Graph Signal Analysis: Imaging, Learning, Sampling

Acknowledgement

Collaborators:

- X. Liu (HIT, China)
- W. Hu, W. Gao (Peking U., China)
- L. Fang (Tsinghua, China)
- C.-W. Lin (National Tsing Hua University, Taiwan)
- A. Ortega (USC, USA)
- D. Florencio (MSR, USA)
- J. Liang, I. Bajic (SFU, Canada)
- X. Wu (McMaster U, Canada)
- P. Frossard (EPFL, Switzerland)
- V. Stankovic (U of Strathclyde, UK)
- Y. Nakatsukasa (Oxford, UK)
- P. Le Callet (U of Nantes, France)

Introducing math tools

Students in EECS4452: "This is math, not engineering!"

Introducing math tools

Students in EECS4452: "This is math, not engineering!" Me: "Math is the heart of engineering!"

Outline

- Defining Graph frequencies
- Inverse Imaging
- Image denoising
- Image contrast enhancement
- 3D point cloud denoising / super-resolution
- Deep GLR
- Semi-Supervised Learning
- Graph Sampling
- Matrix completion

Outline

- Defining Graph frequencies
- Inverse Imaging
- Image denoising
- Image contrast enhancement
- 3D point cloud denoising / super-resolution
- Deep GLR
- Semi-Supervised Learning
- Graph Sampling
- Matrix completion

Signal Decomposition

- Decompose signal into basic components:

$$
\mathrm{X}=\sum_{k \in \mathrm{Z}} X_{k} \varphi_{k}
$$

- Newton decomposed white light into color components (1730).

Signal Decomposition

- Decompose signal into basic components:

$$
\mathrm{x}=\sum_{k \in \mathrm{Z}} X_{k} \varphi_{k}
$$

- Newton decomposed white light into color components (1730).
- "Basic" components can be complex exponentials:

$$
\begin{aligned}
& x=\sum_{k \in Z} X_{k} e^{j 2 \pi k t} \\
& X_{k}=\int x(t) e^{-j 2 \pi k t} d t
\end{aligned}
$$

Signal Decomposition

- Decompose signal into basic components:

$$
\mathrm{x}=\sum_{k \in \mathrm{Z}} X_{k} \varphi_{k}
$$

- Newton decomposed white light into color components (1730).
- "Basic" components can be complex exponentials:

$$
\begin{aligned}
& x=\sum_{k \in Z} X_{k} e^{j 2 \pi k t} \\
& X_{k}=\int x(t) e^{-j 2 \pi k t} d t
\end{aligned}
$$

- Complex exponentials are eigenfunctions of $2^{\text {nd }}$ derivative operator.

Digital Signal Processing

- Discrete signals on regular data kernels.
- Ex.1: audio on regularly sampled timeline.
- Ex.2: image on 2D grid.
- Harmonic analysis tools (transforms, wavelets):

- Compression, restoration, segmentation, etc.

sparse

2D DCT basis

Graph Signal Processing

- Signals on irregular data kernels described by graphs.
- Graph: nodes and edges.
- Edges reveals node-to-node relationships.

1. Harmonic Analysis of graph signals.
2. Embed pairwise similarity info into graph.

- Eigenvectors provide global info aggregated from local info.

Graph Signal Processing (GSP) provides spectral analysis tools for signals residing on graphs.

signal on graph kernel

GSP and Graph-related Research

GSP: SP framework that unifies concepts from multiple fields.

| Partial Differential
 Eq'ns | Laplace
 equation | Laplace-
 Beltrami
 operator | Computer Graphics |
| :---: | :---: | :---: | :---: | :---: |

Machine Learning

Graph Fourier Transform (GFT)

Graph Laplacian:

- Adjacency Matrix A: entry $A_{i, j}$ has non-negative edge weight $w_{i, j}$ connecting nodes i and j.

$$
\mathrm{A}=\left[\begin{array}{cccc}
0 & w_{1,2} & 0 & 0 \\
w_{1,2} & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- Degree Matrix D: diagonal matrix w/ entry $D_{i, i}$ being sum of column entries in row i of \mathbf{A}.

$$
\mathrm{D}=\left[\begin{array}{cccc}
w_{1,2} & 0 & 0 & 0 \\
0 & w_{1,2}+1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
D_{i, i}=\sum_{j} A_{i, j}
$$

- Combinatorial Graph Laplacian L: L = D-A
- L is related to $2^{\text {nd }}$ derivative. $\quad L_{3,:} \mathrm{x}=-x_{2}+2 x_{3}-x_{4}$

$$
\mathrm{L}=\left[\begin{array}{cccc}
w_{1,2} & -w_{1,2} & 0 & 0 \\
-w_{1,2} & w_{1,2}+1 & -1 & 0 \\
\hline 0 & -1 & 2 & -1 \\
\hline 0 & 0 & -1 & 1
\end{array}\right]
$$

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$

- L is a differential operator on graph.

Graph Spectrum from GFT

- Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

$$
\begin{aligned}
& \mathrm{L}=\mathrm{V}_{\checkmark} \sum_{\text {eigenvectors in columns }}^{\swarrow} \underbrace{\text { eigenvalues along diagonal }} \\
& \tilde{\mathrm{x}}=\mathrm{V}^{T} \mathrm{x} \\
& \text { GFT coefficients }
\end{aligned}
$$

1. Eigenvectors aggregates info from weights.

- Constant eigenvector is DC.
- \# zero-crossings increases as λ increases.

