Gene Cheung National Institute of Informatics 8th June, 2018

Recent Advances in Graph Spectral Image Processing

GSP Workshop 6/8/2018

Acknowledgement

Collaborators:

- Y. Nakatsukasa (NII, Japan)
- S. Muramatsu (Niigata, Japan)
- A. Ortega (USC, USA)
- **D. Florencio** (MSR, USA)
- P. Frossard (EPFL, Switzerland)
- J. Liang, I. Bajic (SFU, Canada)
- X. Wu (McMaster U, Canada)
- V. Stankovic (U of Strathclyde, UK)
- P. Le Callet (U of Nantes, France)
- X. Liu (HIT, China)
- W. Hu, J. Liu, Z. Guo, W. Gao (Peking U., China)
- X. Ji, L. Fang (Tsinghua, China)
- Y. Zhao (BJTU, China)
- C.-W. Lin (National Tsing Hua University, Taiwan)
- E. Peixoto, B. Macchiavello, E. M. Hung (U. Brasilia, Brazil)

Why GSP for Image Processing?

- GSP: signals on *irregular* data kernels described by graphs.
 - Graph: nodes and edges.
 - Edges reveals *node-to-node relationships*.
 - 1. Graph captures underlying image statistics.
 - Ex: GFT decorrelates signal for compression.
- 2. Graph captures (dis)similarities of pixels.
 - Ex: Bilateral filter weights based on Euclidean / photometric distance.

GSP provides design space of spectrum for image filtering.

Outline

- GSP for Image Compression
 - Optimality of GFT
 - Generalized GFT
 - Signed GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV
- Deep GLR
- Ongoing & Future Work

Outline

- GSP for Image Compression
 - Optimality of GFT
 - Generalized GFT
 - Signed GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV
- Deep GLR
- Ongoing & Future Work

GFT for Image Compression

- DCT are *fixed* basis. Can we do better?
- Idea: use *adaptive* GFT to improve sparsity [1].
 - 1. Assign edge weight 1 to adjacent pixel pairs.
 - 2. Assign edge weight 0 to sharp signal discontinuity.
 - 3. Compute GFT for transform coding, transmit coeff.

$$\widetilde{\mathbf{x}} = \mathbf{V}^{\widetilde{T}} \mathbf{x}$$
 GFT

6

Transmit bits (*contour*) to identify chosen GFT to decoder (overhead of GFT).

[1] G. Shen et al., "**Edge-adaptive Transforms for Efficient Depth Map Coding**," *IEEE Picture Coding Symposium*, Nagoya, Japan, December 2010.

[2] W. Hu, G. Cheung, X. Li, O. Au, "**Depth Map Compression using Multi-resolution Graph-based Transform for Depth-image-based Rendering**," *IEEE International Conference on Image Processing*, Orlando, FL, September 2012.

GFT: Derivation of Optimal Edge Weights

• Assume a 1D 1st-order *autoregressive (AR) process* $\mathbf{x} = [x_1, ..., x_N]^T$ where,

GFT: Derivation of Optimal Edge Weights

Covariance matrix

$$\mathbf{C} = E\left[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T \right]$$

= $E\left[\mathbf{x} \mathbf{x}^T \right] = E\left[\mathbf{F}^{-1} \mathbf{b} \mathbf{b}^T (\mathbf{F}^{-1})^T \right]$
= $\mathbf{F}^{-1} E\left[\mathbf{b} \mathbf{b}^T \right] (\mathbf{F}^{-1})^T$

$$E[\mathbf{b}\mathbf{b}^{T}] = \begin{bmatrix} \sigma^{2} & 0 & \cdots & 0 \\ 0 & \sigma_{2}^{2} & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \sigma_{N}^{2} \end{bmatrix}$$

• Precision matrix (tri-diagonal)

GFT for PWS Image Coding

Rate of transform coefficient vector α

- Graph Laplacian \approx Precision Matrix \rightarrow GFT approx. *Karhunen-Loeve Transform* (KLT).
- Encode blocks with **signal-decorrelation** GFT.

Rate of transform description T

 $\min_{\mathbf{W}} R_{\alpha}(\mathbf{x}, \mathbf{W}) + R_T(\mathbf{W})$

- To limit the description cost R_T , restrict weights to a small discrete set $\mathcal{C} = \{1,0,c\}$

Transform Comparison

	Transform Representation	Transform Description
Karhunen-Loeve Transform (KLT)	"Sparsest" signal representation given available statistical model	Can be expensive (if poorly structured)
Discrete Cosine Transform (DCT)	non-sparse signal representation across sharp boundaries	little (fixed transform)
Graph Fourier Transform (GFT)	minimizes the total rate of signal's transform representation & transform description	

Experimentation

- Setup
 - Test images: depth maps of *Teddy* and *Cones*, and graphics images of *Dude* and *Tsukuba*.
 - Compare against: HR-DCT, HR-SGFT, SAW, MR-SGFT in H.264.

Subjective Results

HR-DCT

MR-GFT

• Statistical model for prediction residuals?

[1] W. Hu et al., "Intra-Prediction and Generalized Graph Fourier Transform for Image Coding," *IEEE Signal Processing Letters*, vol.22, no.11, pp. 1913-1917, November, 2015.

GGFT: Derivation of Optimal Edge Weights

• Assume a 1D 1st-order *autoregressive (AR) process* $\mathbf{x} = [x_1, ..., x_N]^T$ where,

GGFT: Derivation of Optimal Edge Weights

• Covariance matrix

$$\mathbf{C} = E\left[(\mathbf{r} - \boldsymbol{\mu})(\mathbf{r} - \boldsymbol{\mu})^{T}\right]$$
$$= E\left[\mathbf{r} \,\mathbf{r}^{T}\right] = E\left[\mathbf{F}^{-1}\mathbf{b}\mathbf{b}^{T}\left(\mathbf{F}^{T}\right)^{-1}\right]$$
$$= \mathbf{F}^{-1}E\left[\mathbf{b} \,\mathbf{b}^{T}\right]\left(\mathbf{F}^{T}\right)^{-1}$$

 $\frac{1}{\sigma_3^2}$ $\frac{1}{\sigma_2^2}$ $\overline{\sigma_{\scriptscriptstyle 1}^{\scriptscriptstyle 2}}$ 3 2 0 Boundary condition Graph Laplacian matrix L diagonal matrix D 0 Generalized graph Laplacian

[1] J. Han et al., "Jointly Optimized Spatial Prediction and Block Transform for video and Image Coding," IEEE TIP, April 2012. [2] G. Strang, "The discrete cosine transform," SIAM Review, vol. 41, pp.135–147, 1999.

