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ABSTRACT
We study semi-supervised learning for image classifiers from a graph
signal processing (GSP) perspective. Specifically, by viewing a bi-
nary classifier as a graph-signal in a high-dimensional feature space,
we cast classifier learning as a signal restoration problem via a
classical maximum a posteriori (MAP) formulation. Unlike previ-
ous graph-signal restoration works, we consider in addition edges
with negative weights expressing dissimilarity between samples. We
make two key contributions by interpreting a graph as an electrical
circuit. First, for graph construction we show how “effective resis-
tance” can guide node pair selection for negative edge insertions.
Second, for classification that tolerates a small rejection rate, we de-
fine generalized smoothness on graphs that promotes ambiguity in
the classifier signal, so that unsure estimated samples can be rejected.
We show that generalized graph-signal smoothness is equivalent to
satisfying Kirchhoff’s current law (KCL) at a given node—this ex-
plains why negative edges should not be used to compute general-
ized smoothness on graphs. Finally, we propose an algorithm based
on iterative reweighted least squares (IRLS) that solves the posed
MAP problem efficiently. Simulation results show that our algo-
rithm outperforms both SVM variants and graph-based classifiers
using positive-edge graphs noticeably.

Index Terms— image classifier, graph signal processing, signal
restoration

1. INTRODUCTION

Image classification from extracted features is an important and chal-
lenging problem. We focus on semi-supervised learning: given par-
tially observed labels (possibly noisy) as input, train a classifier to
appropriately assign labels to unclassified samples also. Among
many approaches is a class of graph-based methods [1, 2, 3] that
treat each sample as a node in a graph and connect it to other nodes
using undirected edges, with weights that reflect distances in a high-
dimensional feature space. See Fig. 1 for an example of a 8-node
graph in a 2D feature space. A graph representation of the data
means that properties of the graph spectrum (e.g., low frequencies
that are eigenvectors of the graph Laplacian matrix) can be exploited
for label assignment via spectral graph theory [4].

In this paper, we extend previous graph-based works by consid-
ering in addition negative edge weights for binary image classifier
learning. Common formulations in graph signal processing (GSP)
[5] use positive edge weights that reflect inter-node similarity; large
edge weight wi,j > 0 means samples xi and xj should be sim-
ilar. In contrast, negative edge weights can express dissimilarity:
wi,j = −1 means xi and xj should be different, i.e., |xi − xj |
should be large. Incorporating pairwise dissimilarities into a graph
should intuitively benefit image classification. For example, if edge
weight w1,2 = −1 in Fig. 1, then from the graph G itself, one al-
ready expects x1 and x2 to be assigned opposite labels in a binary

Fig. 1. Example of a graph classifier and linear SVM in 2-
dimensional feature space. Graph G contains nodes N representing
samples, and edges E with weights wi,j reflecting feature space dis-
tances. The classifier graph-signal takes on binary values: 1 (blue
spikes) and -1 (red spikes).

classifier.
To study negative edges, we view a binary image classifier as a

graph-signal in a high-dimensional feature space and cast classifier
learning as a signal restoration problem via a classical maximum a
posteriori (MAP) formulation. Specifically, we make two key con-
tributions by interpreting a graph as an electrical circuit, also done in
[6, 7, 8]. First, towards optimal classification performance, we show
how effective resistance [8]—a circuit concept that maps a network
of connected resistors to a single equivalent one—can guide node
pair selection for negative edge insertions during graph construc-
tion. Second, for classification that tolerates a small rejection rate,
we define generalized smoothness on graphs—an extension of total
generalized variation (TGV) [9] to the graph-signal domain—that
promotes a suitable amount of ambiguity in the classifier signal, so
that unsure estimated samples can be rejected. We show that general-
ized graph-signal smoothness is equivalent to satisfying Kirchhoff’s
current law (KCL) at a given node. This KCL interpretation helps
explain why negative edges should not be used to compute general-
ized smoothness on graphs.

