling set Ω to maximize $\lambda_{\text {min }}$ of

$$
\tilde{\mathbf{A}}_{\Omega}+\alpha \mathbf{I}_{n} \otimes \mathbf{L}_{r}+\beta \mathbf{L}_{c} \otimes \mathbf{I}_{m}
$$ graph Laplacians for row / column graphs

- RMSE of different sampling methods for MC on Synthetic Netflix. The matrix was completed using the double graph smoothness based method.

(a) Noisy synthetic Netflix signal

(b) RMSE on noiseless signal

(c) RMSE on noisy signal with $\gamma=$ (d) RMSE on different noise level γ

Graph Sampling Results: 3D point cloud sub-sampling

- Reduce 3D point cloud size by sub-sampling while preserving the overall object shape.
- Challenge: select sampling matrix \mathbf{H} to maximize $\lambda_{\min }$ of $\mathbf{H}^{\top} \mathbf{H}+\mu \mathcal{L}$
- SR reconstruction results from diff. methods of sub-sampled Bunny under 0.2 sub-sampling ratio.

(a) BGFS

(b) PDS

(c) FPS

(d) proposed

Graph Sampling Results: 3D point cloud sub-sampling

- Reduce 3D point cloud size by sub-sampling while preserving the overall object shape.
- Challenge: select sampling matrix \mathbf{H} to maximize $\lambda_{\min }$ of $\mathbf{H}^{\top} \mathbf{H}+\mu \mathcal{L}$,
- SR reconstruction results from diff. methods of sub-sampled Bunny under 0.2 sub-sampling ratio.

(a) BGFS

(b) PDS

(c) FPS

(d) proposed

Outline

> What is Graph Signall Processing?
> Graph spectrum
$>$ Graph Fourier transform (GFT), graph Laplacian regularizer (GLR)
$>$ Graph Learning
> Precision / Graph Laplacian Matrix Estimation (w/ eigen-structure constraint)
$>$ Feature Graph Learning: Gershgorin Disc Perfect Alignment (GDPA)
> Application: Semi-supervised classifier learning
> Graph Sampling
> Gershgorin Disc Alignment Sampling (GDAS)
> Application: Sampling for matrix completion, 3D point cloud sub-sampling
$>$ Graph Filtering
$>$ Signal-dependent GLR, GTV

- Application: Image denoising

GLR for Image Denoising: motivation

- Graph Laplacian Regularizer (GLR) $\mathbf{x}^{T} \mathbf{L x}$ is a smoothness measure.
- Denoising has simplest formation model $\mathbf{y}=\mathbf{x}+\mathbf{z}$, thus formulation

$$
\begin{aligned}
& \min _{\mathbf{x}}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}+\mu \mathbf{x}^{T} \mathbf{L} \mathbf{x} \\
& (\mathbf{I}+\mu \mathbf{L}) \mathbf{x}^{*}=\mathbf{y}
\end{aligned}
$$

- To promote Piecewise Smoothness (PWS), $\mathbf{L}(\mathbf{x})$ is signal-dependent:
- Fix \mathbf{L} and solve unconstrained QP each iteration.

$$
\min _{\mathbf{x}}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}+\mu \mathbf{x}^{T} \mathbf{L}(\mathbf{x}) \mathbf{x}
$$

GLR for Image Denoising: motivation

- Graph Laplacian Regularizer (GLR) $\mathbf{x}^{T} \mathbf{L x}$ is a smoothness measure.
- Denoising has simplest formation model $\mathbf{y}=\mathbf{x}+\mathbf{z}$, thus formulation

$$
\begin{aligned}
& \min _{\mathbf{x}}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}+\mu \mathbf{x}^{T} \mathbf{L} \mathbf{x} \\
& (\mathbf{I}+\mu \mathbf{L}) \mathbf{x}^{*}=\mathbf{y}
\end{aligned}
$$

pixel intensity diff. pixel location diff.
$w_{i, j}=\exp \left(\frac{-\left\|x_{i}-x_{j}\right\|_{2}^{2}}{\sigma_{1}^{2}}\right) \exp \left(\frac{-\left\|l_{i}-l \mid\right\|_{2}^{2}}{\sigma_{2}^{2}}\right)$
Bilateral filter weights

- To promote Piecewise Smoothness (PWS), $\mathbf{L}(\mathbf{x})$ is signal-dependent:
- Fix \mathbf{L} and solve unconstrained QP each iteration.

$$
\min _{\mathbf{x}}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}+\mu \mathbf{x}^{T} \mathbf{L}(\mathbf{x}) \mathbf{x}
$$

GLR for Image Denoising: motivation

- Graph Laplacian Regularizer (GLR) $\mathbf{x}^{T} \mathbf{L x}$ is a smoothness measure.
- Denoising has simplest formation model $\mathbf{y}=\mathbf{x}+\mathbf{z}$, thus formulation

$$
\begin{aligned}
& \min _{\mathbf{x}}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}+\mu \mathbf{x}^{T} \mathbf{L} \mathbf{x} \\
& (\mathbf{I}+\mu \mathbf{L}) \mathbf{x}^{*}=\mathbf{y}
\end{aligned}
$$

pixel intensity diff. pixel location diff.
$w_{i, j}=\exp \left(\frac{-\left\|x_{i}-x_{j}\right\|_{2}^{2}}{\sigma_{1}^{2}}\right) \exp \left(\frac{-\left\|l_{i}-l_{j}\right\|_{2}^{2}}{\sigma_{2}^{2}}\right)$

