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ABSTRACT
Politicians in the same political party often share the same views
on social issues and legislative agendas. By mining patterns in TV
news co-appearances and Twitter followers, in this paper we esti-
mate political leanings (left / right) of unknown individuals, and
detect outlier politicians who have views different from their col-
leagues in the same party, from a graph signal processing (GSP)
perspective. Specifically, we first construct a similarity graph with
politicians as nodes, where a positive edge connects two politi-
cians with sizable shared Twitter followers, and a negative edge
connects two politicians appearing in the same TV news segment
(and thus likely take opposite stands on the same issue). Given
a graph with both positive and negative edges, we propose a new
graph-signal smoothness prior based on a constructed generalized
graph Laplacian matrix that is guaranteed to be positive semi-
definite. We formulate a graph-signal restoration problem that can
be solved in closed form. Experimental results show that politi-
cal leanings of unknown individuals can be reliably estimated and
outlier politicians can be detected.

Index Terms— News video analysis, graph signal processing,
signal restoration

1. INTRODUCTION

It is commonly observed that politicians of the same political party
often share the same views on social issues and legislative agen-
das. Politicians are public figures, and their positions are fre-
quently demonstrated in different media forms, such as television,
radio, social media like Twitter, etc. Thus one can expect observ-
able patterns in mass media, that when collected and analyzed,
would betray political leanings (left or right) of public individ-
uals. Estimating political leanings in this manner offers a data-
driven conjecture of political affiliations for undeclared individu-
als. It also serves as a detection mechanism for outlier politicians
with diverging views from those in their own parties. We study
the problem of political leaning estimation from patterns in mass
media in this paper.

Leveraging on recent advances in graph signal processing
(GSP) [1], we formulate the political leaning estimation problem
as a graph-signal restoration problem. We first construct a graph
with politicians or public figures as nodes; a signal sample at a
node would indicate right / conservative (positive number close
to 1) or left / liberal (negative number close to −1) political lean-
ing1. We then construct two types of edges connecting nodes on

1Our goal is more than simply classifying politicians into two classes (lib-

the graph. First, using Twitter data crawled from the Internet, we
connect two nodes with a positive edge—signifying similarity—if
the corresponding two politicians share a sizable group of follow-
ers. Larger fraction of shared followers would translate to a larger
positive edge weight.

Second, using a large archive of NHK evening news2 in Japan
of more than 10 years [2], we first detect co-appearance of ex-
actly two public figures in a news segment via face detection /
recognition using the method from [3]. To maintain the appear-
ance of fairness, it is observed [4] that NHK typically presents
two different sides of a social or political issue, which means that
the co-appeared individuals very likely take opposing stands. We
thus construct a negative edge—signifying dissimilarity—to con-
nect the respective nodes.

Because our constructed graph contains both positive and neg-
ative edges, the combinatorial graph Laplacian matrix L [1] can
be indefinite, and conventional graph-signal smoothness priors
based on L [5, 6, 7, 8] previously used in image restoration can be
numerically unstable. Instead, we first define a new graph-signal
smoothness prior based on a computed generalized graph Lapla-
cian matrix Lg [9] that is guaranteed to be positive semi-definite.
We then formulate a maximum a posteriori (MAP) graph-signal
restoration problem that can be computed efficiently in closed
form. Experimental results show that political leanings of un-
known individuals in both Japan and the US can be reliably es-
timated, and outlier politicians can be detected. To the best of our
knowledge, we are the first to study the political leaning estima-
tion problem in a data-driven manner via a graph-signal restora-
tion formulation. Further, among signal restoration works in the
GSP literature [5, 6, 7, 8], we are the first to incorporate negative
edges into a similarity graph, and perturb the graph Laplacian
matrix L to ensure numerical stability in the smoothness prior.

The outline of the paper is as follows. We first overview re-
lated works in Section 2. We then define necessary GSP concepts
and smoothness priors in Section 3. We discuss how the “opti-
mal” perturbation matrix can be chosen to ensure positive semi-
definiteness for graph Laplacian L in Section 4. We describe how
we construct a similarity graph using available Twitter and TV co-
appearance data in Section 5. We define and efficiently solve our
graph-signal restoration problem in Section 6. Finally, results and
conclusion are presented in Section 7 and 8, respectively.

erals and conservatives). The value of the an estimated sample should reveal
where along the entire political spectrum a politician belongs.