2. Eigenvalues (≥ 0) as graph frequencies.

- GFT defaults to DCTfor un-weighted connected line.
- GFT defaults to DFTfor un-weighted connected circle.

Graph Spectrum from GFT

- Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

$$
\begin{aligned}
& \mathrm{L}=\mathrm{V}_{\checkmark} \sum_{\text {eigenvectors in columns }}^{\swarrow \mathrm{V}^{T}} \\
& \tilde{\mathrm{x}}=\mathrm{V}^{T} \mathrm{x} \\
& \text { GFT coefficients }
\end{aligned}
$$

1. Eigenvectors aggregates info from weights.

- Constant eigenvector is DC.
- \# zero-crossings increases as λ increases.

2. Eigenvalues (≥ 0) as graph frequencies.

- GFT defaults to DCTfor un-weighted connected line.
- GFT defaults to DFTfor un-weighted connected circle.

Graph Frequency Examples (US Temperature)

- Weather stations from 100 most populated cities.
- Graph connections from Delaunay Triangulation*.
- Edge weights inverse proportion to distance.

V1: DC component

Graph Frequency Examples (US Temperature)

- Weather stations from 100 most populated cities.
- Graph connections from Delaunay Triangulation*.

Edge weights

$\mathrm{V} 2: 1^{\text {st }} \mathrm{AC}$ component

Graph Frequency Examples (US Temperature)

- Weather stations from 100 most populated cities.
- Graph connections from Delaunay Triangulation*.

Edge weights

V3: $2^{\text {nd }}$ AC component

Graph Frequency Examples (US Temperature)

- Weather stations from 100 most populated cities.
- Graph connections from Delaunay Triangulation*.

V4: $9^{\text {th }} \mathrm{AC}$ component

Outline

- Defining Graph frequencies
- Inverse Imaging
- Image denoising
- Image contrast enhancement
- 3D point cloud denoising / super-resolution
- Deep GLR
- Semi-Supervised Learning
- Graph Sampling
- Matrix completion

Graph Laplacian Regularizer

- $\mathrm{X}^{T} \mathrm{LX}$ (graph Laplacian regularizer) [1]) is one smoothness measure.

$$
\mathrm{x}^{T} \mathrm{Lx}=\frac{1}{2} \sum_{i, j} w_{i, j}\left(x_{i}-x_{j}\right)^{2}=\sum_{k} \lambda_{k} \tilde{x}_{k}^{2}
$$

- Signal Denoising:
- MAP Formulation:

$$
\searrow_{\mathrm{y}=}^{\text {nodal domain }} \overleftarrow{\mathrm{x}+\mathrm{V} \longleftarrow} \text { noise } \text { desired signal }
$$

fidelity term \longrightarrow

$$
\begin{aligned}
& \min _{x}\|\mathrm{y}-\mathrm{x}\|_{2}^{2}+\mu \mathrm{x}^{T} \mathrm{~L}_{\leftrightarrow}^{\mathrm{x}} \\
& \quad(\mathrm{I}+\mu \mathrm{L}) \mathrm{x}^{*}=\mathrm{y} \\
& \quad \text { smoothness prior } \\
& \text { linear system of eqn's w/ sparse, symmetric PD matrix }
\end{aligned}
$$

Graph Laplacian Regularizer

- $\mathrm{X}^{T} \mathrm{LX}$ (graph Laplacian regularizer) [1]) is one smoothness measure.

$$
\begin{aligned}
& \mathrm{x}^{T} \mathrm{Lx}=\frac{1}{2} \sum_{i, j} w_{i, j}\left(x_{i}-x_{j}\right)^{2}=\sum_{k} \lambda_{k} \tilde{x}_{k}^{2} \underset{\substack{\text { signal contains } \\
\text { mostly low graph freq. }}}{\text { oismooth in }} \\
& \text { oising: }
\end{aligned}
$$

- Signal Denoising:
- MAP Formulation: $\quad y=x+v$
pixel intensity diff. pixel location diff.

$$
\begin{gathered}
\min _{x}\|\mathrm{y}-\mathrm{x}\|_{2}^{2}+\mu \mathrm{x}^{T} \mathrm{Lx} \\
(\mathrm{I}+\mu \mathrm{L}) \mathrm{x}^{*}=\mathrm{y}
\end{gathered}
$$

Results: natural image denoising

- Subjective comparisons $\left(\sigma_{\mathrm{I}}=40\right)$

Original

BM3D, 27.99 dB

Noisy, 16.48 dB

PLOW, 28.11 dB

K-SVD, 26.84 dB

OGLR, 28.35 dB

Results: depth image denoising

- Subjective comparisons ($\sigma_{\mathrm{I}}=30$)

Original

Noisy, 18.66 dB

BM3D, 33.26 dB

GLR for Joint Dequantization / Contrast Enhancement

- Retinex decomposition model: reflectance

$$
\underset{\text { scalar }}{\mathrm{y}=} \underset{\pi}{\tau} \underset{\text { illumination }}{\mathrm{l}} \odot \mathrm{r}+\mathrm{z} \longleftarrow{ }_{\text {noise }}
$$

- Objective: general smoothness for luminance, smoothness $w /$ negative edges for reflectance.

$$
\begin{array}{ll}
\min _{1, \mathbf{r}} & \mathbf{l}^{\top}\left(\mathbf{L}_{l}+\alpha \mathbf{L}_{l}^{2}\right) \mathbf{l}+\mu \mathbf{r}^{\top} \mathcal{L}_{r} \overleftarrow{\mathbf{r}} \\
\text { s.t. } & \left(\mathbf{q}-\frac{1}{2}\right) \mathbf{Q} \preceq \mathbf{T} \tau \mathbf{l} \odot \mathbf{r} \prec\left(\mathbf{q}+\frac{1}{2}\right) \mathbf{Q}
\end{array}
$$

-Constraints: quantization bin constraints

- Solution: Alternating accelerated proximal gradient alg [1].

