
MULTI-STREAM SWITCHING FOR INTERACTIVE VIRTUAL REALITY VIDEO
STREAMING

Gene Cheung #, Zhi Liu ∗, Zhiyou Ma $, Jack Z. G. Tan $

# National Institute of Informatics, ∗ Waseda University, $ Kandao Technology

ABSTRACT
Virtual reality (VR) video provides an immersive 360 viewing
experience to a user wearing a head-mounted display: as the
user rotates his head, correspondingly different fields-of-view
(FoV) of the 360 video are rendered for observation. Trans-
mitting the entire 360 video in high quality over bandwidth-
constrained networks from server to client for real-time play-
back is challenging. In this paper we propose a multi-stream
switching framework for VR video streaming: the server pre-
encodes a set of VR video streams covering different view
ranges that account for server-client round trip time (RTT)
delay, and during streaming the server transmits and switches
streams according to a user’s detected head rotation angle.
For a given RTT, we formulate an optimization to seek multi-
ple VR streams of different view ranges and the head-angle-
to-stream mapping function simultaneously, in order to mini-
mize the expected distortion subject to bandwidth and stor-
age constraints. We propose an alternating algorithm that,
at each iteration, computes the optimal streams while keep-
ing the mapping function fixed and vice versa. Experiments
show that for the same bandwidth, our multi-stream switching
scheme outperforms a non-switching single-stream approach
by up to 2.9dB in PSNR.

Index Terms— Video streaming, virtual reality, video
coding

1. INTRODUCTION

The advent of technologies for camera rigs, fisheye lenses and
image-stitching algorithms [1, 2] means that 360 virtual real-
ity (VR) video can now be readily generated. A user equipped
with a head-mounted display (HMD) such as Oculus Rift1 or
HTC Vive2 can enjoy an immersive 360 viewing experience:
as the user rotates his head to the left or right, correspond-
ingly different fields-of-view (FoV) of the 360 VR video are
rendered for observation. See Fig. 1 for an illustration. It
has been shown [3] that such motion parallax visual effect—
changing FoVs according to user’s head position and rotation
angle—is the strongest cue for human’s depth perception in
a 3D scene, and VR video enables this effect for any head
rotation angle from 0 to 360.

1https://www3.oculus.com/en-us/rift/
2https://www.vive.com/jp/

Fig. 1. Interactive VR video streaming system using 5 pre-encoded
streams with overlapping view ranges. Corresponding to user’s head
rotation angle θ(t) and FoV [θ(t) − a, θ(t) + a] at time t, stream 3
is selected and transmitted.

However, transmitting the entire 360 VR video in high
quality over bandwidth-limited networks from a server to
a client for real-time playback is challenging. Leveraging
on previous works in interactive multiview video streaming
(IMVS) [4, 5], we propose a multi-stream switching frame-
work for 360 VR video streaming. The server pre-encodes a
set of VR video streams, each covering a different view range
of the original 360 video. During streaming, the server trans-
mits and switches among the pre-encoded streams according
to a user’s detected head rotation angle.

By transmitting one video stream covering a limited view
range at a time, the server can encode the stream at a higher
quality than a single stream covering all 360 viewing angles
for the same bandwidth constraint. However, to minimize the
adverse effect of interaction delay in motion parallax—even
in the face of non-negligible server-to-client round trip time
(RTT) delay—each pre-encoded stream must cover a wide
enough view range, so that a user’s head with rotation angle
starting in the view range center would not drift outside the
view range in one RTT. This implies that the coded streams
tend to overlap in view ranges, resulting in representation re-
dundancies and high storage cost. Thus, multi-stream switch-
ing can enable higher visual quality, at the expense of an in-
crease in storage cost due to streams’ view range overlaps.

Thus, the technical challenge is, for a given RTT, to de-
sign multiple VR streams of different view ranges and the



head-angle-to-stream mapping function in order to minimize
the expected distortion subject to bandwidth and storage con-
straints. We mathematically formalize this optimization and
propose an alternating algorithm that, at each iteration, com-
putes the optimal VR streams while keeping the mapping
function fixed and vice versa. Experimental results show that
for the same bandwidth constraint, our proposed multi-stream
switching scheme outperforms a single-stream approach by
up to 2.9dB in PSNR.