2NHK is Japan’s national public broadcast organization.



2. RELATED WORK

There exist a variety of approaches exploiting social media to pre-
dict political leanings: by propagation of followers on Twitter
[10], from analysis of tweets content [11], as a linear-inverse prob-
lem from tweets and retweet behavior [12] (recently improved
adding retweeters’ publication content [13]), or even from text
classification of Facebook posts [14]. In contrast, we leverage on
signal restoration techniques in GSP to estimate political leanings
of public figures having constructed a similarity graph.

Smoothness priors derived from the graph Laplacian L have
been used to restore graph-signals in many applications, including
image denoising [5, 6], dequantization of JPEG images [15, 7],
image interpolation [16, 17] and bit-depth enhancement [8]. In all
these cases, the underlying graph is undirected with positive edge
weights. In contrast, we generalize to the case where weights of
undirected edges can be negative, which signify dissimilarity in
signal samples. To be discussed in Section 3 and 4, this more
general case requires careful design of the graph spectrum for the
restoration problem to be numerically stable.

An orthogonal GSP approach rooted in algebraic signal pro-
cessing theories [18, 19] uses the adjacency matrix A as the prin-
ciple variational operator. Edges can be directed and edge weights
can be negative. A smoothness notion called graph total variation
is then defined, which can be used in a similar MAP formula-
tion. However, because the Jordan eigenvalues of A [20] can be
negative (and possibly imaginary), one cannot naturally interpret
the eigenvalues as frequencies, which are typically understood to
be real, non-negative numbers. Our proposed generalized graph
Laplacian Lg achieves this frequency interpretation while han-
dling negative edge weights.

3. GRAPH SPECTRUM & SMOOTHNESS

3.1. Graph Definition
We first introduce definitions in GSP needed for our problem for-
mulation. A graph G(V, E ,W) contains a set V of N nodes and
a set E of M edges. Each existing edge (i, j) ∈ E is undirected
and contains an edge weight wi,j . In this paper, we assume that
wi,j can be positive or negative; a negative wi,j would mean that
samples in node i and j are dissimilar—the samples are expected
to have very different values.

A graph-signal x on G is a discrete signal of dimension N—
one sample xi for each node i in V . In this paper, a large positive
(negative) value xi would mean a politician i has strong conser-
vative (liberal) political leaning.

3.2. Graph Spectrum
Given an edge weight matrix W, we define a diagonal degree ma-
trix D, where di,i =

∑
j Wi,j . A combinatorial graph Laplacian

matrix L is L = D −W [1]. Because L is symmetric, one can
show via the Spectral Theorem that it can be eigen-decomposed
into:

L = UΛUT (1)

where Λ is a diagonal matrix containing real eigenvalues λk, and
U is an eigen-matrix composed of orthogonal eigenvectors ui as
columns. If edge weights wi,j are restricted to be non-negative,
then one can show that L is positive semi-definite (PSD), meaning

that λk ≥ 0, ∀k and xTLx ≥ 0, ∀x. Non-negative eigenvalues
λk can be interpreted as graph frequencies, and eigenvectors U
interpreted as corresponding graph frequency components. To-
gether they define the graph spectrum for graph G.

Unfortunately, we consider also negative edge weights wi,j

here, and thus L can be indefinite. In general it is desirable to
have a variational operator that is PSD. To accomplish this, we
will perturb L with a perturbation matrix ∆, so that L + ∆ is
PSD. We will discuss how to select the optimal ∆ in the next
section.

3.3. Graph-Signal Smoothness Prior
Traditionally, for graph G with positive edge weights, signal x
is considered smooth if each sample xi on node i is similar to
samples xj on neighboring nodes j with large wi,j . In the graph
frequency domain, it means that x contains mostly low graph fre-
quency components; i.e., coefficients α = UTx are zeros for high
frequencies. The smoothest signal is the constant vector 1—the
first eigenvector u1 for L corresponding to the smallest eigenvalue
λ1 = 0.