Results: Contrast Enhancement

(c)

Results: Contrast Enhancement

(d)
(e)

Results: Contrast Enhancement

GTV for Point Cloud Denoising

- Acquisition of point cloud introduces noise.
- Point cloud is irregularly sampled 2D manifold in 3D space.
- Not appropriate to apply GTV directly on 3D coordinates [1].
- only a singular 3D point has zero GTV value.

- Proposal: Apply GTV is to the surface normals of 3D point cloud-a generalization of TV to 3D geometry.

GTV for Point Cloud Denoising

- Acquisition of point cloud introduces noise.
- Point cloud is irregularly sampled 2D manifold in 3D space.
- Not appropriate to apply GTV directly on 3D coordinates [1].
- only a singular 3D point has zero GTV value.

- Proposal: Apply GTV is to the surface normals of 3D point cloud-a generalization of TV to 3D geometry.

GTV for Point Cloud Denoising

- Acquisition of point cloud introduces noise.
- Point cloud is irregularly sampled 2D manifold in 3D space.
- Not appropriate to apply GTV directly on 3D coordinates [1].
- only a singular 3D point has zero GTV value.

$\sum_{i}\left|y_{i}-y_{i-1}\right| \longrightarrow \sum_{i}\left\|\mathrm{n}_{i}-\mathrm{n}_{i-1}\right\|_{1}$

- Proposal: Apply GTV is to the surface normals of 3D point cloud-a generalization of TV to 3D geometry.

PC Denoising Algorithm

- Use GTV of surface normals over the K-NN graph:

$$
\|\mathbf{n}\|_{\mathrm{GTV}}=\sum_{i, j \in \mathcal{E}} w_{i, j}\left\|\mathbf{n}_{i}-\mathbf{n}_{j}\right\|_{1} \quad \int_{i} \mathbf{n}_{\boldsymbol{i}} \int_{j} \mathbf{n}_{\boldsymbol{j}} w_{i, j}=\exp \left(-\frac{\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\|_{2}^{2}}{\sigma_{p}^{2}}\right)
$$

- Denoising problem as I2-norm fidelity plus GTV of surface normals:

$$
\min _{\mathrm{p}, \mathrm{n}}\|\mathrm{q}-\mathrm{p}\|_{2}^{2}+\gamma \sum_{i, j \in E} w_{i, j}\left\|\mathrm{n}_{i}-\widehat{\mathrm{n}}_{j}\right\|_{1} \text { smoothness on surface normals }
$$

- Surface normal estimation of $\mathbf{n}_{\boldsymbol{i}}$ is a nonlinear function of $\mathbf{p}_{\boldsymbol{i}}$ and neighbors.

Proposal:

1. Partition point cloud into two independent classes (say red and blue).
2. When computing surface normal for a red node, use only neighboring blue points.
3. Solve convex optimization for red (blue) nodes alternately.

Results: Point Cloud Denoising

Results: Point Cloud Denoising

Daratech model ($\sigma=0.3$)

PC Super-Res Algorithm

- Add new interior points to low-res point cloud.

1. Construct triangular mesh using Delaunay triangulation using known points \mathbf{q}.
2. Insert new points at the centroids of triangles.

- Partition point cloud into two independent classes (say red and blue).
- When computing normal for a red node, use only neighboring blue points.
- Use graph total variation (GTV) of surface normals over the K-NN graph:

smoothness on surface normals

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathrm{I} & -\mathrm{B} \\
0 & \mathrm{C}
\end{array}\right]\left[\begin{array}{l}
\mathrm{m} \\
\mathrm{p}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{v} \\
\mathrm{q}
\end{array}\right]}
\end{aligned}
$$

- Solved via augmented Lagrangian + ADMM.

Results: Point Cloud Super-Resolution

- APSS and RIMLS schemes generate overly smooth models.
- Existing methods result in distorted surfaces with some details lost.

