Gene Cheung Associate Professor, York University 26th September, 2018

Graph Spectral Image Processing

Acknowledgement

Collaborators:

- Y. Nakatsukasa (NII, Japan)
- S. Muramatsu (Niigata, Japan)
- A. Ortega (USC, USA)
- **D. Florencio** (MSR, USA)
- P. Frossard (EPFL, Switzerland)
- J. Liang, I. Bajic (SFU, Canada)
- X. Wu (McMaster U, Canada)
- V. Stankovic (U of Strathclyde, UK)
- P. Le Callet (U of Nantes, France)
- X. Liu (HIT, China)
- W. Hu, J. Liu, Z. Guo, W. Gao (Peking U., China)
- X. Ji, L. Fang (Tsinghua, China)
- Y. Zhao (BJTU, China)
- C.-W. Lin (National Tsing Hua University, Taiwan)
- E. Peixoto, B. Macchiavello, E. M. Hung (U. Brasilia, Brazil)

VISION: SCIENCE TO APPLICATIONS (VISTA)

0.0

101

www.yorku.ca/vista

Vision: Science to Applications Program

Funded by: Canada First Research Excellence Fund

- VISTA's Mission: to support transdisciplinary vision research, bridging fundamental and applied vision research, both computational and biological.
- VISTA involves CVR and 5 other York research groups, 5 Faculties, 49 investigators (so far), and over 50 partners (hospitals, industry, international research groups, etc.)
- VISTA funds new faculty positions, research chairs, staff, postdoctoral fellows, graduate students, research grants, travel scholarships and commercialization.
- Federal funding of \$33.34M; partners bring total to \$120M.
- For more info, see:

http://vista.info.yorku.ca/

VISTA Research Concept

 \leftarrow Interdisciplinary Axis \rightarrow

Opportunities for International Collaboration

Opportunity	Description	Amount
Research Grants	Partner-based research projects	\$50,000 per project
Travel Awards	Travel/accommodations for faculty and trainees to undertake collaborative research with partner institutions	\$7,500-\$10,000 per visit
Prototyping Funds	Development of prototypes for York researchers in the vision sciences	\$50,000 per project
Graduate Scholarships	Salary stipends for Masters and PhD students above other external or internal funds	\$10,000 per year
Postdoctoral Fellowships	Salary plus research allowance and travel funds over a 2-year period	\$55,000-\$70,000 per year + \$8,500 per year

For more information: yorku.ca/vista

VISTA Contacts

- Doug Crawford, Scientific Director
 - jdc@yorku.ca
- Richard Wildes, Associate Director
 - wildes@cse.yorku.ca
- Jennifer Teague, Program Manager
 - jteague@yorku.ca

Outline

- GSP Fundamentals
- GSP for Image Compression
 - Optimality of GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV
- Deep GLR
- Ongoing & Future Work

Outline

- GSP Fundamentals
- GSP for Image Compression
 - Optimality of GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV
- Deep GLR
- Ongoing & Future Work

Digital Signal Processing

- Discrete signals on *regular* data kernels.
 - Ex.1: audio on regularly sampled timeline.
 - Ex.2: image on 2D grid.
- Harmonic analysis tools (transforms, wavelets) for diff. tasks:
 - Compression.
 - Restoration.
 - Segmentation, classification.

Smoothness of Signals

- Signals are often **smooth**.
- Notion of *frequency*, *band-limited*.
- Ex.: **DCT**: $X_{k} = \sum_{n=0}^{N-1} x_{n} \cos\left(\frac{\pi}{N}\left(n + \frac{1}{2}\right)k\right)$

Graph Signal Processing

- Signals on *irregular* data kernels described by graphs.
 - Graph: nodes and edges.
 - Edges reveals *node-to-node relationships*.
 - 1. Data domain is naturally a graph.
 - Ex: ages of users on social networks.
- 2. Underlying data structure unknown.
 - Ex: images: 2D grid \rightarrow structured graph.

Graph Signal Processing (GSP) addresses the problem of processing signals that live on graphs.

Graph Signal Processing

Research questions*:

- **Sampling**: how to efficiently acquire / sense a graph-signal?
 - Graph sampling theorems.
- **Representation**: Given graph-signal, how to compactly represent it?
 - Transforms, wavelets, dictionaries.
- **Signal restoration**: Given noisy and/or partial graph-signal, how to recover it?
 - Graph-signal priors.

*Graph Signal Processing Workshop, Philadelphia, US, May, 2016. https://alliance.seas.upenn.edu/~gsp16/wiki/index.php?n=Main.Program

*Graph Signal Processing Workshop, Pittsburgh, US, May, 2017. https://gsp17.ece.cmu.edu/

*Graph Signal Processing Workshop, Lausanne, Switzerland, June, 2018. https://gsp18.epfl.ch/

Graph Fourier Transform (GFT)

Graph Laplacian:

 Adjacency Matrix A: entry A_{i,i} has non-negative edge weight $W_{i,i}$ connecting nodes *i* and *j*.

 Degree Matrix D: diagonal matrix w/ entry D_{ii} being sum of column entries in row *i* of A.

$$D_{i,i} = \sum_{j} A_{i,j}$$

 $L_{3,:}x = -x_2 + 2x_3 -$

- Combinatorial Graph Laplacian L: L = D-A
 - *L* is *symmetric* (graph undirected).
 - *L* is a *high-pass* filter.
 - *L* is related to 2nd derivative.

$$\operatorname{cm} (GFT)$$
undirected graph

$$\operatorname{cm} (GFT)$$

$$A = \begin{bmatrix} 0 & w_{1,2} & 0 & 0 \\ w_{1,2} & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} w_{1,2} & 0 & 0 & 0 \\ 0 & w_{1,2} + 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$D = \begin{bmatrix} w_{1,2} & 0 & 0 & 0 \\ 0 & w_{1,2} + 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$L = D - A$$

$$L = \begin{bmatrix} w_{1,2} & -w_{1,2} & 0 & 0 \\ -w_{1,2} & w_{1,2} + 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$L = D - A$$

$$L = \begin{bmatrix} w_{1,2} & -w_{1,2} & 0 & 0 \\ -w_{1,2} & w_{1,2} + 1 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

$$L_{3,:}x = -x_2 + 2x_3 - x_4$$

$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Graph Spectrum from GFT

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

- GFT defaults to *DCT* for un-weighted connected line.
- GFT defaults to *DFT* for un-weighted connected circle.