Having constructed a graph and defined graph-signal smooth-
ness priors, we define a MAP problem for signal restoration. Be-
cause the graph Laplacian matrix L with negative edges can be in-
definite, we perturb L by ∆ so that L + ∆ is positive semi-definite
(PSD), resulting in a stable signal prior. Finally, we propose an al-
gorithm based on iterative reweighted least squares (IRLS) [10] that
efficiently solves the posed MAP problem. Simulation results show
that our algorithm outperforms SVM variants, a well-known robust
classifier in the machine learning literature called RobustBoost [11],
and graph-based classifiers using positive-edge graphs noticeably.

The outline of the paper is as follows. We first overview related
works in Section 2. We then review basic GSP concepts and present
our graph construction strategy based on effective resistance in Sec-
tion 3. We define a generalized smoothness prior in Section 4. In
Section 5, we present a label noise model and present an efficient



(a) 3-node graph

W=

 0 −1 0
−1 0 w
0 w 0


(b) adjacency W

L=

 −1 1 0
1 w − 1 −w
0 −w w


(c) graph Laplacian L

Fig. 2. Example of a 3-node graph with negative edges.

algorithm to solve the posed MAP problem. Finally, we present ex-
perimental results and conclusions in Section 6 and 7, respectively.

2. RELATED WORK

There exist a wide range of approaches for classifier learning with
label noise, including theoretical (e.g., label propagation in [12])
and application-specific (e.g., inference algorithm based on multi-
plicative update rule [13]). In this paper, similar to previous works
[1, 2, 3] we build a graph-based classifier, where each sample is rep-
resented as a node in a high-dimensional feature space and connects
to other nearby nodes. Compared to previous graph-based classi-
fiers, our novelties are as follows. First, we learn a classifier via a
classical MAP formulation but include negative edge weights that
reflect dissimilarity. This requires a careful negative edge insertion
strategy, which we design based on effective resistance by interpret-
ing a graph as an electrical circuit. Second, we show how gener-
alized graph smoothness—extending TGV [9] to the graph-signal
domain—can be interpreted intuitively as Kirchhoff’s current law
and used to promote ambiguity in the classifier solution.

Graph-signal smoothness priors have been used for image
restoration problems such as denoising [14, 15, 16], interpolation
[17] and JPEG de-quantization [18, 19]. The common assumption is
that the desired signal is smooth with respect to an appropriate graph
with non-negative edge weights that reflect inter-pixel similarity. In
contrast, by considering negative edges we incorporate also dissimi-
larity information into the graph.

One alternative GSP approach is based on algebraic theory in
traditional digital signal processing that relies on the shift opera-
tor [20, 2]. More concretely, instead of the graph Laplacian ma-
trix L, the adjacency matrix W is used as the variation operator to
define signal smoothness and graph frequencies. As an example, a
smoothness prior ‖x−Wx‖pp, p ∈ I+, was proposed in [2]. When
edge weights are negative, however, such smoothness prior can be-
come insensible. Consider the three-node graph in Fig. 2. Assuming
p = 2, the smoothness prior when w = −1 is:

‖x−Wx‖22 = ‖(I−W)x‖22 =

∥∥∥∥∥∥
 1 1 0

1 1 1
0 1 1

 x1
x2
x3

∥∥∥∥∥∥
2

2

= (x1 + x2)2 + (x1 + x2 + x3)2 + (x2 + x3)2

It is not clear why minimizing different subset sums is sensible, de-
spite having two negative edges that signify dissimilarity.

This observation motivates our current study to use xTLx as the
appropriate smoothness prior; for the same example,

xTLx = −1(x1 − x2)2 + w(x2 − x3)2 (1)

which promotes a large difference between node 1 and 2, and pro-
motes a large or small difference between node 2 and 3 depending on
the sign of w. This is clearly a more sensible prior. Of course, direct
use of xTLx can lead to numerical problems, and thus L must be
first perturbed appropriately. We will discuss this in later sections.

