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ABSTRACT

Conventional video coding approaches follow a hybrid motion pre-
diction / residual transform coding paradigm, which limits the dis-
covery of redundancy to individual pairs of video frames. On the
other hand, computer vision techniques like structure-from-motion
(SfM) have long exploited redundancy across a large group of frames
to estimate a rigid 3D object structure. In this paper, leveraging on
previous SfM techniques, we construct a rate-distortion (RD) opti-
mized 3D planar model from a target spatial region in a frame group
as a unified signal predictor for these frames. The prediction accura-
cy of the model is optimally traded off with the cost of coding such
representation as side information (SI). Specifically, we approximate
a roughly flat spatial region in the video as a 2D plane in 3D space,
and project pixels from the frame group to a 2D grid on the plane
with appropriate density. The boundary of the irregularly shaped
pixel body on the plane is first coded using arithmetic edge coding
(AEC), and then the body is encapsulated into a tight-fitting rectan-
gular region, which is encoded as an intra-frame using HEVC. The
pixels inside the rectangle but outside the pixel body—called don’t
care region (DCR)—are filled optimally by minimizing an l1-norm
of the transform coefficients using linear programming. Experimen-
tal results show that the RD-optimized planar model improves cod-
ing performance over native HEVC implementation.

Index Terms— structure-from-motion, video coding, convex
optimization

1. INTRODUCTION

It is estimated1 that IP video will reach 82% of all consumer In-
ternet traffic by 2021, so while long-studied, video compression will
continue to be a research topic of practical interest. Traditional video
coding approaches—including video coding standards like H.264 [1]
and HEVC [2]—follow a hybrid motion prediction / residual trans-
form coding paradigm: prediction residues computed from a motion
model between two video frames are transformed and entropy cod-
ed. Thus, with a few exceptions like background extraction and 3D
video coding [3–5], only redundancy between pairs of video frames
are discovered and exploited for compression2.

Concurrently, computer vision techniques like structure-from-
motion (SfM) have long exploited redundancy across a large group
of frames to construct a rigid 3D object model [7–9]. Recent 3D
reconstruction methods from 2D video have shown good model ac-
curacy for relatively simple object shapes. Instead of transmitting
motion information per inter-coded frame, one approach [10] is to

1https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/complete-white-paper-c11-
481360.html

2Multiple reference frame approaches [6] still exploit only pairwise re-
dundancy, but at a block level.

reconstruct a single 3D model of an rigid object a priori for back-
projecting texture information to the corresponding spatial locations
in the video frames as signal prediction (with appropriate camera pa-
rameters per frame). Then only remaining prediction residuals need
to be coded for transmission per frame, potentially resulting in high
coding performance.

The crux of this 3D-model-based approach is the efficient cod-
ing of the 3D model as side information (SI). In this paper, we re-
construct and code a 3D planar model from a group of frames in a
rate-distortion (RD) optimized manner towards higher video com-
pression efficiency. Specifically, we first reconstruct a 2D planar
model from a pre-selected spatial region within a video using state-
of-the-art SfM techniques. Given the planar model, we then map
pixels in the frame group to a 2D grid on the plane with a density
that trades off the quality of signal prediction using this model and
the cost of coding the grid pixels. The boundary of the irregular-
ly shaped pixel body on the plane is coded using arithmetic edge
coding (AEC) [11], and then the body is encapsulated into a tight-
fitting rectangular region, which is encoded as an intra-frame using
HEVC [2]. The pixels that are inside the rectangle but outside the
pixel body—called don’t care region (DCR)—are filled optimally by
minimizing an l1-norm of the transform coefficients via a linear pro-
gramming (LP) formulation [12]. Experimental results show that: i)
optimal filling of DCR pixels improves coding efficiency of pixels
on the 2D plane, and ii) the RD-optimized planar model improves
compression performance over native HEVC implementation.

The outline of this paper is as follows. We discuss related work-
s in Section 2. We overview our proposed video coding system in
Section 3, including scene reconstruction, planar modeling, model
optimization and coding. We discuss details of planar model opti-
mization and coding in Section 4. Finally, results and conclusion are
presented in Section 5 and 6, respectively.