Variants of Graph Laplacians

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

 $L = V \underbrace{\sum V^{T}}_{\text{eigenvectors in columns}} F^{T}$

- Other definitions of graph Laplacians:
 - Normalized graph Laplacian:

$$L_n = D^{-1/2} L D^{-1/2} = I - D^{-1/2} A D^{-1/2}$$

• Random walk graph Laplacian:

$$L_{rw} = D^{-1}L = I - D^{-1}A$$

• **Generalized** graph Laplacian [1]:

$$L_g = L + D^*$$

[1] Wei Hu, Gene Cheung, Antonio Ortega, "Intra-Prediction and Generalized Graph Fourier Transform for Image Coding," *IEEE Signal Processing Letters*, vol.22, no.11, pp. 1913-1917, November 2015.

Characteristics:

- Normalized.
- Symmetric.
- No DC component.
- Normalized.
- Asymmetric.
- Eigenvectors not orthog.
- Symmetric.
- L plus self loops.
- Defaults to DST, ADST.

GSP and Graph-related Research

GSP: SP framework that unifies concepts from multiple fields.

Outline

- GSP Fundamentals
- GSP for Image Compression
 - Optimality of GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV
- Deep GLR
- Ongoing & Future Work

GFT for Image Compression

- DCT are *fixed* basis. Can we do better?
- Idea: use *adaptive* GFT to improve sparsity [1].
 - 1. Assign edge weight 1 to adjacent pixel pairs.
 - 2. Assign edge weight 0 to sharp signal discontinuity.
 - 3. Compute GFT for transform coding, transmit coeff.

$$\widetilde{\mathbf{x}} = \mathbf{V}^{\widetilde{T}} \mathbf{x}$$
 GFT

Transmit bits (*contour*) to identify chosen GFT to decoder (overhead of GFT).

[1] G. Shen et al., "**Edge-adaptive Transforms for Efficient Depth Map Coding**," *IEEE Picture Coding Symposium*, Nagoya, Japan, December 2010.

[2] W. Hu, G. Cheung, X. Li, O. Au, "**Depth Map Compression using Multi-resolution Graph-based Transform** ¹⁹ for Depth-image-based Rendering," *IEEE International Conference on Image Processing*, Orlando, FL, September 2012.

GFT: Derivation of Optimal Edge Weights

• Assume a 1D 1st-order *autoregressive (AR) process* $\mathbf{x} = [x_1, ..., x_N]^T$ where,

$$x_{k} = \begin{cases} \eta & k = 1 \\ x_{k-1} + e_{k} & 1 < k \le N \\ 0 \text{-mean r.v. with var. } \sigma_{k}^{2} \\ x_{1} = \eta & \mathbf{F} \mathbf{x} = \mathbf{b}, \quad \mathbf{x} = \mathbf{F}^{-1} \mathbf{b} \\ x_{2} - x_{1} = e_{2} \\ \vdots \\ x_{N} - x_{N-1} = e_{N} & \mathbf{F} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & \ddots & \ddots & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & \ddots & \ddots & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \eta \\ e_{2} \\ \vdots \\ e_{N} \end{bmatrix}$$

GFT: Derivation of Optimal Edge Weights

Covariance matrix

$$\mathbf{C} = E\left[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T \right]$$

= $E\left[\mathbf{x} \mathbf{x}^T \right] = E\left[\mathbf{F}^{-1} \mathbf{b} \mathbf{b}^T (\mathbf{F}^{-1})^T \right]$
= $\mathbf{F}^{-1} E\left[\mathbf{b} \mathbf{b}^T \right] (\mathbf{F}^{-1})^T$

$$E[\mathbf{b}\mathbf{b}^{T}] = \begin{bmatrix} \sigma^{2} & 0 & \cdots & 0 \\ 0 & \sigma_{2}^{2} & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \sigma_{N}^{2} \end{bmatrix}$$

• Precision matrix (tri-diagonal)

GFT for PWS Image Coding

Rate of transform coefficient vector α

- Graph Laplacian \approx Precision Matrix \rightarrow GFT approx. *Karhunen-Loeve Transform* (KLT).
- Encode blocks with **signal-decorrelation** GFT.

Rate of transform description T

- To limit the description cost R_T , restrict weights to a small discrete set $\mathcal{C} = \{1,0,c\}$

Transform Comparison

	Transform Representation	Transform Description
Karhunen-Loeve Transform (KLT)	"Sparsest" signal representation given available statistical model	Can be expensive (if poorly structured)
Discrete Cosine Transform (DCT)	non-sparse signal representation across sharp boundaries	little (fixed transform)
Graph Fourier Transform (GFT)	minimizes the total rate of signal's transform representation & transform description	

[1] Wei Hu, Gene Cheung, Antonio Ortega, Oscar Au, "**Multiresolution Graph Fourier Transform for Compression of** 23 **Piecewise Smooth Images**," *IEEE Transactions on Image Processing*, vol.24, no.1, pp.419-433, January 2015.

Experimentation

- Setup
 - Test images: depth maps of *Teddy* and *Cones*, and graphics images of *Dude* and *Tsukuba*.
 - Compare against: HR-DCT, HR-SGFT, SAW, MR-SGFT in H.264.

