
BLIND IMAGE DEBLURRING VIA REWEIGHTED GRAPH TOTAL VARIATION

Yuanchao Bai?, Gene Cheung†, Xianming Liu$, Wen Gao?

?Peking University, Beijing, China, $Harbin Institute of Technology, Harbin, China
†National Institute of Informatics, Tokyo, Japan

ABSTRACT

Blind image deblurring, i.e., deblurring without knowledge of the
blur kernel, is a highly ill-posed problem. The problem can be
solved in two parts: i) estimate a blur kernel from the blurry im-
age, and ii) given estimated blur kernel, de-convolve blurry input
to restore the target image. In this paper, by interpreting an image
patch as a signal on a weighted graph, we first argue that a skele-
ton image—a proxy that retains the strong gradients of the target
but smooths out the details—can be used to accurately estimate the
blur kernel and has a unique bi-modal edge weight distribution. We
then design a reweighted graph total variation (RGTV) prior that can
efficiently promote bi-modal edge weight distribution given a blurry
patch. However, minimizing a blind image deblurring objective with
RGTV results in a non-convex non-differentiable optimization prob-
lem. We propose a fast algorithm that solves for the skeleton image
and the blur kernel alternately. Finally with the computed blur ker-
nel, recent non-blind image deblurring algorithms can be applied to
restore the target image. Experimental results show that our algo-
rithm can robustly estimate the blur kernel with large kernel size,
and the reconstructed sharp image is competitive against the state-
of-the-art methods.

Index Terms— blind image deblurring, graph signal process-
ing, non-convex optimization

1. INTRODUCTION

Image blur is a common image degradation, which is usually mod-
eled as

b = x⊗ k+ n, (1)

where b is the blurry image, x is the latent sharp image, k is the
blur kernel, n is the noise and ⊗ is the convolution operator. Image
deblurring is to recover the latent sharp image x from the blurry
image b. We focus on the blind image deblurring problem [1–3],
where both the latent image x and the blur kernel k are unknown
and must be restored given only the blurry image b. It is a highly
ill-posed problem, since the feasible solution of the problem is not
only unstable but also non-unique.

To overcome the ill-posedness, for blind image deblurring, it is
important to design a prior that promotes image sharpness and penal-
izes blurriness. However, conventional gradient-based priors of nat-
ural images tend to fail [2], because they usually favor blurry images
with mostly low frequencies in the Fourier domain. Recently, many
sophisticated image priors are proposed to deal with this problem,
for example, L0 norm-based prior [4], low-rank prior [5] and dark
channel prior [6]. Besides these priors, with the advance of graph
signal processing (GSP) [7], graph-based priors have been designed
for different image applications [8–10]. By modeling pixels as nodes
with weighted edges that reflect inter-pixel similarities, images can

be interpreted as signals on graphs. In this paper, we explore the re-
lationship between graph and image blur, and propose a graph-based
prior for blind image deblurring.

Specifically, instead of directly computing the natural image, we
argue that a skeleton image—a piecewise smooth (PWS) proxy that
retains the strong gradients of the target image but smooths out the
details—is sufficient to estimate the blur kernel. We observe that,
unlike blurry patches, the edge weights of a graph for the skeleton
image patch have a unique bi-modal distribution. We thus propose a
reweighted graph Total Variation (RGTV) prior to promote the de-
sirable bi-modal distribution given a blurry patch. We juxtapose and
analyze the advantages of RGTV against previous graph smooth-
ness priors, such as graph TV (GTV) [11] and the graph Laplacian
regularizer [9]. We propose a fast algorithm that solves for the skele-
ton image and the blur kernel alternately. Then with the estimated
blur kernel k, we de-convolve the blurry image using a non-blind
deblurring method, like [4, 12, 13]. Experiments show that our algo-
rithm achieves competitive or better results than many state-of-the-
art methods.

The outline of the paper is as follows. We introduce the graph
definition and observation in Sec. 2. RGTV prior and blind deblur-
ring algorithm are proposed in Sec. 3 and Sec. 4. Experiments and
conclusions are in Sec. 5 and Sec. 6.

2. GRAPH-BASED IMAGE PRIOR

2.1. Graph Definition

We first introduce definitions of a graph. A graph G(V, E ,W) is
a triplet consisting of a finite set of V of N nodes (image pixels)
and a finite set E ⊂ V × V of M edges. Each edge (i, j) ∈ E
is undirected with a corresponding weight wij which measures the
similarity between nodes i and j. Here we compute the weights
using a Gaussian kernel [7]:

[W]i,j = wi,j = exp(−‖xi − xj‖
2

σ2
), (2)

where W is the graph weight matrix of size N × N , xi and xj are
the pixels i and j of the image x, and σ is a smoothing parameter.
0 ≤ wij ≤ 1 and the larger wij is, the more similar the nodes i and
j are to each other.