Recently, the control community have studied the conditions
where negative edges would cause a graph Laplacian to be indefi-
nite [6, 7]. We will leverage a theoretical result from [7] in a later
section for negative edge insertion during graph construction.

3. GRAPH CONSTRUCTION

3.1. Graph Definition
A graph G(V, E ,W) has a set V of N nodes and a set E of M
edges. Each edge (i, j) ∈ E connecting nodes i and j is undirected
with weight wi,j , which can be positive or negative. A negative
wi,j means that connected samples are dissimilar—the samples are
expected to have very different values. A graph-signal x ∈ RN on
G is a discrete signal of dimension N—one label xi for each node
(sample) i in V .

3.2. Graph Spectrum
Given edge weight (adjacency) matrix W, we define a diagonal de-
gree matrix D, where di,i =

∑
j wi,j . A combinatorial graph

Laplacian matrix L is L = D −W [5]. Because L is symmet-
ric, it can be eigen-decomposed into (Spectral Theorem):

L = VΛVT (2)

where Λ is a diagonal matrix containing real eigenvalues λk, and
V is an eigen-matrix composed of orthogonal eigenvectors vi as
columns. If wi,j are non-negative, then L must be positive semi-
definite (PSD), meaning that λk ≥ 0, ∀k and xTLx ≥ 0, ∀x. Non-
negative eigenvalues λk can be interpreted as graph frequencies, and
eigenvectors vk interpreted as corresponding graph frequency com-
ponents. Together they define the graph spectrum for graph G.

In this paper, we consider also negative wi,j , and thus eigenval-
ues λk can be negative and L can be indefinite. It is then hard to
interpret L’s eigenvalues λk as frequencies.

3.3. Graph-Signal Smoothness Prior
For graph G with positive edge weights, signal x is considered
smooth if each label xi on node i is similar to labels xj on neigh-
boring nodes j with large wi,j . In the graph frequency domain, it
means that x contains mostly low graph frequency components; i.e.,
coefficients α = VTx are zeros or very small for high frequencies.
The smoothest signal is the constant vector 1—the first eigenvector
v1 for L corresponding to the smallest eigenvalue λ1 = 0.

Mathematically, we can write that a signal x is smooth if its
graph Laplacian regularizer xTLx is small [14, 15, 16]. Graph
Laplacian regularizer can be expressed as:

xTLx =
∑

(i,j)∈E

wi,j (xi − xj)2 =
∑
k

λk α
2
k (3)

Because L is PSD, xTLx is lower-bounded by 0.
When edge weights can be negative, then L can be indefinite,

which means that there exists an eigenvector v1 corresponding to a
negative value λ1 < 0. The consequence is that xTLx in (3) is not a
stable prior for minimization, as x =∞v1 would be a pathological
optimal solution to a minimization problem.

Our solution is to perturb L so that it is PSD again. Specifically,
we define a generalized graph Laplacian [21] Lg = L + |λ1|I,
where λ1 < 0 is the smallest eigenvalue of L, and I is the identity
matrix. |λ1|I effectively increases each eigenvalue of L by |λ1|, so
that Lg is PSD. The resulting eigenvalues are non-negative, and thus
can again be interpreted as graph frequencies. Note that Lg can still
be eigen-decomposed using the same eiganvectors V. We will use
xTLgx as the new smoothness prior in the sequel.



(a) 3-node graph (b) 6-node graph

Fig. 3. Example of a 3-node graph with one negative edge and a
6-node graph with two clusters of three nodes each.