Experimental Results

- Test images: PWS images and natural images
- Compare *proposed intra-prediction (pIntra) + GGFT* against:
 - edge-aware intra-prediction (eIntra) + DCT
 - elntra + ADST
 - elntra + GFT

SGFT: Derivation of Optimal Edge Weights

• Assume a 1D 1st-order *autoregressive (AR) process* $\mathbf{x} = [x_1, ..., x_N]^T$ where,

negative correlation $x_{k} = \begin{cases} \eta \swarrow k = 1 \\ -x_{l-1} + e_{l} & k = l \\ x_{k-1} + e_{k} & 1 < k \le N \end{cases}$

[1] Weng-Tai Su, Gene Cheung, Chia-Wen Lin, "Graph Fourier Transform with Negative Edges for Depth Image Coding," *IEEE International Conference on Image Processing*, Beijing, China, September, 2017.

SGFT: Derivation of Optimal Edge Weights

0.6

0.4

0.2

- SGFT approx. KLT for anti-correlation.
- Self-loops ensure PSD (Gershgorin).
- 1st eigenvector is PWC.
- 2nd eigenvector is *not* constant.

Negative Edges:

- Improve classifier robustness [1].
- Enhance image contrast.

[1] Gene Cheung, Weng-Tai Su, Yu Mao, Chia-Wen Lin, "Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights," accepted to IEEE Transactions on Signal and Information Processing over Networks, March 2018. Fig. 2. First two eigenvectors of: a) loopy Laplacian Q for a 10node graph with negative edge weight -0.1 between nodes 6 and 7; b) graph Laplacian L for the same graph with small edge weight 0.1 between nodes 6 and 7. Other edge weights are 1.

0.6

0.4

0.2

•~v1

Summary of GFT for Image Coding

- Optimality of GFT, Generalized GFT, Signed GFT for variants of AR models.
- Selection of models trades off encoding cost of SI.
- Fast implementation (w/o eigen-decomposition) via Graph Lifting Transform (GLT) [1] or Fast Graph Fourier Transform (FGFT) [2].

[1] Y.-H. Chao et al., "Edge-Adaptive Depth Map Coding with Lifting Transform on Graphs," 31st Picture Coding Symposium, Cairns, Australia, May, 2015.

[2] L. Le Magoarou et al., "Approximate Fast Graph Fourier Transforms via Multilayer Sparse Approximations," *IEEE TSIPN*, May, 2018.

Graph-Signal Sampling / Encoding for 3D Point Cloud

- Problem: Point clouds require encoding specific 3D coordinates.
- Assumption: smooth 2D manifold in 3D space.
- Proposal: progressive 3D geometry rep. as series of graph-signals. MIT dataset*
 - 1. adaptively identifies new samples on the manifold surface, and
 - 2. encodes them efficiently as graph-signals.

• Example:

- 1. Interpolate i^{th} iteration samples (black circles) to a **continuous kernel** (mesh), an approximation of the target surface **S**.
- 2. New sample locations, **knots** (squares), are located on the kernel surface.
- 3. Signed distances between knots and *S* are recorded as sample values.
- 4. Sample values (green circles) are encoded as a graph-signal via GFT.

Graph-Signal Sampling / Encoding for 3D Point Cloud • Experimental Results:

[1] M. Zhao, G. Cheung, D. Florencio, X. Ji, "**Progressive Graph-Signal Sampling and Encoding for Static 3D Geometry Representation**," *IEEE International Conference on Image Processing*, Beijing, China, September, 2017.

Pre-Demosiac Light Field Image Compression Using Graph Lifting Transform

• **Problem**: Sub-aperture images in Light field data are huge.

Pre-Demosiac Light Field Image Compression Using Graph Lifting Transform

• Experimental Results:

Dataset: EPFL light field image dataset Baseline: All-intra HEVC coding in YUV4:2:0 and RGB 4:4:4

[1] Y.-H. Chao, G. Cheung, A. Ortega, "**Pre-Demosiac Light Field Image Compression Using Graph Lifting Transform**," *IEEE Int'l Conf. on Image Processing*, Beijing, China, September, 2017. (**Best student paper award**)

Outline

- GSP for Image Compression
 - Optimality of GFT
 - Generalized GFT
 - Signed GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV
- Deep GLR
- Ongoing & Future Work

Graph Laplacian Regularizer

• $\mathbf{X}^T \mathbf{L} \mathbf{X}$ (graph Laplacian regularizer) [1]) is one smoothness measure.

[1] P. Milanfar, "A Tour of Modern Image Filtering: New Insights and Methods, Both Practical and Theoretical," *IEEE Signal Processing Magazine*, vol.30, no.1, pp.106-128, January 2013.

Graph Laplacian Regularizer

$$w_{i,j} = \exp\left(\frac{-\|x_i - x_j\|_2^2}{\sigma_1^2}\right) \exp\left(\frac{-\|l_i - l_j\|_2^2}{\sigma_2^2}\right)$$

• $x^T L(x)x$ promotes *piecewise smooth* (PWS) signal behavior [1].

$$\mathbf{x}^{T}\mathbf{L}(\mathbf{x})\mathbf{x} = \frac{1}{2}\sum_{i,j} w_{i,j} (x_{i} - x_{j})^{2} = \frac{1}{2}\sum_{i,j} u_{i,j} \exp\left\{-\frac{(x_{i} - x_{j})^{2}}{\sigma^{2}}\right\} (x_{i} - x_{j})^{2}$$

- Spectral Clustering [2]: Rayleigh quotient $v^* = \arg\min_{v} \frac{v^T L_n v}{v^T v} \quad s.t. \quad v^T v_1 = 0$
- v_1 minimizes obj \rightarrow Sol'n is 2nd eigenvector of L_n .
- 2nd eigenvalue—Fiedler number—measures "connectedness".
- PWS signal = 2 clusters of similar nodes $\rightarrow x^{T}Lx \approx 0$

[1] X. Liu, G. Cheung, X. Wu, D. Zhao, "**Random Walk Graph Laplacian based Smoothness Prior for Soft Decoding of JPEG Images**," *IEEE Transactions on Image Processing*, vol.26, no.2, pp.509-524, February 2017.

