Linear Algebra Review & Recent Progress

Gene Cheung

York University

October 17, 2019

イロン イヨン イヨン イヨン 三日

1/17

- What is linear algebra?
- Why should I care?
- System of Linear Equations
- Eigen-decomposition

### What is Linear Algebra?

• At the risk of over-simplification, linear algebra solves two problems:

<sup>1</sup>Matrix **A** and vector **y** can also be complex:  $\mathbf{A} \in \mathbb{C}^{n \times n}$ ,  $\mathbf{y} \in \mathbb{C}^{n}$ .

<sup>2</sup>One can also pose the generlized eigenvalue problem:  $Ay = \lambda Bv$ . ( $z \to z \to -\infty$ )

- At the risk of over-simplification, linear algebra solves two problems:
  - **System of linear equations**: given matrix<sup>1</sup> $\mathbf{A} \in \mathbb{R}^{n \times n}$  and vector  $\mathbf{y} \in \mathbb{R}^{n}$ , find  $\mathbf{x}$

$$\mathbf{A}\mathbf{x} = \mathbf{y} \tag{1}$$

<sup>1</sup>Matrix **A** and vector **y** can also be complex:  $\mathbf{A} \in \mathbb{C}^{n \times n}$ ,  $\mathbf{y} \in \mathbb{C}^{n}$ .

<sup>2</sup>One can also pose the generlized eigenvalue problem:  $Av = \lambda Bv \in \mathbb{R}$ 

- At the risk of over-simplification, linear algebra solves two problems:
  - **System of linear equations**: given matrix<sup>1</sup> $\mathbf{A} \in \mathbb{R}^{n \times n}$  and vector  $\mathbf{y} \in \mathbb{R}^{n}$ , find  $\mathbf{x}$

$$\mathbf{A}\mathbf{x} = \mathbf{y} \tag{1}$$

2 Eigen-decomposition: given matrix  $\mathbf{A} \in \mathbb{R}^{n \times n}$ , find eigen-pair<sup>2</sup>( $\lambda, \mathbf{v}$ ), where  $\lambda \in \mathbb{R}$ and  $\mathbf{v} \in \mathbb{R}^{n}$ , such that

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v} \tag{2}$$

<sup>1</sup>Matrix **A** and vector **y** can also be complex:  $\mathbf{A} \in \mathbb{C}^{n \times n}$ ,  $\mathbf{y} \in \mathbb{C}^{n}$ .

<sup>2</sup>One can also pose the generlized eigenvalue problem:  $Ay = \lambda Bv$ . (1)  $Ay = \lambda Bv$ .

• Ax = y yields solution to the least-square problem<sup>3</sup>:

- Ax = y yields solution to the least-square problem<sup>3</sup>:
  - **Overdetermined equation**: For "tall" matrix **H**, solve

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_2^2 \tag{3}$$

$$\implies \mathbf{H}^{\top}\mathbf{H}\,\mathbf{x}^* = \mathbf{H}^{\top}\mathbf{y} \tag{4}$$

- Ax = y yields solution to the least-square problem<sup>3</sup>:
  - **Overdetermined equation**: For "tall" matrix **H**, solve

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_2^2 \tag{3}$$

$$\implies \mathbf{H}^{\top}\mathbf{H}\,\mathbf{x}^* = \mathbf{H}^{\top}\mathbf{y} \tag{4}$$

**Output** Underdetermined equation: For "fat" matrix **H**, solve

$$\min_{\mathbf{x}} \|\mathbf{x}\|_2^2 \quad \text{s.t.} \quad \mathbf{y} = \mathbf{H}\mathbf{x}$$
 (5)

$$\implies \begin{bmatrix} \mathbf{I} & -\frac{1}{2}\mathbf{H}^{\top} \\ \mathbf{H} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \boldsymbol{\mu} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{y} \end{bmatrix}$$
(6)

- Ax = y yields solution to the least-square problem<sup>3</sup>:
  - Overdetermined equation: For "tall" matrix H, solve

