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ABSTRACT

Recent advent in graph signal processing (GSP) has led to
the development of new graph-based transforms and wavelets
for image / video coding, where the underlying graph de-
scribes inter-pixel correlations. In this paper, we develop a
new transform called signed graph Fourier transform (SGFT),
where the underlying graph G contains negative edges that de-
scribe anti-correlations between pixel pairs. Specifically, we
first construct a one-state Markov process that models both
inter-pixel correlations and anti-correlations. We then derive
the corresponding precision matrix, and show that the loopy
graph Laplacian matrix Q of a graph G with a negative edge
and two self-loops at its end nodes is approximately equiva-
lent. This proves that the eigenvectors of Q—called SGFT—
approximates the optimal Karhunen-Loève Transform (KLT).
We show the importance of the self-loops in G to ensure Q is
positive semi-definite. We prove that the first eigenvector of
Q is piecewise constant (PWC), and thus can well approxi-
mate a piecewise smooth (PWS) signal like a depth image.
Experimental results show that a block-based coding scheme
based on SGFT outperforms a previous scheme using graph
transforms with only positive edges for several depth images.

Index Terms— Graph signal processing, transform cod-
ing, image compression

1. INTRODUCTION

The advent of graph signal processing (GSP) [1]—the study
of signals that live on irregular data kernels described by
graphs—has led to the development of new graph-based tools
for coding of images and videos [2–9]. Among them are
variants of graph Fourier transforms (GFT) [2–7] for com-
pact signal representation in the transform domain, where an
underlying graph reflects inter-pixel correlations. Because a
graphical model is versatile in describing correlation patterns
in a pixel patch, recent works like [4] have shown signifi-
cant coding gain over state-of-the-art codecs like HEVC for
piecewise smooth (PWS) images like depth maps.

Opposite to the notion of “correlation” or “similarity” is
the notion of “anti-correlation” or “dissimilarity”. If two vari-
ables i and j are anti-correlated, then their respective sample
values xi and xj are very different with a high probability.
We model anti-correlation with a negative edge with weight
wi,j < 0 connecting nodes i and j. The meaning of a nega-

tive edge is very different from no edge, which implies condi-
tional independence between the two variables for a Gaussian
Markov Random Field (GMRF) model. Recent research in
data mining [10], control [11, 12] and social network analy-
sis [13] has shown that explicitly expressing anti-correlation
in a graphical model can lead to enhanced performance in dif-
ferent problem domains.

Inspired by these earlier works [10–13], in this paper we
develop a new transform called signed graph Fourier trans-
form (SGFT), where the underlying graph G contains nega-
tive edges that describe anti-correlations between pixel pairs.
Specifically, we first construct a one-state Markov process
that models both inter-pixel correlations and anti-correlations
in an N -pixel row, and derive the corresponding precision
matrix P. We then design an N -node graph G with a neg-
ative edge and two self-loops at its end nodes, and show that
the corresponding loopy graph Laplacian matrix Q [14]—
the sum of the graph Laplacian matrix and a diagonal matrix
containing self-loop weights—is approximately equivalent to
P. This proves that the eigenvectors of Q—called SGFT—
approximates the optimal Karhunen-Loève Transform (KLT)
in signal decorrelation.

Moreover, we show the importance of the self-loops in G
to guarantee that Q is positive semi-definite, and hence its
eigenvalues are non-negative and can be properly interpreted
as graph frequencies. We prove that the first eigenvector of
Q is piecewise constant (PWC), and thus can well approxi-
mate a PWS signal like a depth image. Experimental results
show that a block-based coding scheme based on SGFT out-
performs a previous proposal [4] using graph transforms with
only positive edges for several depth images.

The outline of the paper is as follows. In Section 2, we
describe a one-state Markov process, and show that the loopy
graph Laplacian Q of a carefully constructed graph is equiv-
alent to the corresponding precision matrix. We describe our
depth map coding algorithm based on SGFT in Section 3. Ex-
perimental results and conclusion are presented in Section 4
and 5, respectively.

2. SIGNED GRAPH FOURIER TRANSFORM

2.1. Markov Process with Anti-Correlation

As done in previous signal decorrelation analysis [4, 6, 15],
we assume a one-state Markov process of length N for 1D



variable vector x. Specifically, we assume first that the first
pixel x1 is a zero-mean random variable z1 with variance σ2

1 .
We then assume that the difference between a new pixel xi
and a previous pixel xi−1 is a zero-mean random variable zi
with variance σ2

i .
The exception is the k-th variable xk, where we assume

that the sum of xk and xk−1 is a zero-mean random variable
zk with variance σ2

k. Assuming that xi ∈ [−R,R], this as-
sumption means xk and xk−1 are anti-correlated; i.e., if xk−1
is a large positive (negative) number, then xk is a large neg-
ative (positive) number with high probability. We summarize
the equations below:

x1 = z1

x2 − x1 = z2

...
xk + xk−1 = zk

...
xN − xN−1 = zN (1)

We can write the above in matrix form:

1 0 0 . . . 0
−1 1 0 . . . 0

...
. . .