Mathematically, we can write that a signal x is smooth if its
graph Laplacian regularizer xTLx is small [5, 6]. Graph Lapla-
cian regularizer can be expressed as:

xTLx =
∑

(i,j)∈E

wi,j

(
xi − xj

)2
=
∑
k

λk α
2
k (2)

Because L is PSD, xTLx is lower-bounded by 0, achieved when
x = u1 = 1.

Because we consider also negative edge weights, L can be in-
definite, and prior xTLx cannot be used directly. Specifically,
there exists an eigenvector u1 where uT

1 Lu1 < 0, and ∞u1

would be a pathological solution to a minimization problem.
To avoid numerical instability of xTLx when L is indefinite,

we define graph spectrum using L + ∆ instead, and the corre-
sponding regularizer is xT (L + ∆)x. PSD L + ∆ means non-
negative eigenvalues (graph frequencies), and xT (L+∆)x is also
lower-bounded by 0. However, it is achieved when x = u1, the
lowest frequency component for L+∆, which in general is not 1.
Importantly, it means that instead of the constant signal 1, the new
smoothness prior will actively promote u1. Thus the appropriate-
ness of low graph frequency component u1 for signal restoration
is crucial.

For intuition, we examine the behavior of u1 of L as fol-
lows. Because L is a symmetric matrix, the Rayleigh quotient
R(x) reaches its minimum at the smallest eigenvalue λmin when
x = u1,

λmin = R(u1) =
uT
1 Lu1

uT
1 u1

(3)

Note that as a unit-norm eigenvector, uT
1 u1 = 1.

Suppose that the presence of negative edges results in 0 >
λmin. Then, expanding uT

1 Lu1,

0 >
∑

wi,j>0

wi,j(u1,i − u1,j)2 +
∑

wi,j<0

wi,j(u1,i − u1,j)2

∑
wi,j<0

|wi,j |(u1,i − u1,j)2 >
∑

wi,j>0

|wi,j |(u1,i − u1,j)2



(a) 5-node graph

L =


2 −1 −1 0 0
−1 2 −1 0 0
−1 −1 2 1 0
0 0 1 0 −1
0 0 0 −1 1


(b) corresponding L

Fig. 1. Example of a 5-node graph with a negative edge.

We see that u1 is a negative-edge-dominant vector, where the con-
nected node differences for the negative edges outweigh the dif-
ferences for the positive edges.

The corollary is that, unlike a graph with only positive edges
where u1 = 1 has no zero-crossings and higher frequency com-
ponents have more zero-crossings (according to the nodal domain
theorem [9]), the lowest frequency component u1 here can have
one or more zero-crossing(s) at node pairs with negative edges.
Thus, u1 is very informative—much more so than u1 = 1 for
a positive-edge graph—because it contains crucial information
about which node pairs should have opposing values in the re-
constructed graph-signal. It is thus desirable to preserve low fre-
quencies of L even after perturbation matrix ∆ is added.

As an example, we see in Fig. 1 a 5-node graph with a single
negative edge between node 3 and 4. λmin = −1.21, and u1 =
[0.24 0.24 0.54 − 0.70 − 0.32]T . We see indeed that u1 has one
zero-crossing at node pair (3, 4).

4. FINDING A PERTURBATION MATRIX

We now address the problem of identifying a perturbation matrix
∆ such that L + ∆ is PSD. Obviously, there exists an infinite
number of feasible solutions ∆. Thus a well chosen criteria must
be used to differentiate them.

4.1. Matrix Perturbation: Minimum-Norm Criteria
One reasonable choice is the minimum norm criteria, i.e., find ∆
with the smallest norm such that L + ∆ is PSD:

min
∆
‖∆‖ s.t. xT (L + ∆) x ≥ 0, ∀x (4)

where ‖.‖ is a unitarily invariant norm on RN×N ; i.e.
‖U∆V‖ = ‖∆‖ for all orthogonal U and V.