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_2^2 \tag{3}$$

$$\implies \mathbf{H}^{\top}\mathbf{H}\,\mathbf{x}^* = \mathbf{H}^{\top}\mathbf{y} \tag{4}$$

Onderdetermined equation: For "fat" matrix H, solve

$$\min_{\mathbf{x}} \|\mathbf{x}\|_2^2 \quad \text{s.t.} \quad \mathbf{y} = \mathbf{H}\mathbf{x}$$
 (5)

$$\implies \begin{bmatrix} \mathbf{I} & -\frac{1}{2}\mathbf{H}^{\top} \\ \mathbf{H} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \boldsymbol{\mu} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{y} \end{bmatrix}$$
(6)

Regularization:

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_2^2 + \lambda \|\mathbf{A}\mathbf{x}\|_2^2$$
(7)

$$\Rightarrow \left(\mathbf{H}^{\top}\mathbf{H} + \lambda \mathbf{A}^{\top}\mathbf{A}\right)\mathbf{x}^{*} = \mathbf{H}^{\top}\mathbf{y}$$
(8)

 $\mathbf{3}_{http://eeweb.poly.edu/iselesni/lecture\_notes/least\_squares/index.html}$ 

=

• Condition number  $\kappa(\mathbf{A})$  of coefficient matrix  $\mathbf{A}$ :

$$\kappa(\mathbf{A}) = \frac{|\lambda_{\max}(\mathbf{A})|}{|\lambda_{\min}(\mathbf{A})|}$$
(9)

• Evaluate stability of  $\mathbf{A}\mathbf{x} = \mathbf{y}$ .

• Condition number  $\kappa(\mathbf{A})$  of coefficient matrix  $\mathbf{A}$ :

$$\kappa(\mathbf{A}) = \frac{|\lambda_{\max}(\mathbf{A})|}{|\lambda_{\min}(\mathbf{A})|}$$
(9)

• E-optimality criteria:

$$\max_{\mathbf{A}\in\mathcal{S}} \lambda_{\min}(\mathbf{A}) \tag{10}$$

• Evaluate stability of  $\mathbf{A}\mathbf{x} = \mathbf{y}$ .

• Condition number  $\kappa(\mathbf{A})$  of coefficient matrix  $\mathbf{A}$ :

$$\kappa(\mathbf{A}) = \frac{|\lambda_{\max}(\mathbf{A})|}{|\lambda_{\min}(\mathbf{A})|}$$
(9)

• E-optimality criteria:

$$\max_{\mathbf{A}\in\mathcal{S}} \lambda_{\min}(\mathbf{A}) \tag{10}$$

• Compute graph frequencies <sup>4</sup>:

Define variation operator Φ on graph, e.g., graph Laplacian matrix L:

$$\mathbf{L} = \mathbf{D} - \mathbf{W} \tag{11}$$



Compute Fourier modes for L via eigen-decomposition.

$$\mathbf{L} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\top} \tag{12}$$

where **V** contains eigenvectors  $\mathbf{v}_1, \mathbf{v}_2, \ldots$  as columns, and  $\mathbf{A} = \operatorname{diag}(\lambda_1, \lambda_2, \ldots)$ .

 4
 A. Ortega et al., "Graph signal processing: Overview, challenges, and applications," Proceedings of the IEEE, vol.

 106, no. 5, pp. 808–828, 2018.
 < □ > < ⊡ > < ⊡ > < ≅ > < ≅ > 

- Cosines are eigenfunctions of differential operator:
  - Construct graph Laplacian L for line graph with weights 1. 2
    - Compute eigenvectors for L.

