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ABSTRACT

A plenoptic light field (LF) camera places an array of microlenses
in front of an image sensor, in order to separately capture different
directional rays arriving at an image pixel. Using a Bayer pattern,
data captured at each pixel is a single color component (R, G or B).
The sensed data then undergoes demosaicking (interpolation of RGB
components per pixel) and conversion to a series of subaperture im-
ages. In this paper, we propose a novel LF image coding scheme
based on graph lifting transform, where the acquired sensor data are
coded in their original form without pre-processing. Specifically,
demosaicking is not performed, and instead we first map raw sensed
color data directly to subaperture image 2D grids, then encode the
color pixels, which are sparse in spatial distribution, via a graph
lifting transform. Our method avoids redundancies stemming from
demosaicking, and operates in the original RGB domain without
color conversion and sub-sampling. The graph lifting transform effi-
ciently encodes irregularly spaced pixels in each subaperture image,
resulting in compact representations. Experiments show that at high
PSNRs—important for archiving and instant storage scenarios—our
method outperforms demosaicking followed by intra-only High Ef-
ficiency Video Coding (HEVC) significantly.

Index Terms— Light field imaging, image compression, graph
signal processing

1. INTRODUCTION

Light Field (LF) imaging separately captures light rays arriving from
different directions at each pixel in an image. With acquired LF data,
multi-view rendering and re-focusing become possible post-capture.
However, captured LF data are large in volume compared to a con-
ventional color image of the same resolution, and hence efficient
compression of LF data is important for storage and transmission.

In the last decade, many hardware designs have been devel-
oped for LF acquisition, including multiple camera arrays, aper-
ture cameras, and lenselet-based plenoptic cameras. Among them,
the lenselet-based plenoptic camera is the most popular, and has
been made commercially available by companies such as Lytro [1]
and Raytrix [2]. In a plenoptic camera, a microlens array is placed
ahead of an otherwise conventional photo sensor embedded with
Bayer color filter. The resulting raw image, called a lenselet image,
then typically undergoes demosaicking (pixelwise RGB interpola-
tion) and conversion to multiple subaperture images on a 2D array.
A subaperture image can be seen as a typical 2D photo, gathering
pixels from a specific light direction.

There exist two types of redundancies in the LF data: i) spatial
redundancy among neighboring pixels in a subaperture image, i.e.
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intra-view correlation, and ii) angular redundancy among subaper-
ture images of nearby directions, i.e. inter-view correlation. Exploit-
ing inter-view correlation in compression leads to high computation
complexity (due to motion / disparity prediction) and creates depen-
dencies among coded subaperture images, which is undesirable for
random access. In particular, in an archiving scenario, a user may de-
sire to quickly browse through viewpoint images, each of which can
be synthesized in acceptably high quality using only a small sub-
set of subaperture images. Thus, speedy extraction of this image
subset from the LF data compressed in high quality is important.
Furthermore, we note that most standard digital cameras use a low
complexity codec (JPEG) operating by default at very high PSNR.
In analogy, in this paper we will consider here an intra-view only
approach (which leads to faster encoding and better random access),
operating at high rates/PSNR.

Recently, many works attempt to exploit spatial correlation in
LF images via existing image/video coding tools, e.g., JPEG and
HEVC [3–5]. These compression approaches are applied on the full
color subaperture images, which are converted from the raw lenselet
image as in the aforementioned pipeline, and therefore large redun-
dancies are introduced by demosaicking. Moreover, to incorporate
standard codecs, an RGB subaperture image must be converted to
4:2:0 YUV format, which induces distortions due to integer round-
ing and color sub-sampling.

In this paper, we propose a new coding scheme, where com-
pression is applied on the original lenselet images captured by the
photo sensor, without the aforementioned pre-processing that in-
creases data volume or distorts captured pixel values. Our work is
inspired by schemes proposed in [6–9] for regular images, which
also postpone the demosaicking step to the decoder. Specifically,
we first map the raw captured pixels directly onto sparse locations
in a series of subaperture images. Unlike the input images for com-
pression in [6–9], where R, G, and B pixels are regularly distributed
based on the Bayer pattern, the color components after the mapping
to subaperture images are irregularly placed, making it difficult to
be encoded using conventional schemes, e.g., JPEG. In our work,
the irregularly distributed pixels in a subaperture image will be con-
nected as a graph, with the pixel values interpreted as a graph-signal.
Suitable edge weights are assigned to reflect similarities between
connected sample pairs, and the graph-signal is encoded using a
graph-based lifting transform proposed in [10]. The transform has
been applied previously with promising results for image compres-
sion [11–13]. Unlike previous graph-based coding works, we apply
a graph lifting transform on irregularly placed pixels in individual
subaperture images—the first to do so in the literature. Compared to
HEVC-based coding, experiments show noticeable gain at the high
PSNR range.