Subjective Results

HR-DCT

MR-GFT

Summary of GFT for Image Coding

- Optimality of GFT for AR model.
- Variants of GFT for prediction residuals, anti-correlated pixels.
- Fast implementation (w/o eigen-decomposition) via Graph Lifting Transform (GLT) [1] or Fast Graph Fourier Transform (FGFT) [2].

[1] Y.-H. Chao et al., "Edge-Adaptive Depth Map Coding with Lifting Transform on Graphs," 31st Picture Coding Symposium, Cairns, Australia, May, 2015.

[2] L. Le Magoarou et al., "Approximate Fast Graph Fourier Transforms via Multilayer Sparse Approximations," *IEEE TSIPN*, May, 2018.

Graph-Signal Sampling / Encoding for 3D Point Cloud

- Problem: Point clouds require encoding specific 3D coordinates.
- Assumption: smooth 2D manifold in 3D space.
- Proposal: progressive 3D geometry rep. as series of graph-signals. MIT dataset*
 - 1. adaptively identifies new samples on the manifold surface, and
 - 2. encodes them efficiently as graph-signals.

• Example:

- 1. Interpolate i^{th} iteration samples (black circles) to a **continuous kernel** (mesh), an approximation of the target surface **S**.
- 2. New sample locations, **knots** (squares), are located on the kernel surface.
- 3. Signed distances between knots and *S* are recorded as sample values.
- 4. Sample values (green circles) are encoded as a graph-signal via GFT.

Graph-Signal Sampling / Encoding for 3D Point Cloud • Experimental Results:

[1] M. Zhao, G. Cheung, D. Florencio, X. Ji, "**Progressive Graph-Signal Sampling and Encoding for Static 3D Geometry Representation**," *IEEE International Conference on Image Processing*, Beijing, China, September, 2017.

Pre-Demosiac Light Field Image Compression Using Graph Lifting Transform

• **Problem**: Sub-aperture images in Light field data are huge.

Pre-Demosiac Light Field Image Compression Using Graph Lifting Transform

• Experimental Results:

Dataset: EPFL light field image dataset Baseline: All-intra HEVC coding in YUV4:2:0 and RGB 4:4:4

[1] Y.-H. Chao, G. Cheung, A. Ortega, "**Pre-Demosiac Light Field Image Compression Using Graph Lifting Transform**," *IEEE Int'l Conf. on Image Processing*, Beijing, China, September, 2017. (**Best student paper award**)

Outline

- GSP Fundamentals
- GSP for Image Compression
 - Optimality of GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV
- Deep GLR
- Ongoing & Future Work

Graph Laplacian Regularizer

• $\mathbf{X}^T \mathbf{L} \mathbf{X}$ (graph Laplacian regularizer) [1]) is one smoothness measure.

[1] P. Milanfar, "**A Tour of Modern Image Filtering: New Insights and Methods, Both Practical and Theoretical**," *IEEE Signal Processing Magazine*, vol.30, no.1, pp.106-128, January 2013.

Graph Laplacian Regularizer

$$w_{i,j} = \exp\left(\frac{-\|x_i - x_j\|_2^2}{\sigma_1^2}\right) \exp\left(\frac{-\|l_i - l_j\|_2^2}{\sigma_2^2}\right)$$

• $x^{T}L(x)x$ promotes *piecewise smooth* (PWS) signal behavior [1].

$$\mathbf{x}^{T}\mathbf{L}(\mathbf{x})\mathbf{x} = \frac{1}{2}\sum_{i,j} w_{i,j} (x_{i} - x_{j})^{2} = \frac{1}{2}\sum_{i,j} u_{i,j} \exp\left\{-\frac{(x_{i} - x_{j})^{2}}{\sigma^{2}}\right\} (x_{i} - x_{j})^{2}$$

- Spectral Clustering [2]: Rayleigh quotient $v^* = \arg\min_{v} \frac{v^T L_n v}{v^T v} \quad s.t. \quad v^T v_1 = 0$
- v_1 minimizes obj \rightarrow Sol'n is 2nd eigenvector of L_n .
- 2nd eigenvalue—Fiedler number—measures "connectedness".
- PWS signal = 2 clusters of similar nodes $\rightarrow x^{T}Lx \approx 0$

[1] X. Liu, G. Cheung, X. Wu, D. Zhao, "**Random Walk Graph Laplacian based Smoothness Prior for Soft Decoding of JPEG Images**," *IEEE Transactions on Image Processing*, vol.26, no.2, pp.509-524, February 2017.

[2] J. Shi and J. Malik, "Normalized cuts and image segmentation," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 22, no. 8, pp. 888–905, Aug. 2000.

Analysis of Graph Laplacian Regularizer

• [1] shows $S_G(\mathbf{u}) = \mathbf{u}^T \mathbf{L} \mathbf{u}$ converges to continuous functional S_Ω and objective becomes:

$$u^{\star} = \arg\min_{u} \|u - z_0\|_{\Omega}^2 + \tau \cdot \int_{\Omega} \nabla u^{\mathrm{T}} \mathbf{D} \nabla u \, d\mathbf{s},$$

• Solution can be implemented as anisotropic diffusion:

$$\partial_t u = \operatorname{div} (\mathbf{D} \nabla u),$$

 $u(\mathbf{s}, t = 0) = z_0(\mathbf{s}).$ diffusivity

• promote piecewise smooth images, like **total variation** (TV).