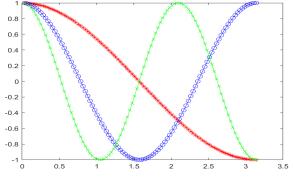


Figure: Eigenvectors of line graph Laplacian matrix  $\mathbf{L} = \mathbf{D} - \mathbf{W}$ 

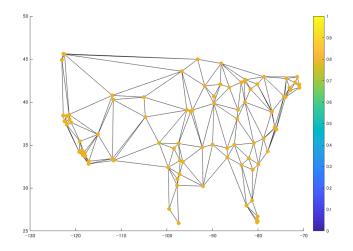


Figure: 1st eigenvector of graph Laplacian matrix  $\mathbf{L} = \mathbf{D} - \mathbf{W}$ 

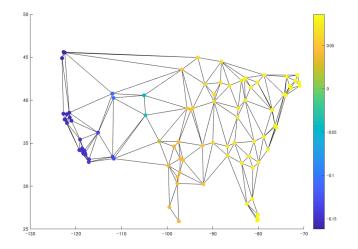


Figure: 2nd eigenvector of graph Laplacian matrix  $\mathbf{L} = \mathbf{D} - \mathbf{W}$ 

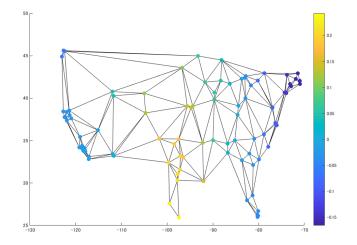


Figure: 3rd eigenvector of graph Laplacian matrix  $\mathbf{L} = \mathbf{D} - \mathbf{W}$ 

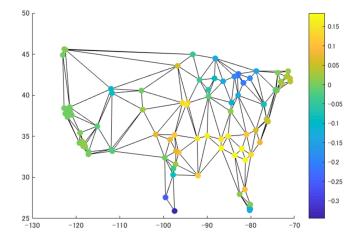


Figure: 9th eigenvector of graph Laplacian matrix  $\mathbf{L} = \mathbf{D} - \mathbf{W}$ 

**Q**: How to solve Ax = b?

<sup>&</sup>lt;sup>5</sup>M. R. Hestenes and E. Stiefel, "Methods of conjugate gradients for solving linear systems," *Journal of Research of the National Bureau of Standards*, 1952, vol. 49, no. 1.

- **Q**: How to solve Ax = b?
- A: Many methods.

 $<sup>^{5}</sup>$ M. R. Hestenes and E. Stiefel, "Methods of conjugate gradients for solving linear systems," *Journal of Research of the National Bureau of Standards*, 1952, vol. 49, no. 1.

- **Q**: How to solve Ax = b?
- A: Many methods.
  - **Gaussian elimination**.

 $<sup>^{5}</sup>$ M. R. Hestenes and E. Stiefel, "Methods of conjugate gradients for solving linear systems," *Journal of Research of the National Bureau of Standards*, 1952, vol. 49, no. 1.

- **Q**: How to solve Ax = b?
- A: Many methods.
  - **Gaussian elimination**.
  - If A is symmetric and positive semi-definite (PSD), then Cholesky decomposition.

<sup>&</sup>lt;sup>5</sup>M. R. Hestenes and E. Stiefel, "Methods of conjugate gradients for solving linear systems," *Journal of Research of the National Bureau of Standards*, 1952, vol. 49, no. 1.

- **Q**: How to solve Ax = b?
- A: Many methods.
  - **Gaussian elimination**.
  - If A is symmetric and positive semi-definite (PSD), then Cholesky decomposition.
  - If A is diagonally dominant, Jacobi method.

- **Q**: How to solve Ax = b?
- A: Many methods.
  - **Gaussian elimination**.
  - If A is symmetric and positive semi-definite (PSD), then Cholesky decomposition.
  - If A is diagonally dominant, Jacobi method.
  - If A is diagonally dominant, or symmetric and PD, Gauss-Seidel method.

<sup>&</sup>lt;sup>5</sup>M. R. Hestenes and E. Stiefel, "Methods of conjugate gradients for solving linear systems," *Journal of Research of the National Bureau of Standards*, 1952, vol. 49, no. 1.