Results: Point Cloud Super-Resolution

(a) ground truth

(b) low resolution

(c) APSS

(d) RIMLS

(e) proposed

Outline

- Defining Graph frequencies
- Inverse Imaging
- Image denoising
- Image contrast enhancement
-3D point cloud denoising / super-resolution
- Deep GLR
- Semi-Supervised Learning
- Graph Sampling
- Matrix completion

Unrolling Graph Laplacian Regularizer

- Recall MAP formulation of denoising problem with quadratic graph Laplacian regularizer:

$$
\min _{x}\|\mathrm{y}-\mathrm{x}\|_{2}^{2}+\mu \mathrm{x}^{T} \mathrm{Lx}
$$

smoothness prior

- Solution is system of linear equations:

$$
(\mathrm{I}+\mu \mathrm{L}) \mathrm{x}^{*}=\mathrm{y}
$$

Unrolling Graph Laplacian Regularizer

- Recall MAP formulation of denoising problem with quadratic graph Laplacian regularizer:

$$
\min _{x}\|\mathrm{y}-\mathrm{x}\|_{2}^{2}+\mu \mathrm{x}^{T} \mathrm{Lx}
$$

smoothness prior

- Solution is system of linear equations:

$$
\left(\mathrm{I}+\mathrm{L}^{\mu \mathrm{L}) \mathrm{x}^{*}=}=\mathrm{y}\right.
$$

Q: what is the "most appropriate" graph?

Unrolling Graph Laplacian Regularizer

- Recall MAP formulation of denoising problem with quadratic graph Laplacian regularizer:

$$
\min _{x}\|\mathrm{y}-\mathrm{x}\|_{2}^{2}+\mu \mathrm{x}^{T} \mathrm{Lx}
$$

smoothness prior

- Solution is system of linear equations:

$$
(\mathrm{I}+\mu \mathrm{L}) \mathrm{x}^{*}=\mathrm{y}
$$

Q: what is the "most appropriate" graph?

$$
w_{i, j}=\exp \left(\frac{-\left\|x_{i}-x_{j}\right\|_{2}^{2}}{\sigma_{1}^{2}}\right) \exp \left(\frac{-\left\|l_{i}-l_{j}\right\|_{2}^{2}}{\sigma_{2}^{2}}\right)
$$

Unrolling Graph Laplacian Regularizer

- Deep Graph Laplacian Regularization:

1. Learn features \mathbf{f} 's using CNN.
$w_{i j}=\exp \left(-\frac{\operatorname{dist}(i, j)}{2 \epsilon^{2}}\right)$,
2. Compute distance from features.
3. Compute edge weights using Gaussian kernel.
4. Construct graph, solve QP.

$$
\operatorname{dist}(i, j)=\sum_{n=1}^{N}\left(\mathbf{f}_{n}(i)-\mathbf{f}_{n}(j)\right)^{2}
$$

Fig. 1. Block diagram of the proposed GLRNet which employs a graph Laplacian regularization layer for image denoising.

Unrolling Graph Laplacian Regularizer

Fig. 3. Network architectures of $\mathrm{CNN}_{\mathbf{F}}, \mathrm{CNN}_{\hat{\mathcal{V}}}$ and CNN_{μ} in the experiments. Data produced by the decoder of $\mathrm{CNN}_{\mathrm{F}}$ is colored in orange.

Unrolling Graph Laplacian Regularizer

Fig. 2. Block diagram of the overall DeepGLR framework.

- Graph Model guarantees numerical stability of solution:

$$
(\mathrm{I}+\mu \mathrm{L}) \mathrm{x}^{*}=\mathrm{y}
$$

- Thm 1: condition number к of matrix satisfies [1]:

$$
\kappa \leq 1+2 \mu d_{\text {max }} \overleftarrow{ } \longleftarrow \text { maximum node degree }
$$

- Observation: By restricting search space of CNN to degree-bounded graphs, we achieve robust learning.

Experimental Results - Numerical Comparison

- Trained on AWGN on 5 images, patches of size 26-by-26.
- Batch size is 4 , model is trained for 200 epochs.
- Trained for both known and blind noise variance.

Table 3. Average PSNR (dB) and SSIM values for Gaussian noise removal.

Noise	Method (PSNR/SSIM)			
CBM3D	CDnCNN	DeepGLR		
15	$33.49 / 0.9216$	$33.80 / 0.9268$	$33.65 / 0.9259$	
25	$30.68 / 0.8675$	$31.13 / 0.8799$	$31.03 / 0.8797$	
50	$27.35 / 0.7627$	$27.91 / 0.7886$	$27.86 / 0.7924$	

Experimental Results - Numerical Comparison

- Cross-domain generalization.
- trained on Gaussian noise, tested on low-light images in (RENOIR).
- Competing methods: DnCNN [1], noise clinic [2].
- outperformed DnCNN by 5.74 dB , and noise clinic by 1.87 dB .

Table 4. Evaluation of cross-domain generalization for real image denoising. The best results are highlighted in boldface.

Metric	Noisy	Method		
		Noise Clinic	CDnCNN	DeepGLR
PSNR	20.36	27.43	24.36	$\mathbf{3 0 . 1 0}$
SSIM	0.1823	0.6040	0.5206	$\mathbf{0 . 8 0 2 8}$

Experimental Results - Visual Comparison

- trained on Gaussian noise, tested on low-light images in (RENOIR).
- Competing methods: DnCNN [1], noise clinic [2].
- outperformed DnCNN by 5.74 dB , and noise clinic by 1.87 dB .

Noise Clinic

CDnCNN

DeepGLR

Experimental Results - Visual Comparison

- trained on Gaussian noise, tested on low-light images in (RENOIR).
- Competing methods: DnCNN [1], noise clinic [2].
- outperformed DnCNN by 5.74 dB , and noise clinic by 1.87 dB .