It turns out that the solution to (4) is a special case of Theorem
5.1 in [21], which we rephrase as follows. Assume that L has
exactly p negative eigenvalues. Theorem 5.1 in [21] states that the
optimal perturbation matrix ∆ with minimum norm ‖∆‖, such
that L + ∆ is PSD, is:

∆ = U diag(τ ) UT (5)

where τ = [τ1, . . . , τn]:

τi =

{
−λi if 1 ≤ i ≤ p
0 o.w. (6)

See [21] for a complete proof. We only make some important
observations. First, it is clear that L + ∆ is PSD:

L + ∆ = Udiag(λ1 − λ1, . . . , λp − λp, λp+1, . . . , λn)UT

= Udiag(0, . . . , 0, λp+1, . . . , λn)UT

Since all the negative eigenvalues of L have been shifted to 0,
L + ∆ is PSD.

Second, due to the definition (5) of ∆, L + ∆ can be spec-
trally decomposed using the same eigenvectors U as original L.
As discussed previously, maintaining the same eigen-space in the
perturbed matrix L + ∆ is desirable, as the low graph frequency
components like u1 are information-rich.

Third, by shifting all negative eigenvalues of L to 0, the first
p+1 eigenvectors u1, . . . ,up will all evaluate to 0 in the quadratic
regularizer:

uT
i (L + ∆) ui = 0, 1 ≤ i ≤ p+ 1 (7)

p+1 because by definition L has eigenvector 1, and 1T (L+∆)1
also evaluates to 0. Hence the regularizer expresses no preference
among the first p+ 1 eigenvectors. This creates a problem during
graph-signal restoration: though the graph structure G has a notion
of frequencies and the original (numerically unstable) smoothness
prior prefers low frequencies, the augmented regularizer does not
differentiate and maps the lowest p+ 1 frequencies all to zero.

4.2. Matrix Perturbation: generalized graph Laplacian
The main problem with the minimum-norm criteria is that the dif-
ferentiation among different low frequency components (eigen-
vectors) is removed by setting all negative eigenvalues of L to 0.
Thus, it is desirable to maintain the frequency components of L in
the perturbed matrix, but in a way that the frequency preferences
are preserved (i.e., low frequencies are still preferred over high
frequencies).

To accomplish this, we define a generalized graph Laplacian
matrix Lg [9] as the sum of L and an identity matrix I scaled by
−λmin:

Lg = −λminI + L (8)

= U(−λmin)I VT + VΛUT

= U (−λminI + Λ) UT (9)

where λmin is the smallest eigenvalue in L. We see that Lg has
the same eigenvectors U as L. Further, eigenvalues λi−λmin are
non-negative, and thus Lg is PSD. Finally, by shifting all eigenval-
ues λi by the same amount −λmin, the preferential order of dif-
ferent graph frequency components is preserved in the new prior
xTLgx. We will thus use xTLgx as our graph-signal smoothness
prior in the sequel.

5. GRAPH CONSTRUCTION

We now discuss our construction of the similarity graph G using
available Twitter information and TV co-appearance data. Nodes
represent Japanese public figures with active Twitter accounts, and
may appear in NHK TV news segments.

We define positive and negative weights in our similarity
graph between two individuals i and j as follows:

w+
i,j = exp

(
−d+(i, j)2

σ2+

)
(10)

w−i,j = −

(
1− exp

(
−d−(i, j)2

σ2−

))
(11)



where d+(i, j) and d−(i, j) represent (dis)similarity distances be-
tween individual pairs, and σ+ and σ− are scaling parameters. We
discuss how we compute d+(i, j) and d−(i, j) next.

Fig. 2. Segmentation of the videos (borrowed from [3]).

To compute d+(i, j), we collected follower data of public fig-
ures’ Twitter accounts. We assume that the fraction of shared fol-
lowers between two individuals reflects how politically close they
are. Specifically, we define

d+(i, j) =
|f(i) ∩ f(j)|

min(|f(i)|, |f(j)|) (12)

where f(i) is the set of Twitter followers for individual i. (12)
basically computes the larger of two fractions of shared followers
for i and j. The size of Twitter followers is 4, 830, 970 3.

To compute negative distance d−(i, j), we extracted co-
occurrence information from a 12-year NHK TV news archive
via face detection and tracking from the results of [3], as shown in
Fig. 2. We have detected politicians in 4552 different news seg-
ments. An NHK news segment is often presented as a conflict
with two views [22], and thus co-appearance of only two individ-
uals in the same segment means likely opposing stands. Thus,
we define d−(i, j) as the number of co-appearances of a pair of
individuals in a TV news segment in the 12-year archive.