- **Q**: How to solve Ax = b?
- A: Many methods.
  - **Gaussian elimination**.
  - If A is symmetric and positive semi-definite (PSD), then Cholesky decomposition.
  - If A is diagonally dominant, Jacobi method.
  - If A is diagonally dominant, or symmetric and PD, Gauss-Seidel method.
  - Successive approximations using Krylov subspace methods:

<sup>5</sup>M. R. Hestenes and E. Stiefel, "Methods of conjugate gradients for solving linear systems," *Journal of Research of the National Bureau of Standards*, 1952, vol. 49, no. 1.

- **Q**: How to solve Ax = b?
- A: Many methods.
  - Gaussian elimination.
  - If A is symmetric and positive semi-definite (PSD), then Cholesky decomposition.
  - If **A** is diagonally dominant, **Jacobi method**.
  - If A is diagonally dominant, or symmetric and PD, Gauss-Seidel method.
  - Successive approximations using Krylov subspace methods:
     If A symmetric and PD, Conjugate Gradient<sup>5</sup>.

<sup>&</sup>lt;sup>5</sup>M. R. Hestenes and E. Stiefel, "Methods of conjugate gradients for solving linear systems," *Journal of Research of the National Bureau of Standards*, 1952, vol. 49, no. 1.

**Q**: How to solve  $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ ?

- **Q**: How to solve  $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$ ?
  - **1** How to compute eigenvalues  $\lambda$ 's?
  - e How to compute eigenvectors v's?

- **Q**: How to solve  $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$ ?
  - **1** How to compute eigenvalues  $\lambda$ 's?
  - **2** How to compute eigenvectors  $\mathbf{v}$ 's?
- A: Many methods.

- **Q**: How to solve  $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$ ?
  - **1** How to compute eigenvalues  $\lambda$ 's?
  - e How to compute eigenvectors v's?
- A: Many methods.
  - Over method.

- **Q**: How to solve  $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$ ?
  - **1** How to compute eigenvalues  $\lambda$ 's?
  - e How to compute eigenvectors v's?
- A: Many methods.
  - Power method.
  - QR algorithm.

- **Q**: How to solve  $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ ?
  - **1** How to compute eigenvalues  $\lambda$ 's?
  - e How to compute eigenvectors v's?
- A: Many methods.
  - Over method.
  - **QR** algorithm.
  - Successive approximations using Krylov subspace methods:

- **Q**: How to solve  $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$ ?
  - **1** How to compute eigenvalues  $\lambda$ 's?
  - e How to compute eigenvectors v's?
- A: Many methods.
  - Over method.
  - **QR** algorithm.
  - Successive approximations using Krylov subspace methods:
    - Arnoldi iteration.

- **Q**: How to solve  $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$ ?
  - **1** How to compute eigenvalues  $\lambda$ 's?
  - e How to compute eigenvectors v's?
- A: Many methods.
  - Over method.
  - **QR** algorithm.
  - Successive approximations using Krylov subspace methods:
    - Arnoldi iteration.
    - Divide-and-conquer algorithm.

- **Q**: How to solve  $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$ ?
  - **1** How to compute eigenvalues  $\lambda$ 's?
  - e How to compute eigenvectors v's?
- A: Many methods.
  - Power method.
  - **QR** algorithm.
  - Successive approximations using Krylov subspace methods:
    - Arnoldi iteration.
    - Divide-and-conquer algorithm.
    - If A Hermetian, Lanczos algorithm.

### Lower-bounding Smallest Eigenvalue $\lambda_{\min}$

• Recall E-optimality criteria:

$$\max_{\mathbf{A}\in\mathcal{S}}\lambda_{\min}(\mathbf{A}) \tag{13}$$

<sup>&</sup>lt;sup>6</sup>R. S. Varga, *Gersgorin and His Circles* Springer, 2004

### Lower-bounding Smallest Eigenvalue $\lambda_{\min}$

• Recall E-optimality criteria:

$$\max_{\mathbf{A}\in\mathcal{S}}\lambda_{\min}(\mathbf{A}) \tag{13}$$

Gershgorin Circle Theorem (GCT) <sup>6</sup>

<sup>&</sup>lt;sup>6</sup>R. S. Varga, *Gersgorin and His Circles* Springer, 2004

• Recall E-optimality criteria:

$$\max_{\mathbf{A}\in\mathcal{S}}\lambda_{\min}(\mathbf{A}) \tag{13}$$

### Gershgorin Circle Theorem (GCT) <sup>6</sup>

• Given matrix **A**, Gershgorin disc *i*,  $\Phi_i$ , has centre  $c_i = A_{ii}$  and radius  $r_i = \sum_{j \neq i} |A_{ij}|$ .