 $\mathbf{D} = \mathbf{G}^{-1} \left(\sqrt{\det \mathbf{G}} \right)^{2\gamma - 1}$

feature function vector

 $\mathbf{v}_i = [\mathbf{f}_1(i) \, \mathbf{f}_2(i) \dots \mathbf{f}_N(i)]^{\mathrm{T}}$

distance $d_{ij}^2 = \|\mathbf{v}_i - \mathbf{v}_j\|_2^2$

metric $\mathbf{G} = \sum_{n=1}^{N} \nabla f_n \cdot \nabla f_n^{\mathrm{T}}$

edge weight $w_{ii} = (\rho_i \rho_j)^{-\gamma} \psi(d_{ij})$

Outline

- GSP for Image Compression
 - Optimality of GFT
 - Generalized GFT
 - Signed GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer: Image Denoising
 - Reweighted Graph TV:
- Deep GLR
- Ongoing & Future Work

Optimal Graph Laplacian Regularization for Denoising

- Adopt a patch-based recovery framework, for a noisy patch \mathbf{p}_0
 - 1. Find K-1 patches similar to \mathbf{p}_0 in terms of Euclidean distance.
 - 2. Compute feature functions, leading to edge weights and Laplacian.
 - 3. Solve the unconstrained quadratic optimization:

$$\mathbf{q}^* = \arg\min_{\mathbf{q}} \left\| \mathbf{p}_0 - \mathbf{q} \right\|_2^2 + \lambda \mathbf{q}^T \mathbf{L} \mathbf{q} \quad \Rightarrow \quad \mathbf{q} = (\mathbf{I} + \lambda \mathbf{L})^{-1} \mathbf{p}_0$$

 $\mathbf{f}_2^D(i) = \sqrt{\sigma^2 + \alpha} \cdot \mathbf{y}_i$

 $\mathbf{f}_{1}^{D}(i) = \sqrt{\sigma^{2} + \alpha \cdot x_{i}}$

Spatial

$$\mathbf{f}_{3}^{D} = \frac{1}{K + \sigma_{e}^{2} / \sigma_{g}^{2}} \sum_{k=0}^{K-1} \mathbf{p}_{k}$$

to obtain the denoised patch.

- Aggregate denoised patches to form an updated image.
- Denoise the image iteratively to gradually enhance its quality.
- Optimal Graph Laplacian Regularization for Denoising (OGLRD).
Denoising Experiments (natural images)

• Subjective comparisons ($\sigma_1 = 40$)

Original

Noisy, 16.48 dB

K-SVD, 26.84 dB

OGLR, 28.35 dB

BM3D, 27.99 dB

PLOW, 28.11 dB

37

Denoising Experiments (depth images)

• Subjective comparisons ($\sigma_1 = 30$)

[1] W. Hu et al., "**Depth Map Denoising using Graph-based Transform and Group Sparsity**," *IEEE International Workshop on Multimedia Signal Processing*, Pula (Sardinia), Italy, October, 2013.

Outline

- GSP Fundamentals
- GSP for Image Compression
 - Optimality of GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV
- Deep GLR
- Ongoing & Future Work

Reweighted Graph Total Variation

$$w_{i,j} = \exp\left(\frac{-\left\|x_i - x_j\right\|_2^2}{\sigma_1^2}\right)$$

pixel intensity difference

Conventional Graph TV:

Gradient of nodes on the graph:

 $(\nabla_i \mathbf{x})_j \triangleq x_j - x_i,$

• TV on graphs.

Reweighted Graph TV:

$$\|\mathbf{x}\|_{GTV} = \sum_{i \in \mathcal{V}} \|\operatorname{diag}(\mathbf{W}_{i,\cdot})\nabla_{i}\mathbf{x}\|_{1} \qquad \|\mathbf{x}\|_{RGTV} = \sum_{i \in \mathcal{V}} \|\operatorname{diag}(\mathbf{W}_{i,\cdot}(\mathbf{x}))\nabla_{i}\mathbf{x}\|_{1}$$
$$= \sum_{i=1}^{N} \sum_{j=1}^{N} w_{i,j}|x_{j} - x_{i}| \qquad \qquad = \sum_{i=1}^{N} \sum_{j=1}^{N} w_{i,j}(x_{i}, x_{j})|x_{j} - x_{i}|,$$

[1] M. Hidane, O. Lezoray, and A. Elmoataz, "Nonlinear multilayered representation of graph-signals," in *Journal of Mathematical Imaging and Vision*, February 2013, vol. 45, no.2, pp. 114–137.

[2] P. Berger, G. Hannak, and G. Matz, "Graph signal recovery via primal-dual algorithms for total variation minimization," in *IEEE Journal* 40 *on Selected Topics in Signal Processing*, September 2017, vol. 11, no.6, pp. 842–855.

Reweighted Graph Total Variation

- RGTV is separable. analyze each node pair.
 - Promotes *bi-modal inter-pixel differences*.

Fig. 3. Curves of regularizers and their corresponding first-derivatives for each (i, j) pair. d is normalized to [0, 1]. $w_{i,j} = 0.1$ for graph Laplacian and graph TV. $\sigma = 0.1$ for reweighted graph Laplacian and reweighted graph TV.

[1] Y. Bai, G. Cheung, X. Liu, W. Gao, "Blind Image Deblurring via Reweighted Graph Total Variation," *IEEE International Conference on* 41 *Acoustics, Speech and Signal Processing*, Calgary, Alberta, April, 2018.

Outline

- GSP Fundamentals
- GSP for Image Compression
 - Optimality of GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV: Image Deblurring
- Deep GLR
- Ongoing & Future Work

Background for Image Deblurring

- Image blur is a common image degradation.
- Typically, blur process is modeled:

 $y = k \otimes x$

where y is the blurry image, k is the blur kernel, x is the original sharp image.

- Blind-image deblurring focuses on estimating blur kernel k.
- Given *k*, problem becomes *de-convolution*.

Observation

Skeleton image

- PWS image keeping only structural edges.
- Proxy to estimate blur kernel k.