. . . 0 1 1 0 . . .
...

. . .
0 . . . 0 −1 1


︸ ︷︷ ︸

M

x = z (2)

or x = M−1z. We see that the mean x̄ of variable x is
E[x] = M−1E[z] = 0.

We now derive the covariance matrix C of x:

C = E[(x− x̄)(x− x̄)>] = E[xx>]

= M−1 E[zz>]︸ ︷︷ ︸
diag({σ2

i )}

(M−1)> (3)

The precision matrix P is the inverse of C and shares the
same eigenvectors:

P = C−1

= M>diag({1/σ2
i })M (4)

which can be expanded to:
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Note that C is always invertible since σ2

i > 0,∀i.

2.2. Optimal Graph Construction

Fig. 1. Line graph construction with one negative edge at node pair
(k − 1, k) and two self-loops at nodes k − 1 and k.

2.2.1. Loopy Graph Laplacian

We define a graph G(V, E) with positive / negative edges and
self-loops as follows. There are N nodes in node set V . Each
node i is connected to a neighboring node j with an edge
E if the (i, j)-th entry in the adjacency matrix A ∈ RN×N
is non-zero, i.e., edge weight Ai,j 6= 0. Because edges are
undirected, A is symmetric. We assume that G contains self-
loops (positive edges to oneself), which means Ai,i > 0 for
some i. We define a diagonal degree matrix D ∈ RN×N as a
function of A: Di,i =

∑
j Ai,j . Given A and D, we define

the graph Laplacian matrix L = D − A, as conventionally
done in the GSP literature [1].

Graph Laplacian L does not reflect weights of the self-
loops; D cancels out the diagonal entries in A. Following
[14], we define a loopy graph Laplacian matrix Q = L +
diag({Ai,i}) that includes contributions from self-loops. A
loopy Laplacian is an example of a generalized graph Lapla-
cian [16], which is generally defined as the sum of a graph
Laplacian matrix L and a diagonal matrix.

Loopy Laplacian Q is a symmetric, real matrix, and thus
admits a set of orthogonal eigenvectors φi with real eigenval-
ues λi. Similarly done in the GSP literature [1], we define
here the signed graph Fourier transform (SGFT) as the set of
eigenvectors Φ for the loopy Laplacian Q for a graph with
negative edges.

2.2.2. Optimal Decorrelation Transform

We now construct a graph with self-loops, so that the resulting
loopy Laplacian approximates the precision matrix P defined
in Section 2.1. We construct an N -node line graph, where the
(i, i− 1)-th edge weight is assigned as follows:

Ai,i−1 =

{
1/σ2

i if i ∈ {1, . . . , k − 1} ∪ {k + 1, . . . , N}
−1/σ2

i if i = k

(5)

In other words, there is a positive edge between every node
pair (i, i−1) with weight 1/σ2

i , except bewteen pair (k, k−1),
where there is a negative edge with weight −1/σ2

k.
Next, we add self-loops to the two nodes k − 1 and k

connected by the lone negative edge:

Ai,i =

{
2/σ2

k if i ∈ {k − 1, k}
0 o.w. (6)



One can now verify that the loopy graph Laplacian Q for this
constructed graph G is the precision matrix P as σ2

1 → ∞.
Variance σ2

1 of the first pixel x1 tends to be large, so in prac-
tice Q ≈ P.

We know that the eigenvectors of the precision matrix P
compose the basis vectors of the Karhunen-Loève Transform
(KLT), which optimally decorrelates an input signal following
a statistical model. Because our loopy Laplacian Q ≈ P, the
SGFT Φ of Q also approximates the KLT. We can thus claim
the following:

Constructed graph G with one negative edge and two
self-loops, where edge weights are assigned according
to (5) and (6), is the optimal graph, whose correspond-
ing SGFT optimally decorrelates the input signal.

2.2.3. Definiteness of Loopy Graph Laplacian

By definition in (4), we see that the precision matrix P is
positive semi-definite (PSD):

x>Px = x>M>diag({1/σ2
i })M x

= ‖diag({1/σi})M x‖22 ≥ 0 (7)

The positive semi-definiteness of P—and hence loopy Lapla-
cian Q as σ2

1 → ∞—is ensured thanks to the self-loops in-
troduced at the two end nodes of the negative edge.

To see the importance of the two self-loops with proper
weights, consider the loopy graph Laplacian Q with self-loop
weight 2/σ2

k − ε, ε > 0. The (k − 1)-th and k-th entries of
rows (k − 1) and k of Q are then:

(
1

σ2
k−1

+
(

1
σ2
k
− ε
))

1
σ2
k

1
σ2
k

((
1
σ2
k
− ε
)
+ 1

σ2
k+1

)


where ε = 0 would imply that each self-loop has weight ex-
actly 2/σ2

k. We show that there exists edge weights 1/σ2
k−1,

−1/σ2
k and 1/σ2

k+1 so that Q is indefinite.
We first define the inertia In(Q) of Q, where In(Q) =