- To promote Piecewise Smoothness (PWS), $\mathbf{L}(\mathbf{x})$ is signal-dependent:
- Fix \mathbf{L} and solve unconstrained QP each iteration.

$$
\min _{\mathbf{x}}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}+\mu \mathbf{x}^{T} \mathbf{L}(\mathbf{x}) \mathbf{x}
$$

Signal-dependent GLR

OGLR Denoising Results: visual comparison

- Subjective comparisons $\left(\sigma_{\mathrm{I}}=40\right)$

Original

BM3D, 27.99 dB

Noisy, 16.48 dB

PLOW, 28.11 dB

K-SVD, 26.84 dB

OGLR, 28.35 dB

OGLR Denoising Results: visual comparison

- Subjective comparisons ($\sigma_{\mathrm{I}}=30$)

Original

Noisy, 18.66 dB

BM3D, 33.26 dB

NLGBT, 33.41 dB OGLR, 34.32 dB

Deep GLR: motivation

- Recall MAP formulation of denoising w/ GLR:

- Solution is system of linear equations:

$$
\left(\mathbf{I}+\overleftarrow{\mu \mathbf{L}) \mathbf{x}^{*}=\mathbf{y}} \quad \mathbf{x}^{*}=\left(\mathbf{I}+\underset{\mu \mathbf{L})^{-\mathbf{1}} \mathbf{y}}{ }\right.\right.
$$

- Interpretable filter.

Deep GLR: motivation

- Recall MAP formulation of denoising w/ GLR:

- Solution is system of linear equations:

$$
\left(\mathbf{I}+\overleftarrow{\mu \mathbf{L}) \mathbf{x}^{*}=\mathbf{y}} \quad \mathbf{x}^{*}=(\mathbf{I}+\mu \mathbf{L})^{-\mathbf{1}} \mathbf{y}\right.
$$

- Interpretable filter.

Q: what is the "most appropriate" graph?

Deep GLR: motivation

- Recall MAP formulation of denoising w/ GLR:

$$
\min _{x}\|\mathrm{y}-\mathrm{x}\|_{2}^{2}+\mu \mathrm{x}^{T} \mathrm{LX}
$$

- Solution is system of linear equations:

$$
\left(\mathbf{I}+\overleftarrow{\mu \mathbf{L}) \mathbf{x}^{*}}=\mathbf{y} \text { Sparse PD } \quad \mathbf{x}^{*}=\left(\mathbf{I}+{\overleftarrow{\mu \mathbf{L}})^{-\mathbf{1}} \mathbf{y}}_{\mathbf{y}}\right.\right.
$$

- Interpretable filter.

Bilateral weights:

Q: what is the "most appropriate" graph?

$$
w_{i, j}=\exp \left(\frac{-\left\|x_{i}-x_{j}\right\|_{2}^{2}}{\sigma_{1}^{2}}\right) \exp \left(\frac{-\left\|l_{i}-l_{j}\right\|_{2}^{2}}{\sigma_{2}^{2}}\right)
$$

Deep GLR: unrolling

- Deep GLR:

1. Learn features f's using CNN.

$$
w_{i j}=\exp \left(-\frac{\operatorname{dist}(i, j)}{2 \epsilon^{2}}\right),
$$

2. Compute distance from features.
3. Compute edge weights using Gaussian kernel.
4. Construct graph, solve QP.

$$
\operatorname{dist}(i, j)=\sum_{n=1}^{N}\left(\mathbf{f}_{n}(i)-\mathbf{f}_{n}(j)\right)^{2}
$$ features

Fig. 1. Block diagram of the proposed GLRNet which employs a graph Laplacian regularization layer for image denoising.

Deep GLR: CNN implementation

Fig. 3. Network architectures of $\mathrm{CNN}_{\mathbf{F}}, \mathrm{CNN}_{\hat{\mathcal{V}}}$ and CNN_{μ} in the experiments. Data produced by the decoder of $\mathrm{CNN}_{\mathrm{F}}$ is colored in orange.

Deep GLR: unrolling

Fig. 2. Block diagram of the overall DeepGLR framework.

- Model guarantees numerical stability of solution:

$$
(\mathrm{I}+\mu \mathrm{L}) \mathrm{x}^{*}=\mathrm{y}
$$

- Thm 1: condition number к of matrix satisfies [1]:

$$
\kappa \leq 1+2 \mu d_{\text {max }}{ }^{2} \text { maximum node degree }
$$

- Observation: Restricting CNN search space \rightarrow achieve robust learning.