2. RELATED WORK

Although model-based video coding [3–5, 13–15] has been studied
for over a decade, the trade-off between model accuracy and cod-
ing cost remains a challenge. In [13], a 3D surface is estimated for
encoding depth videos. However, coding cost for a general surface
in [13] is much more expensive than our proposed planar model. A
3D planar approximation scheme for color-plus-depth videos is pro-
posed in [15], and an RD-efficient piecewise planar scene modeling
approach using 2D color images is proposed in [14]. However, [15]
cannot be used for video sequences with no depth information. [14]
constructs a scene using a mesh, where the number of vertices in
the mesh can be very large and wasteful if the spatial region of in-
terest is roughly a flat plane, such as the side of a building. Unlike
mesh-based methods [13–15] that typically have high coding rates
for scenes with roughly flat regions, our approach focuses on an ap-
propriate planar modeling scheme to avoid large coding cost.



For practical planar-based video coding, an appropriate grid den-
sity setting is required on the planar model for optimal coding gain.
An object tracking based video coding scheme with rigid object as-
sumption is proposed in [10]. However, such model-based video
coding scheme does not optimize the planar grid density. We differ
from [10] and [13–15] as follows: i) we trade off optimally between
reconstruction quality and SI cost that includes planar grid density,
and ii) we optimize coding of the 2D grid pixels by exploiting free-
dom in choosing DCR pixels.

SfM techniques [7–9] return accurate scene reconstruction and
have been widely used in both off-line image rendering [8] and Si-
multaneous Localization and Mapping (SLAM) [16–18]. We stress
that we apply state-of-the-art SfM [19] methods just for scene re-
construction (the first step) in our proposed video coding system.
Specifically, we use the SfM scene reconstruction results, i.e., a set
of sparse point cloud and a set of camera parameters that correspond
to each of the input video frames, for planar modeling.

3. SYSTEM OVERVIEW

(a) Sample frame. (b) Point cloud.

(c) Fitted plane. (d) Planar model.

Fig. 1. Example of model reconstruction using old town cross:
(a) Sample original frame, (b) COLMAP SfM-derived point cloud,
(c) a fitted plane shown in grey with its normal indicated by a red
arrow; points that are behind the fitted plane are rendered with lighter
grey, and (d) a sample planar model.

Our proposed video coding system includes the following mod-
ules: scene reconstruction, planar modeling, model optimization
and coding. We first model the scene as a 2D plane in 3D space.
We accomplish this by using a state-of-the-art SfM algorithm called
COLMAP [7, 20] that has demonstrated superior performance a-
gainst competing methods [19]. Since the input video frames are
distorted and their intrinsic camera parameters are unknown, we
choose a pinhole camera model with radial distortion for COLMAP,
where COLMAP simplifies the corresponding opencv [21] pinhole
camera model and models the radial distortion effect with only one
radial distortion coefficient. COLMAP performs the SfM process
by: 1) correspondence search, including SIFT [22] feature detection
and exhaustive feature matching with geometric verification, and 2)
incremental sparse reconstruction, which is implemented by bundle
adjustment [23, 24] with Ceres Solver [25].

Taking a video sequence, e.g., old town cross, as the in-
put with sample frame shown in Fig. 1(a), COLMAP returns a s-
parse point cloud representing the reconstructed 3D scene, shown in
Fig. 1(b), and a set of camera parameters that correspond to each of

the input video frames, where each point in the point cloud corre-
sponds to a feature point in the input video frames.

For planar modeling, we first designate a roughly flat spatial re-
gion of interest (ROI) in the point cloud, e.g., the front part of the yel-
low house, to be plane-fitted. To do this, we first select four points
in the point cloud that cover the ROI, then find the corresponding
ROI’s within each of the input video frames. We can now extrac-
t a subset of point cloud that belongs to the ROI, fit a 2D plane in
the 3D space by using RANSAC [26], shown in Fig. 1 (c), and find
the homography [27] between the fitted plane and each of the input
video frames, again, using RANSAC. Next, we project the pixels in
the ROI’s of all input video frames to the fitted plane based on the
previously computed homography, shown in Fig. 1(d).

The system workflow is shown in Fig. 2. We discuss planar
model and video coding in details in the next section.

3D planar model reconstruction

Model RD-optimization

DCR optimization

Planar model and video coding

Fig. 2. Proposed 3D model-based video coding scheme.

4. PLANAR MODEL AND VIDEO CODING

For efficient coding of the planar model, we first set an appropriate
grid density of the fitted plane, and map pixels from the input video
frames to the fitted plane (pixels rounded to the same 2D grid loca-
tions are averaged). We then code the boundary of the irregularly
shaped pixel body on the plane using AEC [11] and encapsulate the
planar model into a tight-fitting rectangular region; pixels inside the
rectangle but outside the body are called DCR pixels. The rectangu-
lar region is encoded as an intra-frame using HEVC. We complete
the DCR pixels by minimizing an l1-norm of the transform codffi-
cients via an LP formulation. Finally, we take the AEC-coded plane
boundary, HEVC-encoded plane texture and frame camera parame-
ters as SI, and project all pixels within the HEVC-encoded planar
model back to corresponding spatial regions in the video frames
as prediction, so that prediction residual can be coded again using
HEVC. We discuss our planar model RD-optimization and DCR op-
timization scheme, planar model coding, and video coding in detail
next.