Noise Clinic

CDnCNN

DeepGLR

Outline

- Defining Graph frequencies
- Inverse Imaging
- Image denoising
- Image contrast enhancement
- 3D point cloud denoising / super-resolution
- Deep GLR
- Semi-Supervised Learning
- Graph Sampling
- Matrix completion

Semi-Supervised Graph Classifier Learning

- Binary Classifier: given feature vector x_{i} of dimension K, compute $f\left(X_{i}\right) \in\{0,1\}$.
- Classifier Learning: given partial, noisy labels ($x_{\text {; }}$ y_{i}), train classifier $f\left(x_{i}\right)$.

- GSP Approach [1]:

example graph-based classifier

1. Construct signed similarity graph with $+/-$ edges.
2. Pose MAP graph-signal restoration problem.
3. Perturb graph Laplacian to ensure PSD.
4. Solve num. stable MAP as sparse lin. system.

Semi-Supervised Graph Classifier Learning

- Binary Classifier: given feature vector x_{i} of dimension K, compute $f\left(X_{i}\right) \in\{0,1\}$.
- Classifier Learning: given partial, noisy labels (x_{i} y_{i}), train classifier $f\left(x_{i}\right)$.

- GSP Approach [1]:

example graph-based classifier

1. Construct signed similarity graph with $+/-$ edges.
2. Pose MAP graph-signal restoration problem.
3. Perturb graph Laplacian to ensure PSD.
4. Solve num. stable MAP as sparse lin. system. for signed graphs

- Graph Laplacian Regularizer [1]:

$$
\mathbf{x}^{T} \mathbf{L} \mathbf{x}=\sum_{(i, j) \in \mathcal{E}} w_{i, j}\left(x_{i}-x_{j}\right)^{2}=\sum_{k} \lambda_{k} \alpha_{k}^{2}
$$

eigenvalues / graph freqs

- Promote large / small inter-node differences depending on edge signs.

Promote large difference

- Sensible, but numerically unstable.

Semi-Supervised Learning Formulation

- MAP formulation:

- One sol'n is $\triangle=\lambda_{\text {min }}$ I, i.e. shift all eigenvalues up by $\eta=\lambda_{\text {min }}$.
- Intuition: signal variations + signal energies

$$
\begin{aligned}
\mathbf{x}^{T}(\mathbf{L}+\Delta) \mathbf{x} & =\mathbf{x}^{T} \mathbf{L} \mathbf{x}+\eta \mathbf{x}^{T} \mathbf{I} \mathbf{x} \\
& =\sum_{i, j} w_{i, j}\left(x_{i}-x_{j}\right)^{2}+\eta \sum_{i} x_{i}^{2}
\end{aligned}
$$

Results: Semi-Supervised Learning

- Comparisons w/ other classifiers:

TABLE II
CLASSIFICATION ERROR RATES IN THE BANANA DATASET FOR COMPETING SCHEMES UNDER DIFFERENT TRAINING LABEL ERROR RATES (THE NUMBERS IN THE PARENTHESES OF THE LAST ROW INDICATE THE REJECTION RATES)

$\%$ label noise	0%	5%	10%	15%	20%
SVM-Linear	54.71%	54.97%	54.70%	53.95%	53.42%
SVM-RBF	12.49%	13.27%	13.72%	16.23%	18.63%
RobustBoost [26]	20.42%	22.73%	24.53%	25.12%	27.52%
Graph-Pos	14.05%	15.89%	18.02%	20.76%	21.93%
Graph-MinNorm	10.23%	12.37%	14.44%	17.41%	18.69%
Graph-Bandlimited [58]	7.53%	11.77%	15.80%	19.14%	21.07%
Graph-AdjSmooth [9]	8.85%	12.08%	15.28%	18.26%	20.67%
Graph-Wavelet [6]	23.18%	24.25%	25.70%	27.15%	30.13%
Proposed-Centroid	$\mathbf{5 . 1 7 \%}$	10.50%	13.79%	16.80%	19.39%
Proposed-Boundary	13.37%	15.68%	18.27%	20.51%	22.72%
Proposed-Hybrid	5.36%	$\mathbf{9 . 4 3 \%}$	$\mathbf{1 2 . 7 9} \%$	$\mathbf{1 6 . 0 4 \%}$	$\mathbf{1 8 . 4 3 \%}$
Proposed-Rej	3.74%	6.57%	9.26%	12.19%	14.06%
	$\mathbf{9 . 5 9 \%)}$	$\mathbf{(9 . 8 9 \%)}$	(9.14%)	(9.96%)	$\mathbf{9 . 9 5 \%)}$

Results: Semi-Supervised Learning

- Comparisons w/ other classifiers:

TABLE II
CLASSIFICATION ERROR RATES IN THE BANANA DATASET FOR COMPETING SCHEMES UNDER DIFFERENT TRAINING LABEL ERROR RATES (THE NUMBERS IN THE PARENTHESES OF THE LAST ROW INDICATE THE REJECTION RATES)