Given the graph matrix W, a combinatorial graph Laplacian
matrix L is a symmetric matrix defined as:

L , diag(W1)−W (3)

where 1 is a vector of all 1s. diag(·) is an operator constructing a
square diagonal matrix with the elements of input vector on the main
diagonal.



2.2. Observation of Bi-modal Distribution

As directly computing a target natural image without blur kernel is
very difficult, we compute a skeleton image—a piecewise smooth
(PWS) version of the target image as a proxy. The skeleton image
retains the strong gradient of a natural image but smooths out the
minor details, which is similar to a structure extracted image [14]
or an edge-aware smoothed image [15]. An illustrative example is
shown in Fig. 1. Both of the target natural image and its skeleton
image are sharper than the blurry image in the middle.

(a) (b) (c) (d) (e) (f)

Fig. 1: Illustrations of different kinds of images. (a) a true natural
image. (b) a blurry image. (c) a skeleton image. (d), (e) and (f) are
patches in red squares of (a), (b) and (c), respectively.

Beyond visual differences, we seek also statistical descrip-
tions of these images so that we can differentiate among them in a
more mathematical rigorous manner. Specifically, we examine the
edge weight distribution of a graph for each of three representative
patches, where edge weight wi,j is computed using (2). Fig. 2
shows the edge weight distributions (histograms) of the representa-
tive patches in Fig. 1d–1f, where d = |xi − xj | is the x-coordinate.
The fraction of weights is the y-coordinate. We make the following
key observation from the histograms:

Both the target natural patch and its skeleton version have bi-
modal distribution of edge weights, while the blurred patch does not,
due to low-pass filtering during the blur process. Besides, the bi-
modal distribution of the skeleton patch is more desirable without the
effects of details. Based on this observation, we design a signal prior
to promote a bi-modal distribution of edge weights to reconstruct a
skeleton proxy of target natural patch given an observed blurry patch.
This is the focus of the next section.
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Fig. 2: Graph weight distribution properties around edges. (a) a true
natural patch. (b) a blurry patch. (c) a skeleton patch.

3. GRAPH-BASED IMAGE REGULARIZATION

3.1. Reweighted Graph Total Variation Prior

We propose a reweighted graph total variation (RGTV) prior to pro-
mote the aforementioned desirable bi-modal edge weight distribu-
tion in a target pixel patch. We first define the gradient operator of a
graph signal x. The gradient of node i ∈ V is defined as∇ix ∈ RN

and its j-th element is:

(∇ix)j , xj − xi, (4)

The conventional graph TV (GTV) [11] is defined as

‖x‖GTV =
∑
i∈V

‖ diag(Wi,·)∇ix‖1

=

N∑
i=1

N∑
j=1

wi,j |xj − xi| (5)

where Wi,· is the i-th row of the adjacency matrix W. GTV initial-
izes W using for example (2) and keeps it fixed, and hence does not
promote bi-modal distribution. As (5) is separable, we can analyze
the behavior of GTV using a single pair (i, j) separately like a two-
node graph. With d = |xi − xj | and fixed wi,j , the regularizer for
pair (i, j) is wi,jd, which is a linear function of d with slope wi,j .
The curve of wi,jd has only one minimum at d = 0, as shown in
Fig. 3a. Minimizing (5) only pushes d towards 0.

Instead of using fixed W, we extend the conventional graph TV
to the RGTV, where the graph weights W(x) are also functions of
x,

‖x‖RGTV =
∑
i∈V

‖ diag(Wi,·(x))∇ix‖1

=

N∑
i=1

N∑
j=1

wi,j(xi, xj)|xj − xi|, (6)

where Wi,·(x) is the i-th row of W(x) and wi,j(xi, xj) is the
(i, j) element of W(x). The extension makes a fundamental
difference, because the regularizer for pair (i, j) now becomes
wi,j(xi, xj)|xj − xi| = exp(−d2/σ2) · d. The curve of this regu-
larizer has one maximum at σ/

√
2 and two minima at 0 and +∞,

as shown in Fig. 3a. Minimizing (6) reduces d if d is smaller than
σ/
√
2 and magnifies d if d is larger than σ/

√
2. Thus RGTV regu-

larizer can effectively promote the desirable bi-modal edge weight
distribution.
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Fig. 3: Curves of regularizers and their corresponding first-
derivatives for each (i, j) pair. d is normalized to [0, 1]. wi,j = 0.1
for graph Laplacian and graph TV. σ = 0.1 for reweighted graph
Laplacian and reweighted graph TV.