[2] J. Shi and J. Malik, "Normalized cuts and image segmentation," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 22, no. 8, pp. 888–905, Aug. 2000.

Analysis of Graph Laplacian Regularizer

• [1] shows $S_G(\mathbf{u}) = \mathbf{u}^T \mathbf{L} \mathbf{u}$ converges to continuous functional S_Ω and objective becomes:

$$u^{\star} = \arg\min_{u} \|u - z_0\|_{\Omega}^2 + \tau \cdot \int_{\Omega} \nabla u^{\mathrm{T}} \mathbf{D} \nabla u \, ds,$$

• Solution can be implemented as anisotropic diffusion:

$$\partial_t u = \operatorname{div} (\mathbf{D} \nabla u),$$

 $u(\mathbf{s}, t = 0) = z_0(\mathbf{s}).$ diffusivity

- it not only smooths but may also sharpens the image,
- promote piecewise smooth images, like **total variation** (TV).

 $\mathbf{D} = \mathbf{G}^{-1} \left(\sqrt{\det \mathbf{G}} \right)^{2\gamma - 1}$

feature function vector

 $\mathbf{v}_i = [\mathbf{f}_1(i) \, \mathbf{f}_2(i) \dots \mathbf{f}_N(i)]^{\mathrm{T}}$

distance $d_{ij}^2 = \|\mathbf{v}_i - \mathbf{v}_j\|_2^2$

metric $\widehat{\mathbf{G}} = \sum_{n=1}^{N} \nabla f_n \cdot \nabla f_n^{\mathrm{T}}$

edge weight $w_{ii} = (\rho_i \rho_i)^{-\gamma} \psi(d_{ii})$

Outline

- GSP for Image Compression
 - Optimality of GFT
 - Generalized GFT
 - Signed GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer: Image Denoising
 - Reweighted Graph TV:
- Deep GLR
- Ongoing & Future Work

Optimal Graph Laplacian Regularization for Denoising

- Adopt a patch-based recovery framework, for a noisy patch \mathbf{p}_0
 - 1. Find K-1 patches similar to \mathbf{p}_0 in terms of Euclidean distance.
 - 2. Compute feature functions, leading to edge weights and Laplacian.
 - 3. Solve the unconstrained quadratic optimization:

$$\mathbf{q}^* = \arg\min_{\mathbf{q}} \left\| \mathbf{p}_0 - \mathbf{q} \right\|_2^2 + \lambda \mathbf{q}^T \mathbf{L} \mathbf{q} \quad \Rightarrow \quad \mathbf{q} = \left(\mathbf{I} + \lambda \mathbf{L} \right)^{-1} \mathbf{p}_0$$

 $\mathbf{f}_2^D(i) = \sqrt{\sigma^2 + \alpha} \cdot \mathbf{y}_i$

 $\mathbf{f}_{1}^{D}(i) = \sqrt{\sigma^{2} + \alpha \cdot x_{i}}$

Spatial

$$\mathbf{f}_{3}^{D} = \frac{1}{K + \sigma_{e}^{2} / \sigma_{g}^{2}} \sum_{k=0}^{K-1} \mathbf{p}_{k}$$

to obtain the denoised patch.

- Aggregate denoised patches to form an updated image.
- Denoise the image iteratively to gradually enhance its quality.
- Optimal Graph Laplacian Regularization for Denoising (OGLRD).

Denoising Experiments (natural images)

• Subjective comparisons ($\sigma_1 = 40$)

Original

Noisy, 16.48 dB

K-SVD, 26.84 dB

OGLR, 28.35 dB

BM3D, 27.99 dB

PLOW, 28.11 dB

Denoising Experiments (depth images)

• Subjective comparisons ($\sigma_{I} = 30$)

[1] W. Hu et al., "**Depth Map Denoising using Graph-based Transform and Group Sparsity**," *IEEE International Workshop on Multimedia Signal Processing*, Pula (Sardinia), Italy, October, 2013.

Outline

- GSP for Image Compression
 - Optimality of GFT
 - Generalized GFT
 - Signed GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer: Soft Decoding of JPEG Images
 - Reweighted Graph TV
- Deep GLR
- Ongoing & Future Work

Soft Decoding of JPEG Images

• **Setting**: **JPEG** compresses natural images:

- 1. Divide image into 8x8 blocks, DCT.
- 2. Perform DCT transform per block and quantize:

- 3. Quantized DCT coeff entropy coded.
- **Decoder**: uncertainty in signal reconstruction:

$$q_i Q_i \le Y_i \le (q_i + 1) Q_i, i = 1, 2, \dots, 64.$$

[1] A. Zakhor, "Iterative procedures for reduction of blocking effects in transform image coding," *IEEE Transactions on Circuits and Systems for Video Technology*, vol. 2, no. 1, pp. 91–95, Mar 1992.

[2] K. Bredies and M. Holler, "A total variation-based JPEG decompression model," SIAM J. Img. Sci., vol. 5, no. 1, pp. 366–393, Mar. 2012.

[3] H. Chang, M. Ng, and T. Zeng, "**Reducing artifacts in jpeg decompression via a learned dictionary**," *IEEE Transactions on Signal Processing*, vol. 62, no. 3, pp. 718–728, Feb 2014.

LERaG for Soft Decoding of JPEG Images

• Problem: reconstruct image given indexed quant. bin in 8x8 DCT.

[1] X. Liu, G. Cheung, X. Wu, D. Zhao, "**Random Walk Graph Laplacian based Smoothness Prior for Soft Decoding of JPEG Images**," 35 *IEEE Transactions on Image Processing*, vol.26, no.2, pp.509-524, February 2017.

Soft Decoding Algorithm w/ Prior Mixture

- Optimization:
 - 1. Laplacian prior provides an initial estimation;
- $\begin{array}{c} \hline 2 \\ 3 \\ \end{array}$ Fix **x** and solve for **a**; 3. Fix **a** and solve for **x**.
Evolution of 2nd Eigenvector

• 2nd eigenvector becomes more PWS:

(a) initialization, LERaG = 76453.02, 2nd Eigenvalue = 0.001079

- 1. better pixel clusters,
- 2. smaller Fiedler number (2nd eigenvalue),
- 3. Smaller smoothness penalty term.