(d)

(e)

Observation

- Examine statistical properties of local patches:
 - Edge weight distribution of a fully connected graph.

• Skeleton Image enjoys both *Sharpness* and *bi-modal Weight distribution*, thus useful to estimate blur kernel.

• Propose a *Reweighted Graph Total Variation* (RGTV) to promote a skeleton image patch.

Conventional Graph TV:

$$\|\mathbf{x}\|_{GTV} = \sum_{i \in \mathcal{V}} \|\operatorname{diag}(\mathbf{W}_{i,\cdot})\nabla_i \mathbf{x}\|_1$$
$$= \sum_{i=1}^N \sum_{j=1}^N w_{i,j} |x_j - x_i|$$

Reweighted Graph TV:

$$\begin{aligned} \|\mathbf{x}\|_{RGTV} &= \sum_{i \in \mathcal{V}} \|\operatorname{diag}(\mathbf{W}_{i,\cdot}(\mathbf{x}))\nabla_i \mathbf{x}\|_1 \\ &= \sum_{i=1}^N \sum_{j=1}^N w_{i,j}(x_i, x_j) \|x_j - x_i\|_2 \end{aligned}$$

Our algorithm

- The optimization function can be written as follows, $\hat{\mathbf{x}}, \hat{\mathbf{k}} = \underset{\mathbf{x}, \mathbf{k}}{\operatorname{argmin}} \varphi(\mathbf{x} \otimes \mathbf{k} - \mathbf{b}) + \mu_1 \cdot \theta_x(\mathbf{x}) + \mu_2 \cdot \theta_k(\mathbf{k})$
- Assume L_2 norm for fidelity term $\varphi(\cdot)$.
- $\theta_{\chi}(\cdot) = RGTV(\cdot).$
- $\theta_k(\cdot) = ||\cdot||_2$, assuming zero mean Gaussian distribution of k.
- RGTV is non-differentiable and non-convex.

Solution:

- Solve x and k alternatingly.
- For x, spectral interpretation of GTV, fast spectral filter.

Spectral domain

• Deduction for spectrum of GTV

$$(\partial \mathbf{x}^T \mathbf{L} \mathbf{x})_i = 2 \cdot (\mathbf{L} \mathbf{x})_i = c \cdot \sum_{j=1}^N w_{i,j} \cdot (x_i - x_j),$$

$$= c \cdot (\sum_{j=1}^N w_{i,j} x_i - \sum_{j=1}^N w_{i,j} x_j)$$

$$(\partial \|\mathbf{x}\|_{GTV})_i = c' \cdot \sum_{j=1}^N \gamma_{i,j} \cdot (x_i - x_j),$$

$$= c' \cdot (\sum_{j=1}^N \gamma_{i,j} x_i - \sum_{j=1}^N \gamma_{i,j} x_j)$$

$$\overline{\gamma_{i,j}} = \frac{w_{i,j}}{\max\{|x_j - x_i|, \epsilon\}}$$

$$New weight$$

function

Spectral domain

• Explanation: $\gamma_{i,j} = \frac{w_{i,j}}{\max\{|x_j - x_i|, \epsilon\}}$ New Adjacency matrix Γ

$$\|\mathbf{x}\|_{GTV} = \sum_{(i,j)\in E} \gamma_{i,j} (x_i - x_j)^2$$
$$= \mathbf{x}^T \mathbf{L}_{\Gamma} \mathbf{x}$$

 $\mathbf{L}_{\Gamma} = \mathbf{U}_{\Gamma} \mathbf{\Lambda}_{\Gamma} \mathbf{U}_{\Gamma}^{T} \quad \textbf{Graph } \mathbf{L}_{1} \text{ spectrum}$

Our algorithm

Alternating Iterative algorithm:

$$\begin{cases} \hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} \otimes \hat{\mathbf{k}} - \mathbf{b}\|_{2}^{2} + \beta \|\mathbf{x}\|_{RGTV} \longrightarrow \hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} \|\mathbf{x} \otimes \hat{\mathbf{k}} - \nabla \mathbf{b}\|_{2}^{2} + \beta \cdot \mathbf{x}^{\mathsf{T}} \mathbf{L}_{\Gamma} \mathbf{x} \\ \hat{\mathbf{k}} = \operatorname{argmin}_{\mathbf{k}} \|\nabla \hat{\mathbf{x}} \otimes \mathbf{k} - \nabla \mathbf{b}\|_{2}^{2} + \mu \|\mathbf{k}\|_{2}^{2} \qquad (\widehat{\mathbf{K}}^{T} \widehat{\mathbf{K}} + 2\beta \cdot \mathbf{L}_{\Gamma}) \widehat{\mathbf{x}} = \widehat{\mathbf{K}}^{\mathsf{T}} \mathbf{b} \end{cases}$$
System of linear equations.

Efficiently solved via conjugate gradient.

Workflow

Experimental Results

(a)

Fig. 8. Real Blind Motion Deblurring Example. Image size: 618×464, kernel size: 69×69 . (a) Blurry image. (b) Krishnan et al. [33]. (c) Levin et al [32]. (d) Michaeli & Irani [35]. (e) Pan et al. [4]. (f) The proposed Algorithm 1. The images are better viewed in full size on computer screen.

(e)

(f)

Experimental Results

(a)

(c)

Fig. 11. Gaussian Blur Blind Deblurring Example. Image size: 768×512 , kernel size: 7×7 , $\sigma_b = 1.85$. (a) Ground-truth image. (b) Blurry image. (c) The proposed Algorithm 1. (d) The proposed Algorithm 3.