2. RELATED WORK

Using an array of cameras to capture a 3D scene syn-
chronously from slightly shifted viewpoints, IMVS systems
[4–8] study how the captured multi-view videos can be pre-
encoded into multiple streams. A receiving user can peri-
odically request switches to neighboring camera views, and
the server in response switches video streams with minimum
discruption to the user’s viewing experience. To facilitate
stream-switching, new frames like DSC frame [9] and merge
frame (M-frame) [10] were proposed. Unlike IMVS [4–
8], we optimize the division of 360 VR video into multiple
streams covering different view ranges given a constant RTT.
To the best of our knowledge, we are the first to study this
problem for interactive VR video streaming formally.

There are recent studies on VR video streaming. As-
suming that the 3D scene can be represented by a 3D mesh,
[11, 12] proposed to first divide the mesh into 3D sub-meshes
(tiles). During streaming, a user communicates the desired
tiles to the server using MPEG-DASH-SRD [13], an exten-
sion of MPEG-DASH [14] to specify spatial relationships in
media content. Unlike [11, 12], we assume the input to our
optimization is a 360 VR video, not 3D mesh. Further, we
take the effect of RTT on interaction delay into account ex-
plicitly during optimization (to be detailed in Section 4).

Assuming a camera rig with multiple cameras capturing
a 360 view from different angles, [15] described a multiview
video scheme that divides and codes captured camera views
into two types: i) primary views at lower resolution that cover
the entire 360 field-of-view, and ii) auxiliary views for the
remaining camera views at high resolution. The two video
types are coded using multilayer extensions of HEVC. The
receiver then performs image stitching to compose a 360 VR
view. Instead, we assume 360 VR video is composed at the
sender, and the challenge is to design multiple video streams
covering different view ranges for interactive streaming.

3. SYSTEM OVERVIEW

We overview the operations of our multi-stream switching
framework for a given RTT. Denote by T the RTT between
server and client. Denote by ∆ the time interval between
coded frames; 1/∆ is the number of frames per second (fps).
For simplicity, assume for now that all frames are intra-coded,
so that streams can be switched at any frame. The server

Fig. 2. Interaction between server and client where RTT is T and
frame interval is ∆. A switched stream arrives T seconds after a
feedback is sent.

starts transmission of an initial video stream to the user at time
t = −T/2, assuming the user begins at an initial head rotation
angle θ(0). At time t = 0, the stream arrives at the client and
playback begins. At time t = ∆, the client transmits the first
feedback θ(∆) of the user’s head rotation angle to the server.
This feedback θ(∆) arrives at the server at t = T/2 + ∆, and
the server decides the new stream to transmit corresponding
to θ(∆) using a mapping function f(θ(∆)). This new stream
arrives at the client at time t = T + ∆, exactly T seconds
after feedback θ(∆) was generated. Hence, the transmitted
stream must accommodate the change in head rotation angle
from θ(∆) to θ(T + ∆). See Fig. 2 for an illustration.

Consider now the case when the VR streams are coded
in Group-of-Pictures (GOP) of H frames each. This means
that the frequency at which the server can switch streams is
also every H frames. Compared to the previous case of intra-
coded frames, each VR stream must now accommodate the
change in head rotation angle in time interval T +H∆.

We next formulate the optimization problem to find the
multiple VR streams and the mapping function f( ).

4. PROBLEM FORMULATION

4.1. View Interaction Model
We first define a view interaction model that models a typi-
cal view selection process during 360 VR video observation.
Denote by θ[n] the central view angle at which an observer is
watching straight ahead at discrete time n. For convenience,
we define the duration of a discrete time interval to be ∆ (time
interval between frames), and RTT in discrete instants to be
Ts = T/∆. We assume that θ[n] ∈ {1, . . . ,K} is also dis-
crete, where θ[n] 2π/K is angle in radians between 0 and 2π.
We assume a one-hop Markov view transition model, where
the probability of an observer’s angle θ[n + 1] = j given
θ[n] = i is pi,j . Finally, we assume that the observer changes
views only locally per instant, i.e., pi,j = 0 if |i− j| > vmax.

At any instant n, the observer has a FoV of size 1 + 2a�
K that defines the angular span a human observes at a time.
Hence at time instant n, given central view angle θ[n], the



observer’s FoV is R[n] = [θ[n]−a, θ[n]+a]. It means that an
observer will see visual distortion if the current video stream
is not coded at high enough video quality in this range R[n].