Experimental Setup

- Compared methods
 - BM3D: well-known denoising algorithm
 - **KSVD**: with a large enough over-complete dictionary (100x4000); our method uses a much smaller one (100x400).
 - ANCE: non-local self similarity [Zhang et al. TIP14]
 - **DicTV**: Sparsity + TV [Chang et al, TSP15]
 - SSRQC: Low rank + Quantization constraint [Zhao et al. TCSVT16]

PSNR / SSIM Comparison

QUALITY COMPARISON WITH RESPECT TO PSNR (IN DB) AND SSIM AT QF = 40

Images	JPEG		BM3D [38]		KSVD [8]		ANCE [18]		DicTV [3]		SSRQC [20]		0	urs
	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
Butterfly	29.97	0.9244	31.35	0.9555	31.57	0.9519	31.38	0.9548	31.22	0.9503	32.02	0.9619	32.87	0.9627
Leaves	30.67	0.9438	32.55	0.9749	33.04	0.9735	32.74	0.9728	32.45	0.9710	32.13	0.9741	34.42	0.9803
Hat	32.78	0.9022	33.89	0.9221	33.62	0.9149	33.69	0.9169	33.20	0.8988	34.10	0.9237	34.46	0.9268
Boat	33.42	0.9195	34.77	0.9406	34.28	0.9301	34.64	0.9362	26.08	0.7550	33.88	0.9306	34.98	0.9402
Bike	28.98	0.9131	29.96	0.9356	30.19	0.9323	30.31	0.9357	29.75	0.9154	30.35	0.9411	31.14	0.9439
House	35.07	0.8981	36.09	0.9013	36.05	0.9055	36.12	0.9048	35.17	0.8922	36.49	0.9072	36.55	0.9071
Flower	31.62	0.9112	32.81	0.9357	32.63	0.9271	32.67	0.9314	31.86	0.9084	33.02	0.9362	33.37	0.9371
Parrot	34.03	0.9291	34.92	0.9397	34.91	0.9371	35.02	0.9397	33.92	0.9227	35.11	0.9401	35.32	0.9401
Pepper512	34.21	0.8711	34.94	0.8767	34.89	0.8784	34.99	0.8803	34.24	0.8639	35.05	0.8795	35.19	0.8811
Fishboat512	32.76	0.8763	33.61	0.8868	33.36	0.8809	33.60	0.8861	32.53	0.8496	33.68	0.8859	33.73	0.8871
Lena512	35.12	0.9089	36.03	0.9171	35.82	0.9146	36.04	0.9177	34.85	0.8986	36.09	0.9187	36.11	0.9191
Airplane512	33.36	0.9253	34.38	0.9361	34.36	0.9341	34.53	0.9358	33.75	0.9134	35.81	0.9355	36.07	0.9439
Bike512	29.43	0.9069	30.47	0.9299	30.66	0.9258	30.71	0.9298	30.05	0.9043	32.26	0.9372	32.55	0.9387
Statue512	32.78	0.9067	33.61	0.9188	33.55	0.9149	33.55	0.9193	32.53	0.8806	34.88	0.9249	34.95	0.9273
Average	32.44	0.9097	33.52	0.9264	33.50	0.9229	33.57	0.9258	32.25	0.8945	33.91	0.9283	34.41	0.9311

Subjective Quality Evaluation

(d) DicTV (23.42,0.8176)

(e) SSRQC (25.31,0.8764)

Subjective Quality Evaluation

Outline

- GSP for Image Compression
 - Optimality of GFT
 - Generalized GFT
 - Signed GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV
- Deep GLR
- Ongoing & Future Work

Reweighted Graph Total Variation

pixel intensity difference

$$w_{i,j} = \exp\left(\frac{-\left\|x_i - x_j\right\|_2^2}{\sigma_1^2}\right)$$

Gradient of nodes on the graph:

$$(\nabla_i \mathbf{x})_j \triangleq x_j - x_i,$$

Conventional Graph TV:

• TV on graphs.

Reweighted Graph TV:

$$\|\mathbf{x}\|_{GTV} = \sum_{i \in \mathcal{V}} \|\operatorname{diag}(\mathbf{W}_{i,\cdot})\nabla_{i}\mathbf{x}\|_{1} \qquad \|\mathbf{x}\|_{RGTV} = \sum_{i \in \mathcal{V}} \|\operatorname{diag}(\mathbf{W}_{i,\cdot}(\mathbf{x}))\nabla_{i}\mathbf{x}\|_{1}$$
$$= \sum_{i=1}^{N} \sum_{j=1}^{N} w_{i,j}|x_{j} - x_{i}| \qquad \qquad = \sum_{i=1}^{N} \sum_{j=1}^{N} w_{i,j}(x_{i}, x_{j})|x_{j} - x_{i}|,$$

[1] M. Hidane, O. Lezoray, and A. Elmoataz, "Nonlinear multilayered representation of graph-signals," in *Journal of Mathematical Imaging and Vision*, February 2013, vol. 45, no.2, pp. 114–137.

[2] P. Berger, G. Hannak, and G. Matz, "Graph signal recovery via primal-dual algorithms for total variation minimization," in *IEEE Journal* 43 *on Selected Topics in Signal Processing*, September 2017, vol. 11, no.6, pp. 842–855.

Reweighted Graph Total Variation

- RGTV is separable. analyze each node pair.
 - Promotes *bi-modal inter-pixel differences*.

Fig. 3. Curves of regularizers and their corresponding first-derivatives for each (i, j) pair. d is normalized to [0, 1]. $w_{i,j} = 0.1$ for graph Laplacian and graph TV. $\sigma = 0.1$ for reweighted graph Laplacian and reweighted graph TV.

[1] Y. Bai, G. Cheung, X. Liu, W. Gao, "Blind Image Deblurring via Reweighted Graph Total Variation," *IEEE International Conference on* 44 *Acoustics, Speech and Signal Processing*, Calgary, Alberta, April, 2018.

Outline

- GSP for Image Compression
 - Optimality of GFT
 - Generalized GFT
 - Signed GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV: Image Deblurring
- Deep GLR
- Ongoing & Future Work

Background for Image Deblurring

- Image blur is a common image degradation.
- Typically, blur process is modeled:

$$y = k \otimes x$$

where y is the blurry image, k is the blur kernel, x is the original sharp image.

- Blind-image deblurring focuses on estimating blur kernel k.
- Given *k*, problem becomes *de-convolution*.

Observation

Skeleton image

- PWS image keeping only structural edges.
- Proxy to estimate blur kernel k.

(d)

Observation

- Examine statistical properties of local patches:
 - Edge weight distribution of a fully connected graph.