3.4. Graph Construction with Negative Edges
Towards the best possible classification performance, graph con-
struction with negative edges requires a great deal of care. We now
detail our construction method. We first construct a graph G with
nodes V representing N samples. For each sample i, we compute
a feature vector hi of some dimension D. Then we can compute
positive edge weight wi,j using a Gaussian kernel, as similarly done
in previous graph-based classifiers [1, 2, 3]:

wi,j = exp

(
− (hi − hj)

TΞ(hi − hj)

σ2
h

)
(4)

where σh is a parameter. Ξ is a D × D diagonal matrix, where
Ξi,i ∈ R+ is a feature parameter for the i-th feature. We can then
assign positive edge weights wi,j to ω nearest neighbors j of node i,
while the rest of the nodes have no edges1 to i.

We next augment graph G with negative edges. In general, more
negative edges means that graph Laplacian L may potentially be-
come more indefinite, thus requiring a larger perturbation |λ1|I to
make L + |λ1|I PSD. Thus in practice we add only a small number
of negative edges to G, that nonetheless leads to noticeable improve-
ment in classification results, as shown in Section 6.

3.4.1. Edge Consistency

One key challenge in inserting a negative edge is that it can be incon-
sistent with existing positive edges in the graph G. As an illustration,
we see that in Fig. 3(a), a negative edge (1, 3) with weight−1 is not
consistent with the two positive edges (1, 2) and (2, 3) with weight
1, because nodes 1 and 3 cannot be dissimilar and nodes 1, 2, 3 be
similar at the same time.

To ensure edge consistency, before we insert a negative edge, we
first perform clustering [22] based on edge graph weights into two
node groups, so that a negative edge can be drawn from a node in one
group to a node in the opposing group. As an example, in Fig. 3(b),
we see a 6-node graph with two groups of three nodes each: {1, 2, 3}
and {4, 5, 6}. We next devise a strategy to identify a node in each
group for negative edge insertion.

3.4.2. Effective Resistance

It has been demonstrated [6, 7, 8] that insights can be obtained by
interpreting a graph as an electircal circuit, where a positive edge
weight is viewed as conductance (the inverse of resistance). We will
do so here to select nodes for negative edge insertion.

We first review a theorem in [7], stating that for a graph Lapla-
cian L to be definite, the absolute value of a negative edge weight

1If this relationship is not symmetric, i.e., if i is one of ω closest neighbors
to j but j is not one of ω closest neighbors to i, then we keep edge (i, j) of
weight wi,j anyway. Thus each node has ≥ ω neighbors.

w−i,j must be no larger than its effective resistance Ri,j(G+) com-
puting from the graph G+ with only positive edges, i.e.,

|w−i,j | ≤ Ri,j(G
+)−1 (5)

The effective resistance Ri,j(G+) between nodes i and j in a
graph G+ with positive edges can be computed as [8]:

Ri,j(G+) = Qi,i +Qj,j − 2Qi,j (6)

where Q is the Moore-Penrose pseudo-inverse of the graph Lapla-
cian L+ for graph G+.

Recall from Section 3.3 that an indefinite L is perturbed by |λ1|I
such that L + |λ1|I is PSD. Clearly, an indefinite L with a smaller
magnitude |λ1| would require less perturbation, and thus is more
desirable. From (5), a node pair (i, j) with a large Ri,j(G+)−1

(small effective resistance Ri,j(G+)) is more likely to tolerate an
inserted negative edge with weight w−i,j ; i.e., the resulting |λ1| is
likely smaller. It turns out that connecting centroids of clusters often
leads to small effective resistance. We thus assign negative edges
into G as follows. We find 2k clusters in G if k negative edges are
targeted for insertion. For each cluster, we identify a centroid, and
we connect pairs of centroids that are furthest in weighted feature
distance with edges of negative weights (e.g. −1).

4. GENERALIZED GRAPH-SIGNAL SMOOTHNESS

We next describe a generalized version of the graph-signal smooth-
ness prior (3) for classifier signal reconstruction.