4.2. Expected Distortion
We define the expected distortion an observer sees in a 360
VR video as he naturally rotates his head. We consider first
the simple case when the GOP size is a single frame. First,
we compute the steady state probabilities q ∈ RK assum-
ing stationary view transition probabilities pi,j via the Perron-
Frobenius Theorem3:

qP = q (1)

where q is the left eigenvector (row vector) corresponding to
the eigenvalue 1 for matrix P.

Denote by 1k the canonical row vector of length K with
the only non-zero entry at position k equals to 1. Ts instants
after an observer starts in central angle k, the angle distribu-
tion is 1kPTs . Because an observer’s FoV size is 1 + 2a, we
multiply 1k by a binary circulant matrix Ca ∈ {0, 1}K×K to
account for FoV. For example, C1 for K = 5 is:

C1 =


1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1

 (2)

Suppose now that for central angle k, the server transmits
stream f(k) with distortion vector df(k), where df(k),l is the
distortion of angle l in stream f(k). We can then write the
expected distortion for this intra-coded streaming system as:

D({di}, f( )) =

K∑
k=1

qk 1kCaP
Tsdf(k) (3)

where the expected distortion D depends on both the distor-
tion vectors di of different streams i and the mapping func-
tion f( ) from angles to streams.

If the 360 VR video streams are coded in GOP of H
frames each, then the stream-switching delay becomes Ts +
H , and the distortion term for each k needs to be computed
for all H frames:

D({di}, f( )) =

K∑
k=1

qk

H−1∑
h=0

1kCaP
Ts+hdf(k) (4)

4.3. Rate Constraints
Given distortion vector di of stream i, we define the coding
rate as r(di) =

∑K
k=1 g(di,k), where g(di,k) is in turn de-

fined as a clipped Laplacian function with parameter σ:

g(d) = U(dmax − d) exp

(
−|d|
σ2

)
(5)

3https://en.wikipedia.org/wiki/Perron%E2%80%93Frobenius theorem

where U( ) is a step function; i.e., if d ≥ dmax, then rate g(d)
is 0. Parameter σ can be chosen according to the 360 VR
video characteristics. Because distortion d is non-negative,
we can drop the absolute value operator in practice.

Having defined r(di), we can define a storage constraint
as follows. Denote by S the set of pre-encoded video streams,
by Q the duration in time for the 360 video, and by B the
storage budget in bits. We write the storage constraint as:∑

i∈S
r(di) ≤ B/Q (6)

We can similarly define a transmission constraint for a
transmission budget C in bps. Assuming a mapping function
f( ) from angles to streams, we write:

K∑
k=1

qkr(df(k)) ≤ C (7)

4.4. Objective Function
Assuming H = 1, collecting derived equations (3), (6) and
(7), we write an unconstrained Lagrangian objective as:

min
{di},f( )

K∑
k=1

qk 1kCaP
Tsdf(k)+λ

∑
i∈S

r(di)+µ

K∑
k=1

qkr(df(k))

(8)
where λ and µ are chosen parameters so that the storage con-
straint (6) and transmission constraint (7) are satisfied.

5. OPTIMIZATION ALGORITHM

We take an alternating optimization approach, where we opti-
mize variables {di} and f( ) one at a time while keeping the
other fixed. When f( ) is fixed, we take the derivative of the
objective with respect to di,l and set it to 0:

∑
k|f(k)=i

qk
[
1kCaP

Ts
]
l
+

λ+ µ
∑

k|f(k)=i

qk


︸ ︷︷ ︸

γ

∂g(di,l)

∂ di,l
= 0

− 1

γ

∑
k|f(k)=i

qk
[
1kCaP

Ts
]
l

=
∂ exp

(
−di,lσ2

)
∂ di,l

− σ2 log

σ2

γ

∑
k|f(k)=i

qk
[
1kCaP

Ts
]
l

 = d∗i,l (9)

where [ ]l denotes the l-th entry of a vector.
For intuition, we can check the boundary cases of (9) as

follows. If angle l of stream i is not observed (summation in
the argument of log is 0), then the left side of (9) evaluates to
∞, so we can set d∗i,k to dmax. On the other hand, if angle l
is observed with high probability (summation in the argument



of log is upper-bounded by 1), assuming σ2/γ is also upper-
bounded by 1, then d∗i,l is lower-bounded by 0.