Fig. 2: Graph weight distribution properties around edges. (a) a true natural patch. (b) a blurry patch. (c) a skeleton patch.

• Skeleton Image enjoys both *Sharpness* and *bi-modal Weight distribution*, thus useful to estimate blur kernel.

• Propose a *Reweighted Graph Total Variation* (RGTV) to promote a skeleton image patch.

Conventional Graph TV:

$$\|\mathbf{x}\|_{GTV} = \sum_{i \in \mathcal{V}} \|\operatorname{diag}(\mathbf{W}_{i,\cdot})\nabla_i \mathbf{x}\|_1$$
$$= \sum_{i=1}^N \sum_{j=1}^N w_{i,j} |x_j - x_i|$$

Reweighted Graph TV:

$$\begin{aligned} \|\mathbf{x}\|_{RGTV} &= \sum_{i \in \mathcal{V}} \|\operatorname{diag}(\mathbf{W}_{i,\cdot}(\mathbf{x}))\nabla_i \mathbf{x}\|_1 \\ &= \sum_{i=1}^N \sum_{j=1}^N w_{i,j}(x_i, x_j) \|x_j - x_i\|, \end{aligned}$$

Our algorithm

- The optimization function can be written as follows, $\hat{\mathbf{x}}, \hat{\mathbf{k}} = \underset{\mathbf{x}, \mathbf{k}}{\operatorname{argmin}} \varphi(\mathbf{x} \otimes \mathbf{k} - \mathbf{b}) + \mu_1 \cdot \theta_x(\mathbf{x}) + \mu_2 \cdot \theta_k(\mathbf{k})$
- Assume L_2 norm for fidelity term $\varphi(\cdot)$.
- $\theta_{\chi}(\cdot) = RGTV(\cdot).$
- $\theta_k(\cdot) = ||\cdot||_2$, assuming zero mean Gaussian distribution of k.
- RGTV is non-differentiable and non-convex.

Solution:

- Solve x and k alternatingly.
- For x, spectral interpretation of GTV, fast spectral filter.

• Deduction for spectrum of GTV

• Explanation: $\gamma_{i,j} = \frac{w_{i,j}}{\max\{|x_j - x_i|, \epsilon\}}$ New Adjacency matrix Γ

$$\|\mathbf{x}\|_{GTV} = \sum_{(i,j)\in E} \gamma_{i,j} (x_i - x_j)^2$$
$$= \mathbf{x}^T \mathbf{L}_{\Gamma} \mathbf{x}$$

 $\mathbf{L}_{\Gamma} = \mathbf{U}_{\Gamma} \mathbf{\Lambda}_{\Gamma} \mathbf{U}_{\Gamma}^{T} \quad \textbf{Graph } \mathbf{L}_{1} \text{ spectrum}$

$$\mathbf{x}^* = \mathbf{U}_{\{W,\Gamma\}} \operatorname{diag} \left(\frac{1}{1 + \mu \cdot \lambda_k^{\{W,\Gamma\}}} \right) \mathbf{U}_{\{W,\Gamma\}}^T \mathbf{y},$$

- We do 1D illustrative experiments to compute Graph Spectrum with conventional Graph Laplacian and GTV Laplacian.
- The parameter are the same for both. 4 neighbors and ¥sigma=0.3

Second eigenvector

Relative

6

- Weights in RGTV is functions of graph signal. Therefore, there is no fixed graph spectrum for RGTV.
- Initialize weights for RGTV like GTV, and then update weights and spectrum. We analyze the gradual transformation of spectrum iteratively.

$$\begin{aligned} \mathbf{x}^{(n+1)} &= \mathbf{U}_{\Gamma}^{(n)} \operatorname{diag} \left(\frac{1}{1 + \mu \cdot \lambda_{k}^{\Gamma}(\mathbf{x}^{(n)})} \right) \mathbf{U}_{\Gamma}^{(n)^{T}} \mathbf{x}^{(n)} \\ \mathbf{U}_{\Gamma}^{(n)} &= \mathbf{U}_{\Gamma}(\mathbf{x}^{(n)}). \end{aligned}$$

Fig. 5. Illustrative experiments of graph spectrum of RGTV on an 1D graph signal. (a) a PWS signal blurred by a Gaussian blur $\sigma_b = 1$ with Gaussian noise $\sigma_n = 0.0001$. (b) is the second eigenvectors of approximate RGTV in each iteration. (c) represents the curves of ratio λ_k/λ_2 with respect to k in each iteration. The graphs are constructed as a 4-neighbour adjacency matrix with weight parameter $\sigma = 0.3$.

Our algorithm

Alternating Iterative algorithm:

$$\begin{cases} \hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} \otimes \hat{\mathbf{k}} - \mathbf{b}\|_{2}^{2} + \beta \|\mathbf{x}\|_{RGTV} \implies \hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} \|\mathbf{x} \otimes \hat{\mathbf{k}} - \nabla \mathbf{b}\|_{2}^{2} + \beta \cdot \mathbf{x}^{\mathsf{T}} \mathbf{L}_{\Gamma} \mathbf{x} \\ \hat{\mathbf{k}} = \operatorname{argmin}_{\mathbf{k}} \|\nabla \hat{\mathbf{x}} \otimes \mathbf{k} - \nabla \mathbf{b}\|_{2}^{2} + \mu \|\mathbf{k}\|_{2}^{2} \qquad (\widehat{\mathbf{K}}^{T} \widehat{\mathbf{K}} + 2\beta \cdot \mathbf{L}_{\Gamma}) \hat{\mathbf{x}} = \widehat{\mathbf{K}}^{\mathsf{T}} \mathbf{b} \end{cases}$$
System of linear equations.

Efficiently solved via conjugate gradient.

Extensions

• Accelerated algorithm for Gaussian blur:

$$\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} \frac{1}{2} \| (\mathbf{I} + a \cdot \mathbf{L}_{\Gamma}) \mathbf{x} - \mathbf{b} \|_{2}^{2} + \beta \| \mathbf{x} \|_{RGTV}$$

$$\hat{\mathbf{x}} = \left(\frac{g(\mathbf{L}_{\Gamma})}{g^{2}(\mathbf{L}_{\Gamma}) + 2\beta \cdot \mathbf{L}_{\Gamma}} \right) \mathbf{b}$$

$$= \mathbf{U}_{\Gamma} \left(\frac{g(\mathbf{\Lambda}_{\Gamma})}{g^{2}(\mathbf{\Lambda}_{\Gamma}) + 2\beta \cdot \mathbf{\Lambda}_{\Gamma}} \right) \mathbf{U}_{\Gamma}^{T} \mathbf{b} \qquad \text{Solve it via accelerated graph filter via Lanczos method [1]}$$

[1] A. Susnjara, N. Perraudin, D. Kressner, and P. Vandergheynst, "Accelerated filtering on graphs using lanczos method," arXiv preprint arXiv:1509.04537, 2015.