The outline of the paper is as follows. In Section 2, we review
the conventional approach in lenselet image compression. Our pro-



Fig. 1: Conventional coding scheme for light field image. The demosaicking and calibration processes are applied before compression.

posed coding scheme is described in Section 3. In Section 4, the
graph-based transform for the LF signal is presented. Experiments
and conclusions are presented in Section 5 and 6 respectively.

2. BACKGROUND: LIGHT FIELD IMAGE COMPRESSION

Fig.1 shows an overview of a conventional light field coding scheme.
The pre-processing stage, which converts the originally captured
lenselet image into an array of full color subaperture images, is based
on the method proposed by Dansereau et al. [14, 15]. Through the
Bayer filter embedded on the photo sensor, each pixel on the cap-
tured lenselet image contains only one color component out of R,
G, and B. In order to generate full color images, the missing color
components at each pixel have to be interpolated using the nearby
pixels where the target colors are available. The process is called
demosaicking. In this work, we apply the demosaicking approach
proposed by Malvar et al. [16]. The amount of pixel values will be
increased threefold through the process regardless of the demosaick-
ing algorithms used.

Projected from the microlens array in the plenoptic camera,
a lenselet image consists of multiple hexagonally arranged pixel
patches, which are called macro-pixels (denoted in dash line in
Fig.1); each macro-pixel collects lights for one point in a scene
arriving from different directions. However, due to manufacturing
defects, the arrangement of macro-pixels is usually not aligned with
the image coordinates, making it difficult to infer pixel’s correspond-
ing position in the scene and the arriving light angle. Therefore, the
color lenselet image needs to be calibrated via rotation, translation
and scaling, so that each macro-pixel center (denoted with red point
in the figure) falls onto an integer pixel location and the arrangement
of macro-pixels is aligned to regular grid. Through the calibration,
the amount of data will also be increased due to the interpolation
involved in scaling.

Each pixel on the calibrated image is indexed by its spatial and
angular coordinates. The spatial coordinate is given by the position
of the associated macro-pixel and the angular coordinate is the rel-
ative location within each macro-pixel. We then collect pixels of
the same angular coordinate into one subaperture image, where the
pixels are arranged according to their spatial coordinates. Each sub-
aperture image can be viewed as a typical 2D picture, where large
correlation exists between neighboring pixels.

3. PROPOSED LIGHT FIELD IMAGE CODING SCHEME

In the pre-procesing stage of the conventional coding scheme, the
volume of LF data is increased greatly during demosaicking and the
scaling operation of calibration. In order to avoid these redundan-
cies, we propose a new coding scheme for LF in which compression
is performed on the original data collected in the original lenselet im-
age instead of the pre-processed pixels in the full color subaperture
images. The flow chart is shown in Fig. 2. Without demosaick-
ing, we map raw pixels onto the calibrated lenselet image accord-
ing to the transformation matrix applied in [14]. Pixels which fall
onto non-integer locations after transformation will be rounded to
the nearest integer positions. Then, based on the relative locations
within the macro-pixels on the calibrated image, pixels are arranged
onto multiple subaperture images, where redundancies between spa-
tial neighbors can be exploited. Note that the mapping does not
change the amount of pixels nor the intensity values of R, G, and
B components.