$\%$ label noise	0%	5%	10%	15%	20%
SVM-Linear	54.71%	54.97%	54.70%	53.95%	53.42%
SVM-RBF	12.49%	13.27%	13.72%	16.23%	18.63%
RobustBoost [26]	20.42%	22.73%	24.53%	25.12%	27.52%
Graph-Pos	14.05%	15.89%	18.02%	20.76%	21.93%
Graph-MinNorm	10.23%	12.37%	14.44%	17.41%	18.69%
Graph-Bandlimited [58]	7.53%	11.77%	15.80%	19.14%	21.07%
Graph-AdjSmooth [9]	8.85%	12.08%	15.28%	18.26%	20.67%
Graph-Wavelet [6]	23.18%	24.25%	25.70%	27.15%	30.13%
Proposed-Centroid	$\mathbf{5 . 1 7 \%}$	10.50%	13.79%	16.80%	19.39%
Proposed-Boundary	13.37%	15.68%	18.27%	20.51%	22.72%
	Proposed-Hybrid	5.36%	$\mathbf{9 . 4 3 \%}$	$\mathbf{1 2 . 7 9 \%}$	$\mathbf{1 6 . 0 4 \%}$
	$\mathbf{1 8 . 4 3 \%}$				
	Proposed-Rej	3.74%	6.57%	9.26%	12.19%
14.06%					
	(9.59%)	(9.89%)	(9.14%)	$\mathbf{9 . 9 6 \%}$	(9.95%)

Results: Semi-Supervised Learning

- Comparisons w/ other classifiers:

TABLE III
CLASSIFICATION ERROR RATES IN THE FACE GENDER DATASET FOR COMPETING SCHEMES UNDER DIFFERENT TRAINING LABEL ERROR RATES (THE NUMBERS IN THE PARENTHESES OF THE LAST ROW INDICATE THE REJECTION RATES)

\% label noise	0%	5%	10%	15%	20%
SVM-Linear	17.65%	18.22%	18.77%	19.59%	21.6%
SVM-RBF	12.14%	12.16%	12.83%	16.30%	24.01%
RobustBoost [26]	9.15%	11.09%	14.36%	17.36%	20.68%
Graph-Pos	13.15%	13.62%	14.38%	15.39%	16.54%
Graph-MinNorm	7.15%	8.26%	9.48%	10.37%	12.01%
Graph-Bandlimited [58]	5.78%	11.83%	15.30%	19.74%	23.44%
Graph-AdjSmooth [9]	$\mathbf{1 . 2 5 \%}$	5.01%	7.94%	11.45%	15.39%
Graph-Wavelet [6]	20.02%	19.95%	20.12%	20.7%	21.43%
Proposed-Centroid	1.44%	$\mathbf{2 . 9 6 \%}$	4.46%	5.88%	8.07%
Proposed-Boundary	10.81%	12.09%	13.17%	14.33%	15.96%
Proposed-Hybrid	1.71%	3.02%	$\mathbf{4 . 2 2 \%}$	$\mathbf{5 , 7 5} \%$	$\mathbf{7 . 7 1 \%}$
Proposed-Rej	0.36%	0.68%	1.08%	2.39%	4.18%
	(9.70%)	(9.29%)	(9.85%)	$\mathbf{9 . 0 8 \%})$	(9.05%)

Results: Semi-Supervised Learning

- Comparisons w/ other classifiers:

TABLE III
CLASSIFICATION ERROR RATES IN THE FACE GENDER DATASET FOR COMPETING SCHEMES UNDER DIFFERENT TRAINING LABEL ERROR RATES (THE NUMBERS IN THE PARENTHESES OF THE LAST ROW INDICATE THE REJECTION RATES)

\% label noise	0%	5%	10%	15%	20%
SVM-Linear	17.65%	18.22%	18.77%	19.59%	21.6%
SVM-RBF	12.14%	12.16%	12.83%	16.30%	24.01%
RobustBoost [26]	9.15%	11.09%	14.36%	17.36%	20.68%
Graph-Pos	13.15%	13.62%	14.38%	15.39%	16.54%
Graph-MinNorm	7.15%	8.26%	9.48%	10.37%	12.01%
Graph-Bandlimited [58]	5.78%	11.83%	15.30%	19.74%	23.44%
Graph-AdjSmooth [9]	$\mathbf{1 . 2 5 \%}$	5.01%	7.94%	11.45%	15.39%
Graph-Wavelet [6]	20.02%	19.95%	20.12%	20.7%	21.43%
Proposed-Centroid	1.44%	$\mathbf{2 . 9 6 \%}$	4.46%	5.88%	8.07%
Proposed-Boundary	10.81%	12.09%	13.17%	14.33%	15.96%
	Proposed-Hybrid	1.71%	3.02%	$\mathbf{4 . 2 2 \%}$	$\mathbf{5 , 7 5 \%}$
	Proposed-Rej	0.36%	0.68%	1.08%	2.39%
	(9.70%)	(9.29%)	$\mathbf{(9 . 8 5 \%)}$	(9.08%)	$\mathbf{1 . 0 5 \%}$

Outline

- Defining Graph frequencies
- Inverse Imaging
- Image denoising
- Image contrast enhancement
- 3D point cloud denoising / super-resolution
- Deep GLR
- Semi-Supervised Learning
- Graph Sampling
- Matrix completion

Graph Sampling (with and without noise)

- Q: How to choose best samples for graph-based reconstruction?
- Existing graph sampling strategies extend Nyquist sampling to graph data kernels:
- Assume bandlimited signal.
- Greedily select most "informative" samples by computing extreme eigenvectors of sub-matrix.

- Computation-expensive.