Workflow

Experimental Results

(a)

(c)

(d)

Fig. 8. *Real Blind Motion Deblurring Example*. Image size: 618×464 , kernel size: 69×69 . (a) Blurry image. (b) Krishnan et al. [33]. (c) Levin et al [32]. (d) Michaeli & Irani [35]. (e) Pan et al. [4]. (f) The proposed Algorithm 1. The images are better viewed in full size on computer screen.

(e)

Experimental Results

(a)

Fig. 11. Gaussian Blur Blind Deblurring Example. Image size: 768×512 , kernel size: 7×7 , $\sigma_b = 1.85$. (a) Ground-truth image. (b) Blurry image. (c) The proposed Algorithm 1. (d) The proposed Algorithm 3.

(c) GSP Workshop 6/8/2018 (d)

Outline

- GSP for Image Compression
 - Optimality of GFT
 - Generalized GFT
 - Signed GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV: 3D Point Cloud Denoising
- Deep GLR
- Ongoing & Future Work

GTV for Point Cloud Denoising

- Acquisition of point cloud introduces noise.
- Point cloud is irregularly sampled 2D manifold in 3D space.
- Not appropriate to apply GTV directly on 3D coordinates [1].
 - only a singular 3D point has zero GTV value.

 Proposal: Apply GTV is to the surface normals of 3D point cloud—a generalization of TV to 3D geometry.

[1] Y. Schoenenberger, J. Paratte, and P. Vandergheynst, "**Graph-based denoising for time-varying point clouds**," in *IEEE 3DTV-Conference*, 2015, pp. 1–4

64

Algorithm Overview

• Use graph total variation (GTV) of surface normals over the K-NN graph:

$$||\mathbf{n}||_{\text{GTV}} = \sum_{i,j\in\mathcal{E}} w_{i,j}||\mathbf{n}_i - \mathbf{n}_j||_1 \qquad \oint_{i} \mathbf{n}_i \qquad \oint_{j} \mathbf{n}_j \qquad w_{i,j} = \exp\left(-\frac{||\mathbf{p}_i - \mathbf{p}_j||_2^2}{\sigma_p^2}\right)$$

• Denoising problem as I2-norm fidelity plus GTV of surface normals:

$$\min_{\mathbf{p},\mathbf{n}} \|\mathbf{q} - \mathbf{p}\|_{2}^{2} + \gamma \sum_{i, j \in E} \|\mathbf{n}_{i} - \mathbf{n}_{j}\|_{1}$$

- Surface normal estimation of \mathbf{n}_i is a nonlinear function of \mathbf{p}_i and neighbors. **Proposal:**
- 1. Partition point cloud into **two independent classes** (say **red** and **blue**).
- 2. When computing surface normal for a red node, use only neighboring blue points.
- 3. Solve convex optimization for red (blue) nodes alternately.

[1] C. Dinesh, G. Cheung, I. V. Bajic, C. Yang, "Fast 3D Point Cloud Denoising via Bipartite Graph Approximation 65
 & Total Variation," accepted to *IEEE 20th International Workshop on Multimedia Signal Processing*, Vancouver, Canada, August 2018.

Bipartite Graph Approx. & Normal Def'n

Step 1: bipartite graph approx. of k-NN graph.

Normal vector estimation at a red node

66

Step 2: define red nodes' normals using blue nodes.

$$\mathbf{n}_{i} = \frac{[\mathbf{p}_{i} - \mathbf{p}_{k}] \times [\mathbf{p}_{k} - \mathbf{p}_{l}]}{||[\mathbf{p}_{i} - \mathbf{p}_{k}] \times [\mathbf{p}_{k} - \mathbf{p}_{l}]||_{2}}$$

$$\mathbf{A}_{i} \text{ is a constant matrix and } \mathbf{b}_{i} \text{ is a constant vector with respect to } \mathbf{p}_{i}$$

$$\mathbf{n}_{i} = \mathbf{A}_{i} \mathbf{p}_{i} + \mathbf{b}_{i}$$

[1] J. Zeng, G. Cheung, A. Ortega, "**Bipartite Approximation for Graph Wavelet Signal Decomposition**," *IEEE Transactions on Signal Processing*, vol.65, no.20, pp.5466-5480, October 2017.

Convex Optimization Formulation

- After computing normals for each red node, construct a new k-NN graph for red nodes only.
- For a red node graph, objective is a I2 -I1 -norm minimization w/ linear constraints:

$$\min_{\mathbf{p},\mathbf{m}} \|\mathbf{q} - \mathbf{p}\|_{2}^{2} + \gamma \sum_{i,j \in E_{r}} \|\mathbf{m}_{i,j}\|_{1} \qquad \qquad \begin{array}{c} \mathbf{m}_{i,j} = \mathbf{n}_{i} - \mathbf{n}_{j} \\ \mathbf{n}_{i} = \mathbf{A}_{i}\mathbf{p}_{i} + \mathbf{b}_{i} \end{array} \qquad \qquad \mathbf{m} = \mathbf{B}\mathbf{p} + \mathbf{v}$$

Solution:

• ADMM:
$$\min_{p,m} \|q-p\|_2^2 + \gamma \sum_{i,j \in E_r} \|m_{i,j}\|_1 + \frac{\rho}{2} \|Bp+v-m+u\|_2^2 + \text{const}$$

- p-minimization: $(\mathbf{2I} + \rho \mathbf{B}^T \mathbf{B})\mathbf{p}^{k+1} = 2\mathbf{q} + \rho \mathbf{B}^T (\mathbf{m}^k \mathbf{u}^k \mathbf{v}),$
- m-minimization: $\min_{\mathbf{m}} \frac{\rho}{2} ||\mathbf{B}\mathbf{p}^{k+1} + \mathbf{v} \mathbf{m} + \mathbf{u}^{k}||_{2}^{2} + \gamma \sum_{i,j \in \mathcal{E}_{1}} w_{i,j} ||\mathbf{m}_{i,j}||_{1},$ Proximal gradient descent
- Alternately update red and blue graphs until convergence.