Since no interpolation is applied, some pixel locations are empty
in the subaperture images, as shown in Fig 3. Depending on the cam-
era manufacturing, i.e., different types of macro-pixel misalignment,
and the calibration algorithm adopted, the spatial and angular coor-
dinates for each pixel on the captured lenselet image may change
accordingly. Therefore, the pattern of pixel distribution in subaper-
ture images is not fixed and also highly irregular. The property is
different from the input signal considered in the pre-demosaic im-
age coding schemes discussed in [6–9], where R, G, and B pixels
are distributed regularly based on Bayer pattern. Due to such irregu-
larity of spatial distribution for LF data, existing coding techniques,
e.g., discrete cosine transform (DCT) and discrete wavelet transform
(DWT), are difficult to be applied. This motivates the use of graphs,
which can represent both regular and irregular data points as long as
the pair-wise relations can be defined properly. In the next section,
we will describe the construction of appropriate graphs for graph-
based coding of sparsely distributed pixels on subaperture images.

At the decoder side, pixels on subaperture images are de-
compressed and inverse-mapped back to the original positions on
the 2D lenselet image. The image will then be demosaicked and
calibrated [14, 15] in order to generate full color 4D LF for further
processing, e.g., multi-view rendering and re-focusing. Note that
our scheme does not rely on a particular selection of demosaicking
and calibration algorithms. Other algorithms, e.g., [17] and [18],
can also be applied.



Fig. 2: Proposed LF coding scheme. The demosaicing and calibration, yielding high signal redundancy, are applied after compression.

Fig. 3: Sparsely distributed G components on one subaperture image
(Figure Friends1 from EPFL light field dataset)

4. GRAPH BASED TRANSFORM FOR LF DATA

In this section, we describe the details constructing graphs for irregu-
larly placed pixels in a subaperture image, and the coding techniques
applied. To reduce the implementation complexity and allow parallel
processing, each subaperture image is divided into non-overlapped
blocks, on which graph-based transform will be applied indepen-
dently. A weighted graph G = (V,E) consists of a set of nodes
v ∈ V , and edges ei,j ∈ E, which reflect the similarities between
connected node pairs i and j. The similarity is measured using a
non-negative weight value wi,j ∈ [0, 1]. A graph-signal is usually
denoted as a vector f ∈ RN , where N is the number of nodes in
V . In our work, three separate graphs are constructed in each block
for R, G, and B components, where each pixel is represented by one
node, and the graph-signal contains the associated intensities.

In each subaperture image, similar to natural images, large local
redundancies exist among pixels that are close in distance. Hence,
the most straightforward approach in exploiting the pair-wise corre-
lation is to connect each pixel with its k nearest neighbors in terms
of Euclidean distance. For complexity reduction in the graph-based
lifting transform [10], where the computation for each node depends
on its connected neighbors, we consider mainly sparse graphs, i.e.,
small k. However, the graph connection based on k-nearest neighbor
with small k can be highly sensitive to the pixel arrangement. For
example, in the cropped subaperture image shown in Fig. 4, R com-
ponents are mostly aligned horizontally. The resulting graph, based
on k-nearest neighbor (k = 4), thus consists of mostly horizontal
links as shown in Fig. 4(a), and is unable to capture local similarity
in regions with vertical features, e.g., vertical edges.

In order to exploit similarity in different orientations, yet still

(a) (b)

Fig. 4: A part of graph constructed for irregularly placed R compo-
nents. In (a), the one using 4 nearest neighbor method is shown. In
(b), each pixel is connected to 2 neighbors in horizontal and vertical
orientations respectively

keep connection sparse, we instead connect each pixel to equal
number of neighbors in horizontal and vertical regions, as shown in
Fig. 4(b). Define the Euclidean distance between nodes vi and vj as
dist(i, j), the weight wi,j on link ei,j is calculated as

wi,j = exp

(
−dist(i, j)2

σ2

)
. (1)

with the assumption that pixels that are closer in distance are more
likely to be similar in pixel intensities.

Once the graphs are constructed, we apply the graph-based lift-
ing transform in each block and on R, G, and B components inde-
pendently. The bipartition and filter design in the lifting transform
are designed based on the method proposed by Martı́nez-Enrı́quez
et al. [19]. The work has provided high efficiency in coding im-
age/video sequences, and can be applicable to signals with irregular
structures. The wavelet coefficients are uniformly quantized and re-
ordered based on the approach in [12]. For entropy coding, we apply
the Amplitude and Group Partitioning (AGP) method proposed by
Said and Pearlman in [20].