When streams {di} are fixed, we optimize f( ) simply as
follows. For each angle k, we identify a stream i for k with
the minimum expected transmission cost in (8).

5.1. Initialization
For a given number |S| of target streams, we perform initial-
ization as follows. We evenly distribute the central angles of
|S| streams in {1, . . . ,K}. For each stream i with central an-
gle k, we set distortion di,l to a constant d1 for angle l where
|k − l| < Ts vmax; i.e., angle l is reachable in Ts transitions.
Otherwise, di,l = dmax. d1 is then adjusted so that the trans-
mission constraint is met for this stream.

The number of streams |S| is varied to find a locally opti-
mal solution.

6. EXPERIMENTS

6.1. Experimental Setup
We use two 360 VR sequences captured by Kandao Technol-
ogy4, indoor concert and outdoor walking, for
our experiments. Each video is 1 hour long at 30 fps. FoV is
assumed to be 90◦, and vmax is 5◦. Video for one FOV has
resolution 512 × 512. Number of discrete view angles K is
60, and RTT Ts is 3. We use a linear function to model angle
transition probabilities: pi,j linearly decreases with |i − j|,
and the slope of decrease is steeper at π/2 and 3π/2, resulting
in higher steady state probabilities qk at these two angles.

As competitor we choose a non-switching scheme called
static, which always sends an encoded video covering the en-
tire 360 angles. For practical implementation, both our pro-
posed scheme (called adaptive) and static use two QPs to
encode each VR video stream; the two QPs are selected us-
ing Lloyd-Max quantizer [16] to approximate the theoretical
Laplacian RD curve r(d) shown in Fig. 3 (a). Test videos are
first encoded at different QPs to generate empirical RD points,
then the parameters of r(d) are fitted.

6.2. Experimental Results
We assume two different channel bandwidths are available.
We vary the available storage and show the tradeoff against
visual quality (PSNR) in Fig. 4 for indoor concert and
outdoor walking. Weight parameters λ and µ are tuned
to satisfy bandwidth and storage constraints at each point.
Each data point in Fig. 4 is marked by a square, circle or tri-
angle to denote the optimal number of streams generated: 1, 2
and 3, respectively. static uses 1 stream (squares), and adap-
tive uses multiple streams (circles and triangles).

We observe that adaptive outperforms static for the two
sequences—up to 2.9dB in PSNR at the same bandwidth but
using more storage. For given channel bandwidth and stor-
age, adaptive selects the optimal number of streams and view

4VR sequences will be made available at time of publication.

range for each stream via optimization of distortion vectors
di. Fig. 3 (b) (distortion versus viewing angle) shows the op-
timized distortion vectors di for two streams when the storage
is 5Gb and bandwidth is 1Mbps. dmax = 46 in this case, and
the corresponding angle range is not encoded because there is
zero probability of being observed (given our view interaction
model). In contrast, viewing angles with high probabilities
have low distortion values in di. We observe also that the two
steams overlap, as discussed in the Introduction, to guarantee
good visual quality when user’s head rotates in one RTT. Due
to the low observe probability at the stream view range bound-
aries, the associated distortion values are relatively larger.

(a) R-D curve (b) distortion vs. view angle

Fig. 3. Illustration of R-D curve and streams’ distortion vectors.

When storage is small, static and adaptive have the same
performance for both ch1 and ch2. As more storage becomes
available, relative performance of adaptive becomes better for
both ch1 and ch2 when multiple streams are employed. On
the other hand, by sending only one stream always, static can-
not make use of extra storage to improve quality for a given
channel bandwidth.

(a) indoor concert (b) outdoor walking

Fig. 4. PSNR versus storage for two competing schemes.

7. CONCLUSION

Transmitting 360 VR video in high quality over bandwidth-
limited networks is difficult. In this paper, we pre-compute
mulitple streams covering different overlapping view ranges
at the server, and during streaming a single stream is selected
corresponding to the user’s tracked head rotation angle that
minimizes the adverse effect of interaction delay. We formu-
late an optimization to find the optimal streams and the head-
angle-to-stream mapping function simultaneously, solved via
an alternating algorithm. Experimental results show that our
multi-stream switching approach outperforms a single-stream
approach by up to 2.9dB in PSNR.
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