4.1. Positive Edges for Generalized Smoothness
Like TGV for images [9], we can define a higher-order notion of
smoothness for graph-signals using positive edge weights. Specif-
ically, graph Laplacian L+ defined using only positive edges is re-
lated to the second derivative of continuous functions [5], and so
L+x computes the second-order difference on graph-signal x. As
an example, the 3-node line graph in Fig. 2 with all edge weights
equal to 1 has the following L+:

L+ =

 1 −1 0
−1 2 −1
0 −1 1

 (7)

Using the second row L+
2,: of L+, we can compute the second-order

difference at node x2:

L+
2,:x = −x1 + 2x2 − x3 (8)

On the other hand, the definition of second derivative2 of a func-
tion f(x) is:

f ′′(x) = lim
h→0

f(x+ h)− 2f(x) + f(x− h)

h2
(9)

We see that (8) and (9) are computing the same quantity (with a sign
change) in the limit.

Hence if |L+x| is small, then the second-order difference of x is
small, or the first-order difference of x is smooth or changing slowly.
In other words, the gradient of the signal is smooth with respect to
the graph. We express this notion by stating that the square of the
l2-norm of L+x is small:

‖L+x‖22 = xT (L+)TL+x = xT (L+)2x =
∑
i

(λ+
i )2α2

i (10)

where (10) is true since L+ is symmetric by definition.
2https://en.wikipedia.org/wiki/Second derivative



4.2. Negative Edges for Generalized Smoothness
We demonstrate now that including negative edges when comput-
ing generalized smoothness can be problematic. Consider again the
three-node line graph in Fig. 2, where w = 1. The corresponding
second row of the graph Laplacian L is:

L2,: =
[

1 0 −1
]

(11)

Hence when we compute the generalized smoothness |Lx| at x2, we
get |L2,:x| = |x1 − x3|; i.e., the generalized smoothness at x2 does
not actually depend on the value of x2! We next provide an intuitive
explanation why negative edge weights should not be used next.

4.3. Circuit Interpretation of Generalized Smoothness
We again interpret an undirected weighted graph G as an electri-
cal circuit to understand generalized smoothness for graph-signals.
Suppose we interpret an edge (i, j) as a wire between nodes i and j,
and an edge weight wi,j as conductance (equivalently, 1/wi,j as the
resistance) between its two endpoints. Let xi and xj represent the
voltage at the two endpoints. According to Ohm’s law3, the current
ci,j between the two nodes is the voltage difference at the entpoints
times the conductance:

ci,j = wi,j(xi − xj) (12)

By Kirchhoff’s current law4 (KCL), the net sum of the currents
flowing into a node is zero. Applying KCL to node 2 in the three-
node line graph in Fig. 2 connected by weights w1,2 and w2,3, we
can write:

w1,2(x1 − x2) + w2,3(x3 − x2) = 0 (13)

using Ohm’s law (12).
If we desire a signal x to satisfy this condition maximally, we

can minimize the absolute value of this current sum:

min
x

∣∣[ −w1,2 (w1,2 + w2,3) −w2,3 ] x
∣∣ =

∣∣L+
2,:x
∣∣ (14)

This is in fact the generalized graph-signal smoothness condition
we discussed earlier. Thus we can conclude the following: a
graph-signal x on graph G that is perfectly generalized smooth, i.e.
|L+x| = 0, is a voltage signal on G that satisfies KCL.

This electrical circuit interpretation also provides an argu-
ment why negative edges should not be considered for generalized
smoothness. As done in [8], a generalized graph Laplacian Lg with
diagonal element Li,i ≥

∑
j|j 6=i Li,j can be considered a conduc-

tance matrix, where an edge (i, j) has branch conductance −Li,j
and node i has shunt conductance Li,i−

∑
j|j 6=i Li,j ≥ 0. For such

a resistive circuit, Ohm’s law is applicable directly and thus KCL
is meaningful. However, a negative conductance Li,j < 0 (equiva-
lently, a negative resistance) means the circuit is no longer resistive,
and Ohm’s law is not applicable. As a result, KCL—by extension
generalized graph-signal smoothness—is no longer meaningful.