<sup>&</sup>lt;sup>6</sup>R. S. Varga, *Gersgorin and His Circles* Springer, 2004

• Recall E-optimality criteria:

$$\max_{\mathbf{A}\in\mathcal{S}}\lambda_{\min}(\mathbf{A}) \tag{13}$$

#### Gershgorin Circle Theorem (GCT) <sup>6</sup>

- Given matrix **A**, Gershgorin disc *i*,  $\Phi_i$ , has centre  $c_i = A_{ii}$  and radius  $r_i = \sum_{j \neq i} |A_{ij}|$ .
- For each eigenvalue  $\lambda$  of **A**, there exists a disc  $\Phi_i$  such that:

$$c_i - r_i \le \lambda \le c_i + r_i \tag{14}$$

<sup>&</sup>lt;sup>6</sup>R. S. Varga, *Gersgorin and His Circles* Springer, 2004

• Recall E-optimality criteria:

$$\max_{\mathbf{A}\in\mathcal{S}}\lambda_{\min}(\mathbf{A}) \tag{13}$$

#### Gershgorin Circle Theorem (GCT) <sup>6</sup>

- Given matrix **A**, Gershgorin disc *i*,  $\Phi_i$ , has centre  $c_i = A_{ii}$  and radius  $r_i = \sum_{j \neq i} |A_{ij}|$ .
- For each eigenvalue  $\lambda$  of **A**, there exists a disc  $\Phi_i$  such that:

$$c_i - r_i \le \lambda \le c_i + r_i \tag{14}$$

Compute a lower bound for λ<sub>min</sub>(A) without computing eigen-pairs:

$$\lambda_{\min}^{-}(\mathbf{A}) = \min_{i} c_{i} - r_{i} \le \lambda_{\min}(\mathbf{A})$$
(15)

<sup>&</sup>lt;sup>6</sup>R. S. Varga, *Gersgorin and His Circles* Springer, 2004

### **Q**: How tight is GCT lower bound $\lambda_{\min}^{-}(\mathbf{A})$ for $\lambda_{\min}(\mathbf{A})$ ?

- **Q**: How tight is GCT lower bound  $\lambda_{\min}^{-}(\mathbf{A})$  for  $\lambda_{\min}(\mathbf{A})$ ? **A**: Consider instead similar transform<sup>7</sup>:

$$\mathbf{B} = \mathbf{S}\mathbf{A}\mathbf{S}^{-1} \tag{16}$$

where  $\mathbf{S} = \text{diag}(s_1, s_2, \ldots)$ .

<sup>&</sup>lt;sup>7</sup>Y. Bai et al., "Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment," submitted to *IEEE* Transactions on Signal Processing, July 2019. -

- **Q**: How tight is GCT lower bound  $\lambda_{\min}^{-}(\mathbf{A})$  for  $\lambda_{\min}(\mathbf{A})$ ? **A**: Consider instead similar transform<sup>7</sup>:

$$\mathbf{B} = \mathbf{S}\mathbf{A}\mathbf{S}^{-1} \tag{16}$$

where 
$$\mathbf{S} = \operatorname{diag}(s_1, s_2, \ldots)$$
.

• B has same eigenvalues as A.

<sup>&</sup>lt;sup>7</sup>Y. Bai et al., "Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment," submitted to IEEE Transactions on Signal Processing, July 2019. イロト 不得 トイヨト イヨト 12

- **Q**: How tight is GCT lower bound  $\lambda_{\min}^{-}(\mathbf{A})$  for  $\lambda_{\min}(\mathbf{A})$ ?
- A: Consider instead similar transform<sup>7</sup>:

$$\mathbf{B} = \mathbf{S}\mathbf{A}\mathbf{S}^{-1} \tag{16}$$

where  $\mathbf{S} = \operatorname{diag}(s_1, s_2, \ldots)$ .