4.1. Model RD-Optimization

Over 40 million pixels from all original frames mapped to the fit-
ted plane for the tested region in old town cross—it is imprac-
tical to encode the planar model without setting up an appropriate
grid density even for a small video sequence. Thus, an RD-optimal
planar model grid density is needed. We find such a grid densi-
ty using a pre-set increment parameter γ. Specifically, we denote
the pixel locations on the planar model before setting up a grid as
(xi, yi), i = 1, ..., N , the ones after as [(round(xiγ), round(yiγ)],
where N denotes the total pixel number on the planar model before
grid setting. Note that [(round(xiγ), round(yiγ)] may contain repet-
itive pixel locations where different pixels are rounded to the same
grid locations. In this case, we assign such gridded pixel locations



with the averaged intensity of these overlapped pixels, i.e., the to-
tal number of gridded pixel locations M ≤ N . For RD-optimal
grid density, we expect that M � N and saturation of the number
of occupied pixel locations in reconstructed images as γ increases.
As shown in Fig. 3, the resulting mean PSNR of the reconstructed
images is consistent with the above saturation trend. In practice,
we choose γ (highlighted as squares in Fig. 3) when the percent-
age of the number of occupied pixel locations in reconstructed im-
ages changes within a pre-set small tolerance. In our experiment
with old town cross, the RD-optimal grid setting results in only
M/N ≈ 0.5% of total number of mapped pixels.
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Fig. 3. Grid density increment parameter γ for the tested region in
old town cross.

4.2. DCR Optimization and Planar Model Coding

For a given n-pixel block x on the boundary of the irregularly shaped
pixel body on the 2D plane, let D be a m × n sampling matrix that
extracts m pixels inside the body from the block, which is repre-
sented by y. While the n −m block pixels outside the body—i.e.,
DCR pixels—can be freely chosen, we enforce the constraint that
the original m pixels must be maintained during optimization.

Denote by z the intra-prediction signal for the block generated
by HEVC, and by Φ the transform (e.g. discrete cosine transfor-
m (DCT) commonly used in coding standards) used for transform
coding. In general, a sparse signal representation in the transform
domain leads to a low coding cost. We can thus design an l0-norm
objective and formulate the following optimization:

min
x
‖Φ(x− z)‖0 s.t. Dx = y (1)

where the objective is the number of non-zero transform coefficients
for the prediction residual x− z.

Because l0-norm is non-convex, we optimize its convex relax-
ation l1-norm instead, resulting in:

min
x
‖Φ(x− z)‖1 s.t. Dx = y (2)

There exist many algorithms in the optimization literature such as
proximal gradient [28] to minimize non-smooth l1-norm in (2). In-
stead, we reformulate (2) into a simpler linear programming (LP)
formulation as follows:

min
x,u

1>u s.t.


−u ≤ Φ(x− z) ≤ u,

Dx = y,

u ≥ 0.

(3)

LP problems like (3) can be solved efficiently using many known
methods like the Simplex algorithm [12].

Fig. 4(b) shows a sample DCR-optimized planar model. Fig. 4(a)
shows the input of our DCR optimization scheme where DCR pixels
are filled with value 128. We show in Section 5.1 that our DCR
optimization scheme does lead to planar model coding gain.

(a) All-128. (b) DCR-optimized.

Fig. 4. DCR optimization using old town cross at QP=2. The
upper half of both (a) and (b) show the enlarged upper right portion
of the planar model highlighted by yellow rectangles.

4.3. Video Coding

For our proposed planar model for video coding, SI includes AEC-
coded [11, 29] plane boundary Ib, HEVC-encoded plane texture It
and frame camera parameters. Specifically, the camera parameters
of each video frame contain two parts: 1) intrinsic parameters that
is shared for all frames in the same video, including a single focal
length, two-parameter principal point coordinates and a single ra-
dial distortion coefficient; and 2) extrinsic parameters, including a
four-parameter quaternion [20] that includes the camera rotation in-
formation and a three-parameter camera translation vector. Hence,
the total SI cost T in bits is given by: T = Ib + It + 16(4 + 7L),
where L is the total frame number. We project all pixels within the
HEVC-encoded planar model back to each of the spatial regions in
the input video frames as prediction, and the prediction residuals are
coded using HEVC.