Related Works

Eigen-decomposition Free
[1] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, "Sampling of graph signals with successive local aggregations." IEEE Transactions on Signal Processing, vol. 64, no. 7, pp. 1832-1843, 2016.
[2] X. Wang, J. Chen, and Y. Gu, "Local measurement and reconstruction for noisy bandlimited graph signals," Signal Processing, vol. 129, pp. 119-129, 2016.
[3] G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst, "Random sampling of bandlimited signals on graphs," Applied and

Signal Reconstruction using GLR

- Signal Model: $\stackrel{\mathbf{y}}{\text { observation }}=\stackrel{\mathbf{H x}+\mathbf{v} \longleftarrow}{\substack{\text { sampling matrix } \\ \text { desired signal }}}$
- Signal prior is graph Laplacian regularizer (GLR) [1]:

$$
\mathbf{x}^{T} \mathbf{L} \mathbf{x}=\frac{1}{2} \sum_{i, j} w_{i, j}\left(x_{i}-x_{j}\right)^{2}=\sum_{k} \lambda_{k} \tilde{x}_{k}^{2}{ }_{\text {signal smooth w.r.t. graph }}^{\longleftrightarrow} \quad \begin{gathered}
\text { signal contains } \\
\text { mostly low graph freq. }
\end{gathered}
$$

- MAP Formulation:

$\left(\mathbf{H}^{T} \mathbf{H}+\mu \mathbf{L}\right) \mathbf{x}^{*}=\mathbf{y}$

Stability of Linear System

- Examine system of linear equations:

$\left(\mathbf{H}^{T} \mathbf{H}+\mu \mathbf{L}\right) \mathbf{x}^{*}=\mathbf{y}$

coefficient matrix B

- Stability depends on the condition number $\left(\lambda_{\max } / \lambda_{\text {min }}\right)$ of coeff. matrix \mathbf{B}.
- $\lambda_{\text {max }}$ is upper-bounded by $1+\mu 2^{*} \mathrm{~d}_{\max }$.
- Goal: select samples to maximize $\lambda_{\text {min }}$ (without computing eigen-pairs)!
- Also minimizes worst-case MSE:

$$
\|\hat{\mathbf{x}}-\mathbf{x}\|_{2} \leq \mu\left\|\frac{1}{\lambda_{\min }(\mathbf{B})}\right\|_{2}\|\mathbf{L}(\mathbf{x}+\widetilde{\mathbf{n}})\|_{2}+\|\widetilde{\mathbf{n}}\|_{2}
$$

Gershgorin Circle Theorem

- Gershgorin Circle Theorem:
- Row iof L maps to a Gershgorin disc w/ centre $L_{i j}$ and radius R_{i}

$$
R_{i}=\sum_{j \neq i}\left|L_{i j}\right|
$$

- $\lambda_{\text {min }}$ is lower-bounded by smallest left-ends of Gershgorin discs:

$$
\min _{i} L_{i, i}-R_{i} \leq \lambda_{\min }
$$

- Graph Laplacian L has all Gershgorin disc left-ends at $0 \rightarrow \mathbf{L}$ is psd.

Gershgorin Disc Alignment

- Main Idea: Select samples to max smallest disc left-end of coefficient matrix B:

$$
\mathbf{B}=\mathbf{H}^{T} \mathbf{H}+\mu \mathbf{L} \longleftarrow \text { coeff. matrix }
$$

- Sample node \rightarrow shift disc.
- Consider similar transform of \mathbf{B} :

$$
\mathbf{C}=\mathbf{S} \mathbf{B ~ S}^{-1}
$$

\qquad
diagonal matrix w/ scale factors

- Scale row \rightarrow expand disc radius.
\rightarrow shrink neighbors' disc radius.

Aligning discs at threshold T

Breadth First Iterative Sampling (BFIS):

- Given initial node set, threshold T.

1. Sample chosen node i
(shift disc)
2. Scale row i
(expand disc radius i to T)

3. If disc left-end of connected node $j>T$, Scale row $;$
(expand disc radius j to T)
Else,
Add node j to node set.
4. Goto 1 if node set not empty.
5. Output sample set and count K.

Gershgorin Disc Alignment (math)

- Binary Search with BFIS:
- Sample count K inverse proportional to threshold T.
- Binary search on T to drive count K to budget.
- Example: line graph with equal edge weight.
- Uniform sampling.

Disc-based Sampling (intuition)

- Analogy: throw pebbles into a pond.
- Disc Shifting: throw pebble at sample node i.
- Disc Scaling: ripple to neighbors of node i.
- Goal: Select min \# of samples so ripple at each node is at least T.

Results: Graph Sampling

- GDA is $100 x$ to $1000 x$ faster than state-of-art methods computing e-vectors.
- GDA is "comparable" in complexity to Random [23] and Ed-free [8].

TABLE II
 SPEEDUP FACTORS OF OUR ALGORITHM WITH RESPECT TO OTHER SAMPLING ALGORITHMS FOR $N=3000$

Sampling Methods	Sensor	Community
Random [23]	0.22	0.21
E-opt imal [20]	2812.77	1360.76
SP [12]	174.09	466.18
MFN [18]	2532.91	1184.23
MIA [16]	1896.19	964.65
Ed-free [8]	1.82	8.11

Results: Graph Sampling

- Small graphs: GDA has roughly the same reconstruction MSE.
- Random sensor graph of size 500 for two signal types.