Finally, if both Twitter and TV co-appearance information are
available for pair (i, j), we combine w+

i,j and w−i,j linearly as fol-
lows:

wi,j = αw+
i,j + βw−i,j (13)

6. GRAPH-SIGNAL RESTORATION

Having constructed a similarity graph G as described previously,
we formulate our graph-signal restoration problem given partial
observation y ∈ RK (K ground truth political labels) using the
graph-signal smoothness prior as follows:

min
x
‖y −Hx‖22 + µ xTLgx (14)

where H is a K × N binary matrix that selects K samples from
signal x to compare against observation y. µ is a weight parame-
ter that specifies the relative importance of the fidelity term (like-
lihood in a MAP formulation) with the graph-signal smoothness
prior.

Note that because Lg is PSD, xTLgx ≥ 0. If instead we
use the combinatorial graph Laplacian L to define the smoothness

3Because only 65% of followers share the opinion of the politicians they
follow [10], we extract partisan followers for our experiments: those who only
following minister(s) of a single party. This subset total 1, 145, 153.

prior xTLx, then because the smallest eigenvalue λ1 can be nega-
tive,∞u1 would compute to an objective value of−∞ for µ > 0.
Hence the use of a PSD Lg in the smoothness prior is essential for
numerical stability.

Because (14) is a simple sum of two quadratic terms, one can
take the derivative with respect to x and equate to zero, resulting
in optimal solution x∗:

x∗ =
(
HTH + µLg

)−1
HTy (15)

7. EXPERIMENTATION

7.1. Experimental Setup
We collected data of public figures (politicians, business leaders,
etc) appearing on a 12-year archive of the Japanese NHK Daily
News 7 program between 2001 and 2012. The period included
numerous changes in Prime Ministers (PM) and their cabinets.
Japanese politics is roughly split between two leading parties—
Liberal Democratic Party (LDP) and Democratic Party of Japan
(DPJ)—that represent the right and left of the political spectrum.
During our observed 12 years, there were four different LDP PMs
and three different DPJ PMs.

Beyond construction of the positive and negative edges in
the similarity graph based on Twitter followers and TV news co-
appearances as described in Section 5, we also connect observed
sample pairs of same party members with edge weight 1 and ob-
served sample pairs of opposing party members with −1.

We assign sample values −1 and 1 to the DPJ and LDP PMs
respectively to construct observation y. We then estimate polit-
ical leanings (left or right) of the remaining individuals by solv-
ing x using (15); sign(x) gives an estimate of party affiliation.
Of course, our ultimate goal is to estimate the political leanings
of politicians. However, our ground truth is limited to party af-
filiations, though some notable individuals allow for more fine-
grained interpretations of the estimated sample values xi, as we
will discuss later when interpreting our obtained estimates.

For our experiment, we use parameters µ = 20, σ = 1, and
α = β = 0.5. We have in total 18 labeled politicians between DPJ
(10) and LDP (8), and 9 additional unlabeled individuals.

The US political landscape is much more polarized than the
one of Japan. In the electoral period of the end 2016, this polar-
ization is even more amplified, and the data from Twitter should
somehow reflect this situation. This context makes it a per-
fect occasion for testing our methodology. For samples, we in-
clude US politicians who are currently state governors (as of Oct.
2016). We choose observations y as the presidential election can-
didates and their running-mates since 2000, while assigning −1
for Democrats and 1 for Republicans. The only parameter that
was changed is µ = 0.02.

7.2. Japanese Politics Experimental Results

We first ran an experiment on the 18 individuals. Using only posi-
tive weights computed from Twitter data, our method resulted in 4
errors in estimated party affiliations compared to the ground truth.
This shows that Twitter alone—where many politicians share fol-
lowers for a variety of reasons—is not sufficiently informative or



reliable for political leaning estimation. We observed also that
the variance of estimated x has small standard deviation (SD)
1.10−2; the estimated difference in political leanings is small. We
next added negative edges obtained from TV news data also, re-
sulting in only two erred political affiliations, while SD (0.6) is
also larger. Looking closer, the two erred predictions had the
two smallest magnitude in xi: 0.016 and −0.012. The first er-
ror was for I. Ozawa, a politician also infamously known as “The
Shadow Shogun” [23], labeled as DPJ. Though he was a member
of DPJ during the tested period, he coordinated several coalitions
against his own party, and left to form a new one in the end. The
second politician is S. Kamei, who actually rebelled against LDP,
switched party twice before becoming independent.