5. EXPERIMENTATION

We tested two video sequences on a Windows 10 PC with Intel Core
i5-7500 and 8GB of RAM: 1) old town cross with 400 frames,
50 fps, and a 960x768 tested region, and 2) city with 300 frames,
60 fps, and a 384x192 tested region. The tested regions are shown in
Fig. 5. We use HM-16.4-4432 for planar model coding and original
video coding, and a customized HM-16.6-JEM-6.0-based version for
our proposed video coding system. We present planar model and
video coding results next.

5.1. Planar Model Coding

Before planar model coding, we apply our DCR optimization
scheme in (3) in Section 4.2 to the encapsulated planar models
of both tested video regions. For implementation of (3), we first
obtain a set of HEVC intra modes for all blocks of the input image,
and then iterate the process of getting HEVC predictors with the
same set of intra modes and (3) until all blocks that are at the bound-
ary of the planar model are DCR-optimized. The DCR optimized
planar model for old town cross is shown in Fig. 4, and city
in Fig. 6.



(a) old town cross. (b) city.

Fig. 5. Tested regions in old town cross and city.

The planar model coding RD performance is shown in Fig. 7.
The tested QP’s are 2, 7, 12, 17, 22, 27, 32 and 37. We also calcu-
late Bjøntegaard Delta Bitrate (BD-rate) reduction [30], the bit-rate
reduction of our DCR optimization scheme compared to the all-128
baseline given the same image quality, and Bjøntegaard Delta PSNR
(BD-PSNR) gain, both of which are shown in Table. 1. Both Fig. 7
and Table. 1 show consistent performance gain compared to the all-
128 baseline, except that our proposed scheme for city has a slight
performance drop at QP=37.

(a) All-128. (b) DCR-optimized.

Fig. 6. DCR optimization using city at QP=2. The right half of
both (a) and (b) show the enlarged upper left portion of the planar
model highlighted by yellow rectangles.
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Fig. 7. Planar model coding RD performance.

5.2. Video Coding

For video coding, we compare the performance of original video
coding using HM-16.4-4432 and our proposed video coding system
using a customized HM-16.6-JEM-6.0-based version with DCR-
optimized, HEVC-encoded planar models. The video coding RD
performance using the same QP’s as planar model coding is shown
in Fig. 7, and the corresponding BD-rate is shown in Table. 2. Both
Fig. 7 and Table. 2 show consistent performance gain by our pro-
posed coding system compared to the original baseline, except that
our proposed system for city has a slight performance drop at
QP=37. Note that, the total SI cost T (see Section 4.3) is incor-
porated into the total bit-rate count for our proposed video coding
scheme.

Table 1. Planar coding BD-rate reduction and BD-PSNR gain.
planar Y U V

-7.45% -6.84% -6.12%
old town cross 0.38dB 0.29dB 0.26dB

-3.65% -5.01% -10.58%
city 0.31dB 0.32dB 0.68dB
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Fig. 8. Video coding RD performance.

Table 2. Video coding BD-rate reduction and BD-PSNR gain.
video Y U V

-15.72% -20.20% -20.89%
old town cross 0.74dB 0.86dB 0.78dB

-11.72% -22.99% -21.03%
city 0.64dB 0.69dB 0.69dB

6. CONCLUSION

RD-optmization in model-based video coding remains a challenge.
In this paper, we propose an RD-optimized 2D planar-model-based
video coding system that optimally trades off between quality of pre-
diction by the planar model and its coding cost. Specifically, after
reconstructing a planar model using existing SfM techniques, we
select an appropriate density for a 2D grid on the plane. The ir-
regularly shaped pixel body (whose shape is coded using AEC) is
encapsulated inside a tightly-fitted rectangular region, where pixels
inside the rectangle but outside the body called DCR pixels are opti-
mized by minimizing an l1-norm of the transform coefficients using
linear programming. Experiments confirm that our proposed DCR
optimization scheme improves planar model coding efficiency, and
our RD-optimized planar model improves compression performance
over a native HEVC implementation. We stress that our proposed
single planar modelling scheme in our video coding system mainly
handles roughly flat spatial regions in the scene. Future work will
focus on RD-optimized multiple-planar modelling that incorporates
both local and global scene modelling cost for efficient video coding
with smaller distortion.
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