Experimental Setup

- 4 competing local methods: APSS [1], RIMLS [2], AWLOP [3], MRPCA [4]
- 7 pint cloud datasets used: Bunny, Gargoyle, DC, Daratrch, Anchor, Lordquas, Fandisk, Laurana
- Metrics: **point to point error** (C2C) and **point to plane error** (C2P)
- Gaussian noise with zero mean, standard deviation σ of 0.1 and 0.3.

[1] G. Guennebaud and M. Gross, "Algebraic point set surfaces," ACM Transactions on Graphics (TOG), vol. 26, no. 3, p. 23, 2007.
[2] A. C. Oztireli, G. Guennebaud, and M. Gross, "Feature preserving point set surfaces based on non-linear kernel regression," in *Computer Graphics Forum*, vol. 28, no. 2, 2009, pp. 493–501.
[3] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, and H. R. Zhang, "Edge-aware point set resampling," *ACM Transactions on Graphics*, vol. 32, no. 1, p. 9, 2013.
[4] E. Mattei and A. Castrodad, "Point cloud denoising via moving RPCA," in *Computer Graphics Forum*, vol. 36, no. 8, 2017, pp. 123–137.

Experimental Results – Visual Comparison

Anchor model (σ =0.3)

Experimental Results – Visual Comparison

Daratech model (σ =0.3)

Experimental Results – Numerical Comparison

TABLE I										
C2C of different models, with Gaussian noise ($\sigma = 0.1$)										

Model

Bunny

Gargoyle

DC

Daratech

Anchor

Lordquas Fandisk

Laurana

Noise 0.157

0.154

0.154

0.156

0.156

0.155

0.159

0.150

TABLE II

C2C of different models, with Gaussian noise ($\sigma = 0.3$)

APSS	RIMLS	AWLOP	MRPCA	Prop.	Model	Noise	APSS	RIMLS	AWLOP	MRPCA	Prop.
0.135	0.143	0.153	0.141	0.128	Bunny	0.329	0.235	0.251	0.315	0.243	0.231
0.133	0.143	0.151	0.144	0.131	Gargoyle	0.304	0.220	0.232	0.288	0.218	0.214
0.130	0.140	0.148	0.136	0.128	DC	0.305	0.213	0.230	0.302	0.212	0.207
0.134	0.137	0.156	0.134	0.132	Daratech	0.313	0.264	0.268	0.293	0.262	0.246
0.134	0.139	0.152	0.130	0.127	Anchor	0.317	0.225	0.231	0.281	0.216	0.210
0.130	0.143	0.153	0.132	0.126	Lordquas	0.307	0.212	0.228	0.284	0.208	0.203
0.148	0.148	0.157	0.138	0.136	Fandisk	0.406	0.352	0.343	0.390	0.331	0.319
0.136	0.139	0.147	0.130	0.130	Laurana	0.318	0.239	0.249	0.266	0.242	0.231

TABLE III

TABLE IV

C2P (×10⁻³) of different models, with Gaussian Noise ($\sigma = 0.1$) C2P (×10⁻²) of different models, with Gaussian Noise ($\sigma = 0.3$)

Model	Noise	APSS	RIMLS	AWLOP	MRPCA	Prop.	Model	Noise	APSS	RIMLS	AWLOP	MRPCA	Prop.
Bunny	9.91	4.62	5.14	7.95	4.66	4.61	Bunny	6.442	1.256	1.704	5.634	1.373	1.128
Gargoyle	9.67	4.59	5.97	8.46	4.56	4.48	Gargoyle	6.096	1.512	1.954	5.004	1.540	1.499
DC	9.66	4.37	4.82	7.63	3.98	3.71	DC	6.130	1.349	1.738	6.097	1.391	1.201
Daratech	9.93	2.93	4.05	9.54	3.01	2.85	Daratech	6.116	3.422	3.483	4.881	3.212	2.215
Anchor	9.87	3.32	4.10	8.43	2.18	2.05	Anchor	6.354	1.930	2.160	3.991	1.714	1.597
Lordquas	9.72	3.33	5.81	9.10	3.79	3.11	Lordquas	6.234	1.846	2.558	4.928	1.768	1.644
Fandisk	9.88	6.70	7.05	8.93	4.86	4.39	Fandisk	7.297	3.180	2.640	6.093	1.720	1.702
Laurana	9.23	5.16	5.86	7.70	5.13	5.01	Laurana	5.890	1.392	1.800	2.307	1.464	1.211

Outline

- GSP for Image Compression
 - Optimality of GFT
 - Generalized GFT
 - Signed GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV
- Deep GLR
- Ongoing & Future Work
Unrolling Graph Laplacian Regularizer

• Recall MAP formulation of denoising problem with quadratic graph Laplacian regularizer:

$$\min_{x} \|\mathbf{y} - \mathbf{x}\|_{2}^{2} + \mu \mathbf{x}^{T} \mathbf{L} \mathbf{x}$$

fidelity term smoothness prior

• Solution is system of linear equations:

$$(I + \mu L) x^* = y$$

linear system of eqn's w/ sparse, symmetric PD matrix

Q: what is the "most appropriate" graph?

Bilateral weights:

[1] J. Pang, G. Cheung, "**Graph Laplacian Regularization for Inverse Imaging: Analysis in the Continuous Domain**," *IEEE Transactions on Image Processing*, vol. 26, no.4, pp.1770-1785, April 2017.

Unrolling Graph Laplacian Regularizer

• Deep Graph Laplacian Regularization:

- 1. Learn features **f**'s using CNN.
- 2. Compute distance from features.
- 3. Compute edge weights using Gaussian kernel.
- 4. Construct graph, solve QP.

$$w_{ij} = \exp\left(-\frac{\operatorname{dist}(i,j)}{2\epsilon^2}\right),$$

$$\operatorname{dist}(i,j) = \sum_{n=1}^{N} \left(\mathbf{f}_n(i) - \mathbf{f}_n(j)\right)^2.$$

Fig. 1. Block diagram of the proposed GLRNet which employs a graph Laplacian regularization layer for image denoising.

[1] M. McCann et al., "Convolutional Neural Networks for Inverse Problems in Imaging," *IEEE SPM*, Nov. 2017.

[2] K. Gregor and Y. LeCun, "Learning fast approximations of sparse coding," in Proc. 27th Int. Conf. Machine Learning, 2010..