We removed these two politians from the graph, and we
achieved 0 error on our new dataset (Fig. 3, SD = 0.6). Inter-
estingly, the prediction with the smallest magnitude in LDP was
M. Suzuki, who was disgraced and convicted 1 year in prison after
taking bribes.

Fig. 3. Left: Results of the 16 people dataset. Observation indi-
viduals are the ones with highest confidence. Right: Results of
unlabeled people of the 27 people dataset).

We extended our experiment with LDP and DPJ members as
ground truth to all unlabeled public figures in our dataset, in order
to predict political leaning more broadly. The results are well in
accordance with our own knowledge (Fig. 3). For example, Y.
Watanabe, former LDP member though currently independent, is
a known right-wing politician close to LDP. New Komeito’s A.
Ohta and N. Yamaguchi are correctly placed on the right side also,
as their party has an alliance with LDP.

We also compared to a label propagation method that propa-
gates known labels in the graph to unlabeled nodes greedily. We
observed 6 errors in the case of 18 politicians and 5 errors af-
ter removal of the two ambiguous cases. When testing with the
larger case, we obtain 6 errors with 3 dubious cases (extreme-left
classified as LDP, and an LDP-supported independent classified
as DPJ).

7.3. US Politics Experimental Results

Since we do not have large-scale US TV news archive, the fol-
lowing experiment was conducted only following Twitter data. It
sets 63 politicians having an official Twitter account, including 13
presidential election candidates and running-mates, with a total of
27,130,455 followers4.

As observations y, we have 13 presidential candidates and
running-mates (6 Republicans and 7 Democrats), and 50 gover-

420,970,613 once counting only the partisan followers.

nors (with 18 Democrats and 32 Republicans). Only 3 governors
are neither labeled Democrat nor Republican but Independent or
Democratic Farmer Labor (DFL). In this electoral context, the
most followed politicians are by far H. Clinton (10M), D. Trump
(13M), and B. Obama (18M).

If we use only positive edges on the dataset, then our method
results in 7 errors (SD = 0.102) in estimated affiliation compared
to the ground truth. The label propagation method returns 4 erred
politicians. With negative edges, we drop down to one error, with
a larger SD = 0.152.

The erred politician is C. Baker (xi = −0.030), governor of
Massachusetts—known to be a historically Democratic state. He
is an unusual moderate Republican and notably took anti-Trump
positions during the campaign.

The three politicians not affiliated with Democratic and Re-
pubican parties are all placed on the Democratic side (xi < 0).
It is confirming M. Dayton’s alignment since he is from the DFL
(xi = −0.039). It is more surprising for the two independent
politicians, K. Mapp (xi = −0.037), gov. of the Virgin Islands,
and W. Walker (xi = −0.016), gov. of Alaska, who are ex-
Republican politicians. They actually have relatively very few
Twitter followers, with 152 for K. Mapp and 1,394 partisans for W.
Walker. This provides minimal reliable information from which
we could derive similarity information.

As for the outliers, the furthest left is Democrat T. McAuliffe
(xi = −0.065), who has very close ties with the Clintons, and the
furthest left Republican is L. Hogan (xi = 0.002), who publicly
disavowed D. Trump.

8. CONCLUSION

We study the problem of estimating political leanings of pub-
lic figures by extracting and analyzing patterns in mass media.
Specifically, we first construct a similarity graph with nodes rep-
resenting individuals. We then construct positive edges based
on shared Twitter followers, and negative edges based on NHK
evening news co-appearances. We define a new graph-signal
smoothness prior based on a derived generalized graph Laplacian
matrix that is positive semi-definite. We formulate a graph-signal
restoration problem, solvable in closed form. Experimental re-
sults show reliable estimates of political affiliations, and detec-
tion of outlier politicians in both the Japanese and the US political
media-landscapes.
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