(a)

(b)

Results: Graph Sampling

- Large graphs: GDA has smallest reconstruction MSE.
- Minnesota road graph of size 2642 and for two signal types.

(e)

(f)

Matrix Completion

- Fill in missing entries in a matrix:
(Low-rank matrix recovery problem)
$\min _{\mathrm{X} \in R^{M \times N}} \operatorname{rank}(\mathrm{X})$

1	2			
	4			
		3		
				2
			3	

s.t. $\quad X_{i, j}=M_{i, j}, \quad \forall i, j \in S$

- Examples of applications:
- Recommendation system-making rating prediction.
- Remote sensing-infer full covariance matrix from partial correlations.
- Structure-from-motion in computer vision.

Matrix Completion

- Convex relaxation to nuclear norm:

$$
\begin{aligned}
& \min _{\mathrm{X} \in R^{M \times N}}\|\mathrm{X}\|_{*} \\
& \text { s.t. } \quad X_{i, j}=M_{i, j}, \quad \forall i, j \in S
\end{aligned}
$$

Graph Fourier transform on \mathbf{L}_{r} Graph Fourier transform on \mathbf{L}_{c}

- Proximal Gradient: SVD plus singular value soft-thresholding.
- Use dual graph-signal smoothness prior to promote low rank [1]: $\min _{\mathrm{X} \in R^{M \times N}} \operatorname{tr}\left(\mathrm{X}^{T} \mathrm{~L}_{r} \mathrm{X}\right)+\gamma \operatorname{tr}\left(\mathrm{XL}_{c} \mathrm{X}^{T}\right)+\mu\|\mathrm{S} \circ \mathrm{M}-\mathrm{S} \circ \mathrm{X}\|_{F}^{2}$
- Unconstrained convex objective solvable via ADMM, conjugate gradient.

Results: Sampling for matrix completion

- [1] Guillermo Ortiz-Jiménez, Mario Coutino, Sundeep Prabhakar Chepuri, and Geert Leus. "Sampling and reconstruction of signals on product graphs". arXiv preprint arXiv:1807.00145, 2018.
- [2] G. Puy, N. Tremblay, R. Gribonval, and P. Vandergheynst, "Random sampling of bandlimited signals on graphs," Applied and Computational Harmonic Analysis, vol. 44, no. 2, pp. 446-475, 2018.
- [3] A. Sakiyama, Y. Tanaka, T. Tanaka, and A. Ortega, "Eigendecomposition-free sampling set selection for graph signals,"'IEEE Transactions on Signal Processing, 2019.

Results: Sampling for matrix completion

	SVT [1]	GRALS [2]	GMC [3]	NMC [4]
G1	$1.021 \mid 1.031$	$0.947 \mid 0.931$	$1.036 \mid 1.037$	$0.890 \mid 0.888$
G2	$1.021 \mid 0.983$	$0.945 \mid 0.893$	$1.118 \mid 1.054$	$0.890 \mid 0.858$

Table: RMSE of different matrix completion methods on Mocielens_100k dataset with different sampling strategies on Feature-based graph (G1) and Content-based graph (G2). In each grid, the value on left side belongs to random sampling; the right side value is of our proposed IGCS sampling. The best performance in each row is marked in bold and red. In our experiments, the sampling budget is 80 k out of 100 k available ratings; We first use random 60k samples as given, and then proceed to sample the next 20k samples base on random sampling or the proposed IGCS sampling.

- [1] J. Cai, E. J. Candes, and Z. Shen. "A singular value thresholding algorithm for matrix completion". preprint, 2008.
- [2] N. Rao, H.-F. Yu, P. K. Ravikumar, and I. S. Dhillon. "Collaborative filtering with graph information: Consistency and scalable methods". In Proc. NIPS, 2015.
- [3] V. Kalofolias, X. Bresson, M. M. Bronstein, and P. Vandergheynst." Matrix completion on graphs. "2014.
- [4] D. M. Nguyen, E. Tsiligianni, and N. Deligiannis, "Extendable neural matrix completion," in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2018, pp. 1-5.

Summary

- Graph Spectral Analyis Tools
- Similarity graph, graph frequencies.

Q\&A

- Email: genec@yorku.ca
- Homepage: https://www.eecs.yorku.ca/~genec/index.html

Primal Sample Selection Problem

- Optimization: Select sample vector a and scalars s:

- Difficulty: max-min objective is hard to optimize.

Dual Sample Selection Problem

- Dual Formulation: Select sample vector a and scalars s:

$$
\begin{aligned}
& \min _{\mathbf{a}, \mathbf{s}} \sum_{i=1}^{N} a_{i} \text { total number of samples } \\
& \text { s.t. } \mathbf{C}=\mathbf{S}(\mathbf{A}+\mu \mathbf{L}) \mathbf{S}^{-1}, \quad c_{i i}-\sum_{j \neq i}\left|c_{i j}\right| \geq T, \quad \forall i \\
& \quad \mathbf{A}=\operatorname{diag}(\mathbf{a}), \quad a_{i} \in\{0,1\}, \\
& \mathbf{S}=\operatorname{diag}(\mathbf{s}), \quad s_{i}>0 .
\end{aligned}
$$

- Proposition: If there exists threshold T s.t. optimal sol'n (a,s) to dual satisfies $\sum a_{i}=K$, one dual sol'n is also optimal to primal.