Unrolling Graph Laplacian Regularizer

Fig. 3. Network architectures of $\text{CNN}_{\mathbf{F}}$, $\text{CNN}_{\hat{\mathcal{Y}}}$ and CNN_{μ} in the experiments. Data produced by the decoder of $\text{CNN}_{\mathbf{F}}$ is colored in orange.

Fig. 2. Block diagram of the overall DeepGLR framework.

• Graph Model guarantees numerical stability of solution:

$$(\mathbf{I} + \mu \mathbf{L}) \mathbf{x}^* = \mathbf{y}$$

• Thm 1: condition number κ of matrix satisfies [1]:

$$\kappa \leq 1 + 2\,\mu\,d_{\rm max}, \qquad {\rm maximum\ node\ degree}$$

• **Observation**: By restricting search space of CNN to degree-bounded graphs, we achieve robust learning.

Experimental Results – Numerical Comparison

- Trained on AWGN on 5 images, patches of size 26-by-26.
- Batch size is 4, model is trained for 200 epochs.
- Trained for both known and blind noise variance.

Table 1. Average PSNR (dB) and SSIM values of different methods for Gaussian noise removal. The best results for each metric is highlighted in boldface.

Noise	Metric	Method								
		BM3D	WNNM	OGLR	DnCNN-S	DnCNN-B	DeepGLR-S	DeepGLR-B		
25	PSNR SSIM	29.95 0.8496	$30.28 \\ 0.8554$	$29.78 \\ 0.8463$	$\begin{array}{c} 30.41 \\ 0.8609 \end{array}$	30.33 0.8594	$30.26 \\ 0.8599$	$30.21 \\ 0.8557$		
40	PSNR SSIM	27.62 0.7920	$\begin{array}{c} 28.08\\ 0.8018 \end{array}$	$27.68 \\ 0.7949$	28.10 0.8080	28.13 0.8091	$28.16 \\ 0.8125$	$28.04 \\ 0.8063$		
50	PSNR SSIM	26.69 0.7651	$27.08 \\ 0.7769$	$26.58 \\ 0.7539$	$27.15 \\ 0.7809$	27.18 0.7811	$27.25 \\ 0.7852$	$27.12 \\ 0.7807$		

[1] Kai Zhang et al, "Beyond a GCNNaussian denoiser: Residual learning of deep for image denoising," *TIP* 2017.

[2] Marc Lebrun et al, "The noise clinic: a blind image denoising algorithm," IPOL 2015.

Experimental Results – Numerical Comparison

- DeepGLR has average PSNR of 0.34 dB higher than CDnCNN [1].
- Model-based provides robustness against overfitting.

Table 2. Evaluation of different methods for low-light image denoising. The best results for each metric, except for those tested on the training set, are highlighted in boldface.

	Noisy	Method								
Metric		CBM3D	MC-WNNM	$\frac{\text{CDnCNN}}{(\text{train})}$	CDnCNN	$\begin{array}{c} { m CDeepGLR} \\ { m (train)} \end{array}$	CDeepGLR			
PSNR SSIM Y SSIM R SSIM G SSIM B	$\begin{array}{c} 20.36 \\ 0.5198 \\ 0.2270 \\ 0.4073 \\ 0.1823 \end{array}$	$\begin{array}{c} 26.08 \\ 0.8698 \\ 0.6293 \\ 0.8252 \\ 0.5633 \end{array}$	26.23 0.8531 0.5746 0.7566 0.5570	33.43 0.9138 0.8538 0.8979 0.8294	$\begin{array}{c} 31.26 \\ 0.8978 \\ 0.8218 \\ 0.8828 \\ 0.7812 \end{array}$	$\begin{array}{c} 32.31 \\ 0.9013 \\ 0.8372 \\ 0.8840 \\ 0.8138 \end{array}$	$\begin{array}{r} 31.60 \\ 0.9028 \\ 0.8297 \\ 0.8854 \\ 0.7997 \end{array}$			

[1] Kai Zhang et al, "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," *TIP* 2017.[2] Marc Lebrun et al, "The noise clinic: a blind image denoising algorithm," *IPOL* 2015.

Experimental Results – Visual Comparison

- trained on Gaussian noise, tested on low-light images in (RENOIR).
- Competing methods: DnCNN [1], noise clinic [2].
- outperformed DnCNN by 5.52 dB, and noise clinic by 1.87 dB.

[1] Kai Zhang et al, "Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising," *TIP* 2017.[2] Marc Lebrun et al, "The noise clinic: a blind image denoising algorithm," *IPOL* 2015.

Experimental Results – Visual Comparison

- trained on Gaussian noise, tested on low-light images in (RENOIR).
- Competing methods: DnCNN [1], noise clinic [2].
- outperformed DnCNN by 5.52 dB, and noise clinic by 1.87 dB.

DnCNN

clinic

Experimental Results – Visual Comparison

- trained on Gaussian noise, tested on low-light images in (RENOIR).
- Competing methods: DnCNN [1], noise clinic [2].
- outperformed DnCNN by 5.52 dB, and noise clinic by 1.87 dB.

DnCNN

clinic

[1] Kai Zhang et al, "Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising," *TIP* 2017.[2] Marc Lebrun et al, "The noise clinic: a blind image denoising algorithm," *IPOL* 2015.

Outline

- GSP for Image Compression
 - Optimality of GFT
 - Generalized GFT
 - Signed GFT
- GSP for Inverse Imaging
 - Graph Laplacian Regularizer
 - Reweighted Graph TV: 3D Point Cloud Denoising
- Deep GLR
- Ongoing & Future Work

Summary

- Variants of GFTs for optimal decorrelation
 - GFT, GGFT, SGFT
 - Selection of statistical model vs. encoding cost of side information
- GSP for Inverse Imaging
 - PWS-promoting Graph Laplacian Regularizer, RGTV
 - Spectral interpretation of GTV, RGTV
- Graph-based model restricts search space of DNN.
 - Robustness against overfitting.

Ongoing & Future Work

- Unrolling of graph-based convex optimization.
 - Unrolling of ADMM, proximal gradient with GTV prior, convex set constraints.
 - Learn (sparse) connectivity, edge weights.
 - Learn features from RGBD images for depth inpainting / denoising.
- Metric learning for edge weight computation for graphbased binary classifiers.
- Model-guided learning safeguard against worst-case / adversary noise?

- Email: gene.cheung@ieee.org
- Homepage: http://research.nii.ac.jp/~cheung/