Using the aforementioned RGTV prior, we propose an optimiza-
tion function for blind image deblurring in Sec. 4.

3.2. Comparisons with Graph Laplacian Prior

We analyze commonly used graph Laplacian regularizers. The graph
Laplacian regularizer [9] is expressed as

xTLx =

N∑
i=1

N∑
j=1

wi,j(xj − xi)2 (7)



Like GTV, graph Laplacian initializes L and keeps it fixed, and
hence does not promote the desirable bi-modal edge weight distri-
bution. With d = |xi − xj | and fixed wi,j , the prior for each node
pair (i, j) is wi,jd

2, which is a quadratic function of d with coeffi-
cient wi,j . The curve of wi,jd

2 has only one minimum at d = 0, as
shown in Fig. 3a. Minimizing (7) only pushes d to 0.

We extend the conventional graph Laplacian to the reweighted
graph Laplacian. Similar to RGTV, we define the reweighted graph
Laplacian as

xTL(x)x =

N∑
i=1

N∑
j=1

wi,j(xi, xj) · (xj − xi)2, (8)

where Laplacian matrix L(x) is a function of x and wi,j(xi, xj)
is the same as the definition in (6). Then, the regularizer for pair
(i, j) becomes wi,j(xi, xj)(xj − xi)2 = exp(−d2/σ2) · d2. The
curve has one maximum at d = σ and two minima at 0 and +∞,
as shown in Fig. 3a. Though reweighted graph Laplacian can also
promote the desirable bi-modal edge weight distribution based on
Fig. 3a, it has one significant drawback. Taking the first derivative
of its function results in exp(−d2/σ2) ·2d(1−d2/σ2), as shown in
Fig. 3b. limd→0 exp(−d2/σ2) · 2d(1− d2/σ2) = 0, which means
that the convergence of minimizing (8) is very slow when d is close
to 0 in practice.

Different from reweighted graph Laplacian, the first derivative
of the cost function of RGTV is exp(−d2/σ2) · (1 − 2d2/σ2), as
shown in Fig. 3b. limd→0 exp(−d2/σ2) · (1 − 2d2/σ2) = 1,
which means that the RGTV can promote a bi-modal edge weight
distribution and ensure a good convergence speed of minimizing (6)
when d is close to 0.

4. BLIND IMAGE DEBLURRING ALGORITHM

Using the blur image model in (1), we pose the blind image de-
blurring problem as an optimization as follows using our proposed
RGTV prior:

x̂, k̂ = argmin
x,k

1

2
‖x⊗ k− b‖22 + λ‖x‖RGTV + µ‖k‖22 (9)

where the first term is the data fidelity term, and the remaining two
terms are regularization terms for variables x and k, respectively. λ
and µ are two corresponding parameters.

The optimization (9) is non-convex and non-differentiable,
which is challenging to solve. Here we apply an alternating scheme
to solve the minimizers x̂ and k̂ iteratively, as sketched in Algo-
rithm 1.

The minimizer x̂ is our PWS proxy—the skeleton image, in or-
der to estimate a good blur kernel k̂. To restore the natural sharp im-
age given estimated blur kernel k̂, we can use recent non-blind image
deblurring algorithms to deblur the blurry image b such as [4,12,13].

4.1. Estimating Skeleton Image

Given k̂, optimization (9) to solve x becomes:

x̂ = argmin
x

1

2
‖x⊗ k̂− b‖22 + λ‖x‖RGTV (10)

RGTV is a non-differentiable prior, where the edge weights are
functions of x. We employ an alternating scheme again to separate
W(x) from x optimization, i.e., we first optimize x with initialized

W (of all ones), then we update W with W(x̂) and optimize x

again. Given W and k̂ to solve for x, we solve the sub-problem
with a primal-dual algorithm [16]. The alternating algorithm runs
iteratively until convergence as the solution to (10).

4.2. Estimating Blur Kernel

To solve k given x̂, we make a slight modification and solve k in
the gradient domain to avoid artifacts [17, 18]. The optimization (9)
becomes:

k̂ = argmin
k

1

2
‖∇x̂⊗ k−∇b‖22 + µ‖k‖22 (11)

where∇ is the gradient operator. (11) is a quadratic function and has
a closed-form solver like deconvolution. We accelerate the solver via
Fast Fourier Transforms [17]. After obtaining k̂, we threshold the
negative elements to zeros and normalize k̂ to ensure

∑
i k̂i = 1.