(d)

Outline

- GSP Fundamentals
- GSP for Image Compression
 - Optimality of GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV: 3D Point Cloud Denoising
- Deep GLR
- Ongoing & Future Work

GTV for Point Cloud Denoising

- Acquisition of point cloud introduces noise.
- Point cloud is irregularly sampled 2D manifold in 3D space.
- Not appropriate to apply GTV directly on 3D coordinates [1].
 - only a singular 3D point has zero GTV value.

 Proposal: Apply GTV is to the surface normals of 3D point cloud—a generalization of TV to 3D geometry.

55

^[1] Y. Schoenenberger, J. Paratte, and P. Vandergheynst, "**Graph-based denoising for time-varying point clouds**," in *IEEE 3DTV-Conference*, 2015, pp. 1–4

Algorithm Overview

• Use graph total variation (GTV) of surface normals over the K-NN graph:

$$||\mathbf{n}||_{\text{GTV}} = \sum_{i,j\in\mathcal{E}} w_{i,j}||\mathbf{n}_i - \mathbf{n}_j||_1 \qquad \oint_{i} \mathbf{n}_i \qquad \oint_{j} \mathbf{n}_j \qquad w_{i,j} = \exp\left(-\frac{||\mathbf{p}_i - \mathbf{p}_j||_2^2}{\sigma_p^2}\right)$$

• Denoising problem as I2-norm fidelity plus GTV of surface normals:

$$\min_{\mathbf{p},\mathbf{n}} \|\mathbf{q} - \mathbf{p}\|_{2}^{2} + \gamma \sum_{i,j \in E} w_{i,j} \|\mathbf{n}_{i} - \mathbf{n}_{j}\|_{1}$$

- Surface normal estimation of \mathbf{n}_i is a nonlinear function of \mathbf{p}_i and neighbors. **Proposal:**
- 1. Partition point cloud into **two independent classes** (say **red** and **blue**).
- 2. When computing surface normal for a red node, use only neighboring blue points.
- 3. Solve convex optimization for red (blue) nodes alternately.

[1] C. Dinesh, G. Cheung, I. V. Bajic, C. Yang, "Fast 3D Point Cloud Denoising via Bipartite Graph Approximation 56
 & Total Variation," *IEEE 20th International Workshop on Multimedia Signal Processing*, Vancouver, Canada, August 2018.

Bipartite Graph Approx. & Normal Def'n

Step 1: bipartite graph approx. of k-NN graph.

Normal vector estimation at a red node

57

Step 2: define red nodes' normals using blue nodes.

$$\mathbf{n}_{i} = \frac{[\mathbf{p}_{i} - \mathbf{p}_{k}] \times [\mathbf{p}_{k} - \mathbf{p}_{l}]}{||[\mathbf{p}_{i} - \mathbf{p}_{k}] \times [\mathbf{p}_{k} - \mathbf{p}_{l}]||_{2}}$$

$$\mathbf{A}_{i} \text{ is a constant matrix and } \mathbf{b}_{i} \text{ is a constant vector with respect to } \mathbf{p}_{i}$$

$$\mathbf{n}_{i} = \mathbf{A}_{i} \mathbf{p}_{i} + \mathbf{b}_{i}$$

[1] J. Zeng, G. Cheung, A. Ortega, "**Bipartite Approximation for Graph Wavelet Signal Decomposition**," *IEEE Transactions on Signal Processing*, vol.65, no.20, pp.5466-5480, October 2017.

Convex Optimization Formulation

- After computing normals for each red node, construct a new k-NN graph for red nodes only.
- For a red node graph, objective is a I2 -I1 -norm minimization w/ linear constraints:

$$\min_{\mathbf{p},\mathbf{m}} \|\mathbf{q} - \mathbf{p}\|_{2}^{2} + \gamma \sum_{i,j \in E_{r}} \|\mathbf{m}_{i,j}\|_{1} \qquad \qquad \begin{array}{c} \mathbf{m}_{i,j} = \mathbf{n}_{i} - \mathbf{n}_{j} \\ \mathbf{n}_{i} = \mathbf{A}_{i}\mathbf{p}_{i} + \mathbf{b}_{i} \end{array} \qquad \qquad \mathbf{m} = \mathbf{B}\mathbf{p} + \mathbf{v}$$

Solution:

• ADMM:
$$\min_{p,m} \|q - p\|_2^2 + \gamma \sum_{i,j \in E_r} \|m_{i,j}\|_1 + \frac{\rho}{2} \|Bp + v - m + u\|_2^2 + \text{const}$$

- p-minimization: $(2\mathbf{I} + \rho \mathbf{B}^T \mathbf{B})\mathbf{p}^{k+1} = 2\mathbf{q} + \rho \mathbf{B}^T (\mathbf{m}^k \mathbf{u}^k \mathbf{v}),$
- m-minimization: $\min_{\mathbf{m}} \frac{\rho}{2} ||\mathbf{Bp}^{k+1} + \mathbf{v} \mathbf{m} + \mathbf{u}^{k}||_{2}^{2} + \gamma \sum_{i,j \in \mathcal{E}_{1}} w_{i,j} ||\mathbf{m}_{i,j}||_{1},$ Proximal gradient descent
- Alternately update red and blue graphs until convergence.

Experimental Setup

- 4 competing local methods: APSS [1], RIMLS [2], AWLOP [3], MRPCA [4]
- 7 pint cloud datasets used: Bunny, Gargoyle, DC, Daratrch, Anchor, Lordquas, Fandisk, Laurana
- Metrics: **point to point error** (C2C) and **point to plane error** (C2P)
- Gaussian noise with zero mean, standard deviation σ of 0.1 and 0.3.