Deep GLR: numerical comparison

- Trained on AWGN on 5 images, patches of size 26-by-26.
- Batch size is 4 , model is trained for 200 epochs.
- Trained for both known and blind noise variance.

Table 3. Average PSNR (dB) and SSIM values for Gaussian noise removal.

Noise	Method (PSNR/SSIM)		
	CBM3D	CDnCNN	DeepGLR
15	$33.49 / 0.9216$	$33.80 / 0.9268$	$33.65 / 0.9259$
25	$30.68 / 0.8675$	$31.13 / 0.8799$	$31.03 / 0.8797$
50	$27.35 / 0.7627$	$27.91 / 0.7886$	$27.86 / 0.7924$

Deep GLR: numerical comparison

- Cross-domain generalization.

- Trained on Gaussian noise, tested on low-light images in (RENOIR).
- Competing methods: DnCNN [1], noise clinic [2].
- Outperformed DnCNN by 5.74 dB , and noise clinic by 1.87 dB .

Table 4. Evaluation of cross-domain generalization for real image denoising. The best results are highlighted in boldface.

Metric	Noisy	Method		
		Noise Clinic	CDnCNN	DeepGLR
PSNR	20.36	27.43	24.36	$\mathbf{3 0 . 1 0}$
SSIM	0.1823	0.6040	0.5206	$\mathbf{0 . 8 0 2 8}$

Deep GLR: visual comparison

- Trained on Gaussian noise, tested on low-light images in (RENOIR).
- Competing methods: DnCNN [1], noise clinic [2].
- Outperformed DnCNN by 5.74 dB , and noise clinic by 1.87 dB .

Noise Clinic

CDnCNN

DeepGLR

Deep GTV: motivation

- GTV promotes PWS faster than GLR.

$$
\min _{x}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}+\mu\|\mathbf{x}\|_{G T V} \quad \quad \mu\|\mathbf{x}\|_{G T V}=\sum_{i, j} w_{i, j}\left|x_{i}-x_{j}\right|
$$

- Solve as QP via L_{1}-Laplacian: $\Gamma_{i, j}=\frac{w_{i, j}}{\max \left\{\left|x_{i}-x_{j}\right|, \epsilon\right\}}$

$$
\min _{x}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}+\mu \mathbf{x}^{T} \mathbf{L}_{\Gamma} \mathbf{x} \quad \mathbf{x}^{*}=\left(\mathbf{I}+\mu \mathbf{L}_{\Gamma}\right)^{-1} \mathbf{y}
$$

- Still interpretable LP graph filter.

Deep GTV: algorithm

- Learn feature via CNN for graph construction.
- Obtain graph filter response:

$$
\mathbf{x}^{*}=\left(\mathbf{I}+\mu \mathbf{L}_{\Gamma}\right)^{-1} \mathbf{y}
$$

- Fast filter implementation via Lanczos approx.:

1. Compute tri-diagonal matrix $H_{M} \in \mathbb{R}^{M \times M}$

$$
V_{M}^{*} \mathcal{L} V_{M}=H_{M}=\left[\begin{array}{ccccc}
\alpha_{1} & \beta_{2} & & & \\
\beta_{2} & \alpha_{2} & \beta_{3} & & \\
& \beta_{3} & \alpha_{3} & \ddots & \\
& & \ddots & \ddots & \beta_{M} \\
& & & \beta_{M} & \alpha_{M}
\end{array}\right]
$$

- Interpretable graph filter \rightarrow fast implementation.
[1] J. Zeng et al., "Deep Graph Laplacian Regularization for Robust Denoising of Images," NTIRE Workshop, CVPR 2019.
[2] A. Susnjara, N. Perraudin, D. Kressner1, and P. Vandergheynst, "Accelerated filtering on graphs using Lanczos method," in unpublished, arXiv:1509.04537, 2015.

Deep GTV: experimental comparison

- Train on Gaussian ($\sigma=50$) and test on captured noise

(a) ground-truth
(b) noisy (PSNR: 23.56)
(c) CDnCNN-S (PSNR: 26.83)
(d) DeepGTV (PSNR: 28.82)

	DnCNN-S	DeepAGF	DeepGTV
\# Parameters	0.55 M	0.32 M	0.12 M

Table 3: Number of trainable parameters

Conclusion

- Graph is flexible abstraction to convey pairwise similarities.
- Similarity defined as correlation or feature distance.
- Graph frequencies contains global notions.
- Graph is an expression of domain knowledge.
- GSP leverages on mature understanding in SP and linear algebra.
- GSP tools are excellent for building hybrid model-based / data-driven systems.

```
Applications:
Image coding,
denoising, deblurring,
interpolation, contrast
enhancement, light
field image coding, 3D
point cloud denoising,
enhancement, sub-
sampling, super-
resolution, inpainting,
matrix completion,
semi-supervised
classifier learning,
video summarization
```


Contact Info

- Homepage:

https://www.eecs.yorku.ca/~genec/index.html

- E-mail:

genec@yorku.ca

- Forthcoming book:
G. Cheung, E. Magli, (edited) Graph Spectral Image Processing, ISTE/Wiley, June 2021.