- B has same eigenvalues as A.
- If A is a generalized graph Laplacian with positive edges, ∃S such that λ<sup>-</sup><sub>min</sub>(B) = λ<sub>min</sub>(B) = λ<sub>min</sub>(A).

<sup>&</sup>lt;sup>1</sup>Y. Bai et al., "Fast Graph Sampling Set Selection Using Gershgorin Disc Alignment," submitted to IEEE Transactions on Signal Processing, July 2019. ← □ → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□) → (□

• Partition matrix A:

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{12}^{\top} & \mathbf{A}_{22} \end{bmatrix}$$
(17)

• Partition matrix A:

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{12}^{\top} & \mathbf{A}_{22} \end{bmatrix}$$
(17)

• Define Schur Complement:

$$\mathbf{A}/\mathbf{A}_{11} = \mathbf{A}_{22} - \mathbf{A}_{12}^{\top}\mathbf{A}_{11}^{-1}\mathbf{A}_{12}$$
(18)

• Partition matrix A:

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{12}^{\top} & \mathbf{A}_{22} \end{bmatrix}$$
(17)

• Define Schur Complement:

$$\mathbf{A}/\mathbf{A}_{11} = \mathbf{A}_{22} - \mathbf{A}_{12}^{\top}\mathbf{A}_{11}^{-1}\mathbf{A}_{12}$$
(18)

• Haynsworth Inertia Additivity formula:

$$\operatorname{In}(\mathbf{A}) = \operatorname{In}(\mathbf{A}_{11}) + \operatorname{In}(\mathbf{A}/\mathbf{A}_{11})$$
(19)

<sup>&</sup>lt;sup>8</sup>G. Cheung et al., "Robust Semisupervised Graph Classifier Learning with Negative Edge Weights," *IEEE Transactions on Signal and Information Processing over Networks*, vol. 4, no.4, pp.712-726, December 2018.

• Partition matrix A:

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{12}^{\top} & \mathbf{A}_{22} \end{bmatrix}$$
(17)

• Define Schur Complement:

$$\mathbf{A}/\mathbf{A}_{11} = \mathbf{A}_{22} - \mathbf{A}_{12}^{\top}\mathbf{A}_{11}^{-1}\mathbf{A}_{12}$$
(18)

• Haynsworth Inertia Additivity formula:

$$\operatorname{In}(\mathbf{A}) = \operatorname{In}(\mathbf{A}_{11}) + \operatorname{In}(\mathbf{A}/\mathbf{A}_{11})$$
(19)

• If **A** is real and symmetric, can compute tight lower bound for  $\lambda_{\min}$  using a recursive procedure plus shifting  $(+\mu \mathbf{I})^{-8}$ .

<sup>&</sup>lt;sup>8</sup>G. Cheung et al., "Robust Semisupervised Graph Classifier Learning with Negative Edge Weights," IEEE Transactions on Signal and Information Processing over Networks, vol. 4, no.4, pp.712-726, December 2018.

locally optimal block preconditioned conjugated gradient (LOBPCG) method <sup>9</sup>:

- Compute extreme eigen-pairs for symmetric, PD matrices.
- Cost per iteration competitive with Lanczos.
- Can directly take advantage of preconditioning.
- Can benefit from warm start.

• Linear algebra solves:

$$A \mathbf{x} = \mathbf{y} 2 A \mathbf{v} = \lambda \mathbf{v}.$$

- Mature algorithms to solve  $\mathbf{A}\mathbf{x} = \mathbf{y}$  using Krylov methods.
- Fast algorithms to find extreme eigen-pairs  $(\lambda_i, \mathbf{v}_i)$ .
- $\bullet$  New algorithms to find tight lower bounds for  $\lambda_{\text{min}}.$