Algorithm 1 Solving (9)

Input: Blurry image b and kernel size h× h.
1: Initialize k̂ with delta function or the result from coarser scale.
2: while not converge do

Update x̂ by solving (10).
Update k̂ by solving (11).
λ← λ/1.1.

endwhile
Output: Estimated blur kernel k̂ and skeleton image x̂.

4.3. Coarse-to-Fine Strategy

We apply a coarse-to-fine strategy [19] to solve (9), in order to make
the solver robust for large blur kernels. In the coarse-to-fine strategy,
we construct an image pyramid by down-sampling the blurry image
and do blind image deblurring scale by scale. In each scale, we
estimate k̂ and x̂, and then we up-sample k̂ as the initial value for
the finer scale.

5. EXPERIMENTS

In this section, we evaluate the performance of our proposed al-
gorithm and compare it against four recent blind image deblurring
schemes: Kirshnan et al. [20], Levin et al. [21], Michaeli & Irani
[22], Pan et al. [6]. Our experiments used both manually blurred
images and the more challenging real motion blurred natural images
with large blur kernels. The codes of competing schemes are offered
by their authors online. All algorithms are run on the Matlab 2015a
platform.

For our proposed algorithm, the down-sampling factor for
coarse-to-fine strategy is set to log2 3. We construct a four-neighbor
adjacency graph on the image as a tradeoff between performance
and complexity. In (2), σ = 0.1. In (9), λ is initialized to 0.01 and µ
is set to 0.05. In blind image deblurring, the kernel size is unknown
and is an important parameter. For fair comparisons, we set the
same kernel size for all the algorithms to estimate the blur kernel
in each case. With estimated blur kernels, we use fast non-blind
deblurring method [12] to reconstruct sharp images for manually
blurred images. We use sophisticated non-blind deblurring method
in [4] to reconstruct sharp images with estimated blur kernels for
real motion blurred images.



(a) Butterfly. (b) Lena. (c) Parrot.

Fig. 4: Artificial Cases. Each sharp image convolves with the blur
kernel (size: 7×7) at the lower right corner. (a) Gaussian blur, σ =
1.85. (b) motion blur, angle = 30◦. (c) motion blur, angle = 135◦.

Table 1: Quantitative comparisons on artificial blurred images de-
blurring: performance comparisons in PSNR (dB).

Methods Butterfly Lena Parrot
Krishnan et al. [20] 29.4 28.9 29.3
Levin et al. [21] 29.9 29.4 29.2
Michaeli & Irani [22] 30.6 30.3 31.9
Pan et al. [6] 30.4 30.8 32.0
Ours 30.8 31.0 32.7

(a) Blurry Input. (b) Kirshnan et al. [20] (c) Levin et al. [21]

(d) Michaeli & Irani [22] (e) Pan et al. [6] (f) RGTV.

Fig. 5: Flower. Image size: 618× 464, kernel size: 69× 69.

(a) Blurry Input. (b) Kirshnan et al. [20] (c) Levin et al. [21]

(d) Michaeli & Irani [22] (e) Pan et al. [6] (f) RGTV.

Fig. 6: Picasso. Image size: 800× 532, kernel size: 69× 69.

Fig. 4 shows the manually blurred images used in our exper-
iment. We convolve three sharp images with known blur kernels.
Then, we run each algorithm on the blurred images and compute
PSNR of the restored results. The quantitative comparisons are re-
ported in Table. 1. Our algorithm provides superior deblurring per-
formance, achieving higher PSNR than the competing algorithms.

(a) Blurry Input. (b) Kirshnan et al. [20] (c) Levin et al. [21]

(d) Michaeli & Irani [22] (e) Pan et al. [6] (f) RGTV.

Fig. 7: Roma. Image size: 1229× 825, kernel size: 95× 95.

Fig. 5 – 7 demonstrate the estimated blur kernels and the corre-
sponding deblurred images of all the algorithms on real blurry im-
ages. The proposed algorithm can estimate the blur kernels robustly
and the visual quality of our reconstructed sharp images is competi-
tive or better than that of the results of other algorithms. The images
are better viewed in full size on computer screen.

6. CONCLUSION

RGTV is an effective prior to promote image sharpness and penalize
blurriness. Based on the comparisons, it is better than other graph
smoothness priors, i.e., GTV and graph Laplacian, in solving blind
image deblurring problem. In this paper, we design a fast algorithm
with RGTV. Experimental results demonstrate that our algorithm can
deal with large blur kernels and the reconstructed results are compet-
itive against the state-of-the-art methods.
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