5. EXPERIMENTS

5.1. Experimental Setup

For archival purpose, one should assess the quality of reconstructed
lenselet image in the original RGB pattern. However, current cod-
ing schemes in literature using HEVC discard under-exposed pix-
els at the boundary of macro-pixels, so it’s difficult to convert the
reconstructed subaperture images back to a lenselet image. Hence



for evaluation, we consider the reconstructed full color subaperture
images. The full color subaperture image before compression, gen-
erated using the demosaicking and calibration described in [14, 15],
is used as the ground truth. As a baseline, we consider the HEVC
(HM 16.9) encoding of subaperture images in original 4:4:4 RGB
and 4:2:0 YUV formats. The configuration used in HEVC is All-
Intra without deblocking filter and SAO. In our proposed scheme,
the same demosaicking and calibration will be applied on the de-
coded lenselet image in order to generate the reconstructed subaper-
ture images for evaluation.

Each subaperture image is divided into non-overlapped 32× 32
blocks. For graph connection, we connect each pixel to 2 neigh-
bors in horizontal and vertical regions respectively. Images from the
proposed and baseline schemes are compared in RGB format with-
out sub-sampling. For the 4:2:0 format YUV, the subaperture im-
ages are translated back to 4:4:4 RGB format before evaluation. The
up-sampling for U and V components is based on nearest neighbor
interpolation.

The test images we consider in the experiments are acquired
from the EPFL light field database [21], where the raw data are
captured with Lytro Illum camera [22]. Each test image is of size
5368×7728. In the baseline scheme, the raw data will be converted
into 15× 15 full color subaperture images. Each subaperture image
is of size 434× 625. Therefore for each test image, there are totally
91546875 = 15 × 15 × 434 × 625 × (1 + 1

4
+ 1

4
) pixels needed

to be encoded by HEVC with 4:2:0 YUV format. In our scheme, on
the other hand, the compression is applied on the original raw data
without demosaicking, and therefore only 41483904 = 5368×7728
pixels are required, saving more than 55% in data size.

(a)
(b)

(c) (d)
Fig. 5: Average PSNR over R, G, and B components for test images
(a) Friends1 (b) Books, (c) Flowers, and (d) Bikes

5.2. Experimental Results

In Fig. 5, we show the PSNR comparison for images Friends1,
Books, Flowers, and Bikes. The considered QP values range from 4
to 36. For applications like archive and instant storage on cameras,
images are stored in very high quality. Therefore, in the evaluation,
we consider mainly the high bitrate region. It can be seen that for

Methods All-Intra HEVC (4:4:4 RGB) Proposed graph-based coding
Bikes 0.74 4.90

Black Fence 2.74 6.69
Books 2.34 9.61

Color Chart 1 3.86 5.95
Desktop 3.15 5.93
Flowers 0.34 7.09

Friends 1 1.05 5.51
Danger de Mort 1.01 4.83

Stone Pillars Outside 0.70 6.09
Magnets 1 1.48 3.37

Table 1: The average PSNR gain over HEVC 4:2:0 format for high bit rate
(bpp > 1.5) based on Bjontegaard Delta Criterion

higher bit rate (bpp > 2), the proposed coding scheme significantly
outperforms conventional approach using HEVC. This is because as
the bit rate increases, indicating a smaller quantization step, more
high frequency components will be kept in the transform domain af-
ter quantization. Using conventional approach to encode will incur a
large cost to scan all the coefficients, while in the proposed method,
only around half the number of coefficients are encoded. For base-
line method using 4:2:0 YUV format, PSNR will mostly saturated
near 45dB, which is mainly caused by the color conversion. During
the conversion, some details are lost when rounding floating point
values, and resolution is reduced as down-sampling are performed.
In Table 1, the average PSNR gains over the baseline with HEVC
4:2:0 format are shown for 10 EPFL test images considering only
bit rate > 1.5 bpp, where large improvement is achieved using the
proposed graph-based coding.

6. CONCLUSION

In this paper, we propose a coding scheme for light field image com-
pression based on graph-based lifting transform. The scheme is able
to encode the original raw data without introducing redundancies
from demosaicking and calibration. Moreover, by dealing with data
in the original RGB domain, distortion from color conversion and
sub-sampling can be avoided. The coding results at the high bitrate
region using the proposed method outperforms the widely applied
HEVC based approach. For future work, we will consider more sig-
nal characteristics, e.g., edges, in graph connection.
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