4.4. Interpretation of Smoothness Priors for Classifiers
We interpret the two smoothness terms in the context of binary clas-
sification. We know that the true signal x is indeed piecewise con-
stant (PWC); each true label xi is binary, and labels of the same
class cluster together in the same region. The graph-signal smooth-
ness term in (3), analogous to the total variation (TV) prior in im-
age restoration, promotes a PWC signal x̂ during reconstruction, as

3https://en.wikipedia.org/wiki/Ohm%27s law
4https://en.wikipedia.org/wiki/Kirchhoff%27s circuit laws

empirically demonstrated in previous graph-signal restoration works
[14, 15, 16, 18, 19]. Hence the smoothness prior is appropriate.

Recall that the purpose of TGV [9] is to avoid over-smoothing
a ramp (linear increase / decrease in pixel intensity) in an image,
which would happen if only a TV prior is used. A ramp in the recon-
structed signal x̂ in our classification context would mean an assign-
ment of label other than −1 and 1, which can reflect the confidence
level in the estimated label; e.g., a computed label x̂i = 0.3 would
mean the classifier has determined that event i is more likely to be 1
than −1, but the confidence level is not high. We can thus conclude
that the generalized smoothness prior can promote an appropriate
amount of ambiguity in the classification solution instead of forcing
the classifier to make hard binary decisions.

5. OPTIMIZATION

We now formulate the classifier learning problem with noisy labels.
We first describe our chosen label noise model. Given the graph-
signal smoothness notions previously discussed, we then formulate
the optimization problem with both priors. Finally, we propose an
efficient algorithm to solve the posed problem.

5.1. Label Noise Model
To model binary label noise, we adopt a uniform noise model [23],
where the probability of observing yi = xi, 1 ≤ i ≤ K, is 1 − p,
and p otherwise; i.e.,

Pr(yi|xi) =

{
1− p if yi = xi
p o.w. (15)

This model is motivated by the following observation in social me-
dia analysis: when labels are assigned manually by non-experts via
crowd-sourcing [23], workers are often unreliable (e.g., a non-expert
is not competent in a label assignment task but pretends to be, or
he simply assigns label randomly to minimize mental effort). Thus
observations y may result in label errors that are uniform and inde-
pendent.

The probability of observing a noise-corrupted y given ground
truth x is hence:

Pr(y|x) = pk(1− p)K−k, k = ‖y −Hx‖0 (16)

where H ∈ {0, 1}K×N is a binary matrix that extracts K compo-
nents from x corresponding to y. (16) serves as the likelihood term
for this noise model (15). The negative log of this likelihood is:

− logPr(y|x) = k (log(1− p)− log(p))︸ ︷︷ ︸
γ

−K log(1− p) (17)

Because the second term is a constant for fixed K and p, we can
ignore it during minimization.

5.2. Iterative Reweighted Least Squares Algorithm
We can now combine the likelihood (16) and the two graph-signal
smoothness priors together to define an optimization objective:

min
x
‖y −Hx‖0 γ + σ−2

0 xT Lg x + σ−2
1 xT (L+)2 x (18)

To solve (18), we employ the following strategy. We first replace
the l0-norm in (18) with a weighted l2-norm:

min
x

(y−Hx)TB(y−Hx)γ + σ−2
0 xT Lg x + σ−2

1 xT (L+)2 x

(19)



where B is aK×K diagonal matrix with weights b1, . . . , bK on its
diagonal. In other words, the fidelity term is now a weighted sum of
label differences: (y−Hx)TB(y−Hx) =

∑K
i=1 bi(yi−Hi,:x)2.

The weights bi should be set so that the weighted l2-norm
mimics the l0-norm. To accomplish this, we employ the itera-
tive reweighted least squares (IRLS) strategy [10], which has been
proven to have superlinear local convergence, and solve (19) itera-
tively, where the weights b(t+1)

i of iteration t+ 1 is computed using
solution x(t)i of the previous iteration t, i.e.,

b
(t+1)
i =

1

(yi −Hi,:x(t))2 + ε
(20)

for a small ε > 0 to maintain numerical stability. Using this weight
update, we see that the weighted quadratic term (y −Hx)TB(y −
Hx) mimics the original l0-norm ‖y −Hx‖0 in the original objec-
tive (18) when the solution x converges.