[1] G. Guennebaud and M. Gross, "Algebraic point set surfaces," ACM Transactions on Graphics (TOG), vol. 26, no. 3, p. 23, 2007.
[2] A. C. Oztireli, G. Guennebaud, and M. Gross, "Feature preserving point set surfaces based on non-linear kernel regression," in *Computer Graphics Forum*, vol. 28, no. 2, 2009, pp. 493–501.
[3] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, and H. R. Zhang, "Edge-aware point set resampling," *ACM Transactions on Graphics*, vol. 32, no. 1, p. 9, 2013.
[4] E. Mattei and A. Castrodad, "Point cloud denoising via moving RPCA," in *Computer Graphics Forum*, vol. 36, no. 8, 2017, pp. 123–137.

Anchor model (σ =0.3)

Daratech model (σ =0.3)

Experimental Results – Numerical Comparison

TABLE I								
C2C of different models, with Gaussian noise ($\sigma = 0.1$)								

TABLE II C2C of different models, with Gaussian noise ($\sigma = 0.3$)

Model	Noise	APSS	RIMLS	AWLOP	MRPCA	Prop.	Model	Noise	APSS	RIMLS	AWLOP	MRPCA	Prop.
Bunny	0.157	0.135	0.143	0.153	0.141	0.128	Bunny	0.329	0.235	0.251	0.315	0.243	0.231
Gargoyle	0.154	0.133	0.143	0.151	0.144	0.131	Gargoyle	0.304	0.220	0.232	0.288	0.218	0.214
DC	0.154	0.130	0.140	0.148	0.136	0.128	DC	0.305	0.213	0.230	0.302	0.212	0.207
Daratech	0.156	0.134	0.137	0.156	0.134	0.132	Daratech	0.313	0.264	0.268	0.293	0.262	0.246
Anchor	0.156	0.134	0.139	0.152	0.130	0.127	Anchor	0.317	0.225	0.231	0.281	0.216	0.210
Lordquas	0.155	0.130	0.143	0.153	0.132	0.126	Lordquas	0.307	0.212	0.228	0.284	0.208	0.203
Fandisk	0.159	0.148	0.148	0.157	0.138	0.136	Fandisk	0.406	0.352	0.343	0.390	0.331	0.319
Laurana	0.150	0.136	0.139	0.147	0.130	0.130	Laurana	0.318	0.239	0.249	0.266	0.242	0.231

TABLE IIITABLE IVC2P (×10⁻³) of different models, with Gaussian Noise ($\sigma = 0.1$) C2P (×10⁻²) of different models, with Gaussian Noise ($\sigma = 0.3$)

Model	Noise	APSS	RIMLS	AWLOP	MRPCA	Prop.	Model	Noise	APSS	RIMLS	AWLOP	MRPCA	Prop.
Bunny	9.91	4.62	5.14	7.95	4.66	4.61	Bunny	6.442	1.256	1.704	5.634	1.373	1.128
Gargoyle	9.67	4.59	5.97	8.46	4.56	4.48	Gargoyle	6.096	1.512	1.954	5.004	1.540	1.499
DC	9.66	4.37	4.82	7.63	3.98	3.71	DC	6.130	1.349	1.738	6.097	1.391	1.201
Daratech	9.93	2.93	4.05	9.54	3.01	2.85	Daratech	6.116	3.422	3.483	4.881	3.212	2.215
Anchor	9.87	3.32	4.10	8.43	2.18	2.05	Anchor	6.354	1.930	2.160	3.991	1.714	1.597
Lordquas	9.72	3.33	5.81	9.10	3.79	3.11	Lordquas	6.234	1.846	2.558	4.928	1.768	1.644
Fandisk	9.88	6.70	7.05	8.93	4.86	4.39	Fandisk	7.297	3.180	2.640	6.093	1.720	1.702
Laurana	9.23	5.16	5.86	7.70	5.13	5.01	Laurana	5.890	1.392	1.800	2.307	1.464	1.211

Outline

- GSP Fundamentals
- GSP for Image Compression
 - Optimality of GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV: 3D Point Cloud Denoising
- Deep GLR
- Ongoing & Future Work

Unrolling Graph Laplacian Regularizer

• Recall MAP formulation of denoising problem with quadratic graph Laplacian regularizer:

$$\min_{x} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \mathbf{x}^{T} \mathbf{L} \mathbf{x}$$

fidelity term smoothness prior

• Solution is system of linear equations:

$$(I + \mu L) x^* = y$$

linear system of eqn's w/ sparse, symmetric PD matrix

Q: what is the "most appropriate" graph?

Bilateral weights:

$$w_{i,j} = \exp\left(\frac{-\|x_i - x_j\|_2^2}{\sigma_1^2}\right) \exp\left(\frac{-\|l_i - l_j\|_2^2}{\sigma_2^2}\right)$$

[1] J. Pang, G. Cheung, "**Graph Laplacian Regularization for Inverse Imaging: Analysis in the Continuous Domain**," *IEEE Transactions on Image Processing*, vol. 26, no.4, pp.1770-1785, April 2017.

Unrolling Graph Laplacian Regularizer

• Deep Graph Laplacian Regularization:

- 1. Learn features **f**'s using CNN.
- 2. Compute distance from features.
- 3. Compute edge weights using Gaussian kernel.
- 4. Construct graph, solve QP.

$$w_{ij} = \exp\left(-\frac{\operatorname{dist}(i,j)}{2\epsilon^2}\right),$$

$$\operatorname{dist}(i,j) = \sum_{n=1}^{N} \left(\mathbf{f}_n(i) - \mathbf{f}_n(j)\right)^2.$$

Fig. 1. Block diagram of the proposed GLRNet which employs a graph Laplacian regularization layer for image denoising.

[1] M. McCann et al., "Convolutional Neural Networks for Inverse Problems in Imaging," *IEEE SPM*, Nov. 2017.

[2] K. Gregor and Y. LeCun, "Learning fast approximations of sparse coding," in Proc. 27th Int. Conf. Machine Learning, 2010..