5.2.1. Closed-Form Solution per Iteration
For a given B, objective (19) is an unconstrained quadratic program-
ming problem with three quadratic terms. One can thus derive a
closed-form solution by taking the derivative with respect to x and
equating it to zero, resulting in:

x∗ =
(
γHTBH + σ−2

0 Lg + σ−2
1 (L+)2

)−1

γHTBTy (21)

5.3. Interpreting Computed Solution x̂

After the IRLS algorithm converges to a solution x̂, we interpret
the classification results as follows. We perform thresholding by a
pre-defined value τ on x̂ to divide it into three parts, including the
rejection option for ambiguous labels:

xi =


1, x∗i > τ

Rejection, −τ ≤ x∗i ≤ τ
−1, x∗i < −τ.

(22)

Typically, threshold τ is set per application requirement. Eliminating
more ambiguous labels leads to a larger rejection rate and a smaller
classification error rate.

6. EXPERIMENTATION

6.1. Experiment Setup
6.1.1. Datasets for Training and Testing
To evaluate the performances of different classification methods, we
selected three two-class datasets. The first is a face gender dataset
provided in [24], which consists of 7900 face images (395 individu-
als, 20 images per individual). We extract the Local Binary Pattern
(LBP) features to represent the faces for gender classification.

The second is a “faces and non-faces” dataset [25] that contains
2429 face images and 4548 non-face images, where Histogram of
Oriented Gradients (HOG) features are extracted to represent the
face and non-face images.

The third is the “Phoneme” dataset [26] that provides the values
of five categorical attributes to distinguish nasal sounds from oral
sounds.

For our experiments, we randomly sampled 400, 200, and 300
instances from the first, second, and third datasets, respectively, and
used 70% of the samples as training data and 30% as testing data.
We repeated the process 100 times for each dataset and then calcu-
lated the average performance of the 100 experiments in terms of
classification error rate.

Table 1. Classification error rates in the Face gender dataset for com-
peting schemes under different training label error rates (the numbers
in the parentheses of the last row indicate the rejection rates)

% label noise 0% 5% 10% 15% 20%
SVM-Linear 17.65% 18.22% 18.77% 19.59% 21.60%
SVM-RBF 12.14% 12.16% 12.83% 16.30% 24.01%

RobustBoost 9.15% 11.09% 14.36% 17.36% 20.68%
Graph-Pos 13.15% 13.62% 14.38% 15.39% 16.54%
Proposed 1.44% 2.96% 4.46% 5.88% 8.07%

Proposed-Rej 0.21% 0.59% 1.06% 2.31% 3.91%
(9.64%) (9.36%) (9.51%) (9.55%) (9.56%)

Table 2. Classification error rates in the face / non-face dataset for
competing schemes under different training label error rates (the
numbers in the parentheses of the last row indicate the rejection
rates)

% label noise 0% 5% 10% 15% 20%
SVM-Linear 20.80% 21.84% 24.97% 28.24% 31.66%
SVM-RBF 20.80% 21.58% 23.96% 26.95% 30.03%

RobustBoost 22.83% 24.29% 25.87% 29.57% 31.24%
Graph-Pos 19.18% 20.02% 21.78% 23.35% 25.05%
Proposed 18.72% 19.85% 21.50% 23.14% 24.92%

Proposed-Rej 15.22% 16.05% 17.53% 19.40% 20.89%
(9.28%) (9.95%) (9.84%) (9.90%) (9.91%)

6.1.2. Graph Construction

To construct a graph with negative edge weights for our proposed
methods, we first constructed a graph with positive edge weights.
For each sample (node), we found its three nearest neighbors accord-
ing to the Euclidean distances between the node and its neighbors,
and connected these nodes using edges with positive weights that
are normalized to [0,1] using the Gaussian kernel given in (4). We
subsequently performed clustering on the graph and found the cen-
troids (chosen from labeled nodes) of clusters as explained in Sec-
tion 3.4. We then paired the cluster centroids with different labels,
and assigned a negative edge weight between each pair with a value
normalized to [−1,0] where the magnitude is inversely proportional
to the Euclidean distance between the pair. In the experiments, we
added two negative edges in each constructed graph.