Unrolling Graph Laplacian Regularizer

Fig. 3. Network architectures of $\text{CNN}_{\mathbf{F}}$, $\text{CNN}_{\hat{\mathcal{Y}}}$ and CNN_{μ} in the experiments. Data produced by the decoder of $\text{CNN}_{\mathbf{F}}$ is colored in orange.

[1] J. Zeng et al., "Deep Graph Laplacian Regularization," submitted to arXiv, July 2018. (https://arxiv.org/abs/1807.11637)

Fig. 2. Block diagram of the overall DeepGLR framework.

• Graph Model guarantees numerical stability of solution:

$$(\mathbf{I} + \mu \mathbf{L}) \mathbf{x}^* = \mathbf{y}$$

• Thm 1: condition number κ of matrix satisfies [1]:

$$\kappa \leq 1 + 2\,\mu\,d_{\max}, \qquad \text{maximum node degree}$$

• **Observation**: By restricting search space of CNN to degree-bounded graphs, we achieve robust learning.

Experimental Results – Numerical Comparison

- Trained on AWGN on 5 images, patches of size 26-by-26.
- Batch size is 4, model is trained for 200 epochs.
- Trained for both known and blind noise variance.

Table 1. Average PSNR (dB) and SSIM values of different methods for Gaussian noise removal. The best results for each metric is highlighted in boldface.

Noiso	Motric	Method									
Noise	WEUTC	BM3D	WNNM	OGLR	DnCNN-S	DnCNN-B	DeepGLR-S	DeepGLR-B			
25	PSNR SSIM	29.95 0.8496	$30.28 \\ 0.8554$	$29.78 \\ 0.8463$	$\begin{array}{c} 30.41 \\ 0.8609 \end{array}$	30.33 0.8594	$30.26 \\ 0.8599$	$30.21 \\ 0.8557$			
40	PSNR SSIM	27.62 0.7920	$\begin{array}{c} 28.08\\ 0.8018 \end{array}$	$27.68 \\ 0.7949$	28.10 0.8080	28.13 0.8091	$28.16 \\ 0.8125$	$28.04 \\ 0.8063$			
50	PSNR SSIM	26.69 0.7651	$27.08 \\ 0.7769$	$26.58 \\ 0.7539$	$27.15 \\ 0.7809$	27.18 0.7811	$27.25 \\ 0.7852$	$27.12 \\ 0.7807$			

[1] Kai Zhang et al, "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," *TIP* 2017.

[2] Marc Lebrun et al, "The noise clinic: a blind image denoising algorithm," IPOL 2015.

Experimental Results – Numerical Comparison

- DeepGLR has average PSNR of 0.34 dB higher than CDnCNN [1].
- Model-based provides robustness against overfitting.

Table 2. Evaluation of different methods for low-light image denoising. The best results for each metric, except for those tested on the training set, are highlighted in boldface.

Metric	Noisy	Method								
		CBM3D	MC-WNNM	$\begin{array}{c} \mathrm{CDnCNN} \\ \mathrm{(train)} \end{array}$	CDnCNN	$\begin{array}{c} { m CDeepGLR} \\ { m (train)} \end{array}$	CDeepGLR			
PSNR SSIM Y SSIM R SSIM G SSIM B	20.36 0.5198 0.2270 0.4073 0.1823	$\begin{array}{r} 26.08 \\ 0.8698 \\ 0.6293 \\ 0.8252 \\ 0.5633 \end{array}$	26.23 0.8531 0.5746 0.7566 0.5570	33.43 0.9138 0.8538 0.8979 0.8294	31.26 0.8978 0.8218 0.8828 0.7812	32.31 0.9013 0.8372 0.8840 0.8138	$31.60 \\ 0.9028 \\ 0.8297 \\ 0.8854 \\ 0.7997$			

[1] Kai Zhang et al, "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," *TIP* 2017.[2] Marc Lebrun et al, "The noise clinic: a blind image denoising algorithm," *IPOL* 2015.

- trained on Gaussian noise, tested on low-light images in (RENOIR).
- Competing methods: DnCNN [1], noise clinic [2].
- outperformed DnCNN by 5.52 dB, and noise clinic by 1.87 dB.

[1] Kai Zhang et al, "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," *TIP* 2017.[2] Marc Lebrun et al, "The noise clinic: a blind image denoising algorithm," *IPOL* 2015.

- trained on Gaussian noise, tested on low-light images in (RENOIR).
- Competing methods: DnCNN [1], noise clinic [2].
- outperformed DnCNN by 5.52 dB, and noise clinic by 1.87 dB.

DnCNN

clinic

- trained on Gaussian noise, tested on low-light images in (RENOIR).
- Competing methods: DnCNN [1], noise clinic [2].
- outperformed DnCNN by 5.52 dB, and noise clinic by 1.87 dB.

DnCNN

clinic

Outline

- GSP Fundamentals
- GSP for Image Compression
 - Optimality of GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV: 3D Point Cloud Denoising
- Deep GLR
- Ongoing & Future Work

Summary

- Variants of GFTs for optimal decorrelation
 - GFT, GGFT, SGFT
 - Selection of statistical model vs. encoding cost of side information
- GSP for Inverse Imaging
 - PWS-promoting Graph Laplacian Regularizer, RGTV
 - Spectral interpretation of GTV, RGTV
- Graph-based model restricts search space of DNN.
 - Robustness against overfitting.

Ongoing & Future Work

- Unrolling of graph-based convex optimization.
 - Unrolling of ADMM, proximal gradient with GTV prior, convex set constraints.
 - Learn (sparse) connectivity, edge weights.
 - Learn features from RGBD images for depth inpainting / denoising.
- Model-guided learning safeguard against worst-case / adversary noise?

- Email: genec@yorku.ca
- Homepage: https://www.eecs.yorku.ca/~genec/index.html