6.1.3. Comparison Schemes

We tested our proposed algorithm against five schemes: i) linear
SVM, ii) SVM with an RBF kernel (named SVM-RBF), iii) a more
robust version of the famed AdaBoost called RobustBoost [11] that
claims robustness against label noise, and iv) a graph classifier with
the graph-signal smoothness prior (3) where the edge weights of the
graph are all positive (named Graph-Pos).

We implemented two variants of our proposed graph classifier: i)
our proposed perturbation method (named Proposed) using the com-
binatorial graph Laplacian Lg but without the generalized smooth-
ness term (i.e., σ−2

1 = 0 in (18) and τ = 0 in (22)), and vii) the pro-

Table 3. Classification error rates in the Phoneme dataset for com-
peting schemes under different training label error rates (the numbers
in the parentheses of the last row indicate the rejection rates)

% label noise 0% 5% 10% 15% 20%
SVM-Linear 21.83% 23.35% 24.55% 25.05% 25.64%
SVM-RBF 16.63% 16.84% 17.48% 17.72% 19.34%

RobustBoost 12.81% 14.91% 17.94% 19.33% 21.50%
Graph-Pos 13.22% 14.91% 16.79% 18.17% 20.70%
Proposed 11.80% 13.38% 15.76% 17.09% 19.31%

Proposed-Rej 9.52% 11.16% 13.44% 14.64% 16.75%
(9.73%) (9.61%) (9.57%) (9.51%) (9.36%)



posed method in (18) with rejection (named Proposed-Rej) where
the rejection rate is controlled to be within 9–10% by parameter tun-
ing.

6.2. Performance Evaluation
To test the robustness of different classification schemes against
label error, we randomly selected a portion of samples from the
training set and reversed their labels. All the classifiers were then
trained using the same set of features and labels. Each test set
was classified by the classifiers and the results are compared with
the ground-truth labels. The resulting classification error rates for
the three datasets using different classifiers are presented in Ta-
bles 1–3, where the percentage of randomly erred training labels
ranges from 0% to 20%. The comparisons show that our pro-
posed scheme achieved lower classification error when compared
to five competing schemes under almost all training label error
rates. The parameters (γ, σ0, σ1, τ) used for the three datasets re-
spectively are: (1, 0.1, 1, [0.0018, 0.057]),(1, 1, 10, [0.138, 0.185]),
(1, 1, 2, [0.011, 0.033]). Compared to the graph classifier with all
positive edge weights, our results show that adding negative edge
weights can effectively improve the classification accuracy by 0.13–
11.71%. By allowing a certain amount of ambiguous samples to
remain unlabeled (less than 10% rejection rate in our experiments),
our proposed generalized graph-signal smoothness prior can further
improve the classification accuracy.

7. CONCLUSION

In this paper we learn a graph-based image classifier by viewing the
classifier as a graph-signal in a high-dimensional feature space. Un-
like previous graph-based classifiers, we consider in addition edges
with negative weights that express dissimilarity between sample
pairs. By interpreting a graph as an electrical circuit, we first de-
rive a condition from which we can optimally insert negative edges.
We then show that a generalized smoothness prior can promote am-
biguity in the classifier signal, so that estimated labels with low con-
fidence can be rejected. Experimental results show that our proposal
outperforms SVM variants and previous graph-based classifiers us-
ing positive-edge graphs noticeably.
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