(i+(Q), i−(Q), i0(Q)) is a triple counting the positive, neg-
ative and zero eigenvalues of Q. Suppose we divide nodes in
Q into two sets and partition Q accordingly:

Q =

[
Q1,1 Q1,2

Q>1,2 Q2,2

]
(8)

According to the Haysworth Inertia additivity formula [17],
In(Q) can be computed in parts:

In(Q) = In(Q1,1) + In(Q/Q1,1) (9)

where Q/Q1,1 is the Schur Complement1 (SC) of block Q1,1

of matrix Q. Suppose we choose set 1 to be nodes k − 1 and
k. The determinant of Q1,1 can be written as:

1https://en.wikipedia.org/wiki/Schur complement

|Q1,1| =
1

σ2
k−1

(
1

σ2
k

− ε
)
+

1

σ2
k−1σ

2
k+1

+

(
1

σ2
k

− ε
)2

+(
1

σ2
k

− ε
)

1

σ2
k+1

− 1

σ4
k

(10)

Suppose that σ2
k−1, σ

2
k+1 � σ2

k, then |Q1,1| simplifies to:

|Q1,1| ≈
(

1

σ2
k

− ε
)2

− 1

σ4
k

(11)

which is negative for small ε > 0. This implies that inertia
In(Q1,1) has at least one negative eigenvalue. From (9), it
implies also that Q has at least one negative eigenvalue, and
Q is indefinite.

The important lesson from the above analysis is the fol-
lowing: our constructed loopy Laplacian Q requires properly
weighted self-loops to be PSD, so that its eigenvalues can be
properly interpreted as graph frequencies and its eigenvectors
as graph frequency components.

2.2.4. PWS Signal Approximation

To see more intuitively why basis vectors in SGFT can com-
pactly approximate PWS signals, we show that the first eigen-
vector φ1 of the loopy Laplacian Q corresponding to eigen-
value λ1 = 0 is a piecewise constant (PWC) signal. Specifi-
cally, we define a PWC vector v as follow:

vi =

{
1 if 1 ≤ i < k
−1 if k ≤ i ≤ N (12)

We state the following claim formally.

Lemma 1. v is the first (unnormalized) eigenvector φ1 of
loopy Laplacian Q corresponding to eigenvalue λ1 = 0.

Proof. Examining the entries in Q (precision matrix P in (4)
for σ2

1 = ∞), we see that, with the exception of (k − 1)-
th and k-th rows, each row i satisfies the condition Qi,i =
−
∑
j|j 6=iQi,j . Hence v with the same constant value for

entries i− 1 to i+ 1 of row i (if they exist) will sum to 0. For
the (k − 1)-th and k-th rows, if their respective off-diagonal
entries k and k − 1 have negative sign instead, then again for
each row the sum of off-diagonal entries equals the diagonal
entry. In v, entries k−2 and k−1 have the opposite sign (but
same magnitude) as entries k and k + 1, hence multiplying v
to (k − 1)-th and k-th rows will also result in 0.

This means that the first eigenvector φ1 of Q alone can
well approximate the shape of a PWS signal. This is in con-
trast to the second eigenvector of graph Laplacian L with a
small positive edge weight across node pair (k− 1, k), which
approaches PWC behavior as the small weight tends to 0. See
Fig. 2 for an illustration of the first two eigenvectors of Q for
a 10-node line graph with a negative edge of weight −0.1,
and the first two eigenvectors of L for the same graph with
the negative edge replaced by a positive edge of weight 0.1.



(a) SGFT basis vectors (b) GFT basis vectors

Fig. 2. First two eigenvectors of: a) loopy Laplacian Q for a 10-
node graph with negative edge weight −0.1 between nodes 6 and 7;
b) graph Laplacian L for the same graph with small edge weight 0.1
between nodes 6 and 7. Other edge weights are 1.

3. DEPTH IMAGE CODING

Inspired by the analysis for the 1D case in Section 2, we con-
struct a depth image coding scheme where each N ×N block
is coded using an appropriate graph. As done in [4], we as-
sume first that object contours in the image are detected and
encoded efficiently using arithmetic edge coding (AEC) [18]
as side information (SI). For a given block, if there are no con-
tours that cross it, then the block is sufficiently smooth and is
coded using DCT. If there is a contour that crosses the block,
then we perform SGFT transform coding as follows.

We first draw a 4-connected graph G for a N ×N block;
i.e., each pixel is represented by a node and is connected to
its four horizontal and vertical adjacent pixels. For each con-
nected node pair that do not cross a detected contour, we
assign a positive edge weight 1. For each connected node
pair (i, j) that cross a contour, we assign a negative weight
−w < 0, where w > 0, and add a self-loop of weight 2w to
each end node. We tune w per image and the value is encoded
separately. Because the graph construction depends only on
the coded contours, there is no additional overhead to code the
graph explicitly. Having constructed graph G, we compute the
loopy Laplacian Q and its eigenvectors Φ as the SGFT ma-
trix for transform coding. SGFT coefficients are quantized
and entropy coded as done in [4].

4. EXPERIMENTS

To evaluate the coding performance of our proposed SGFT for
PWS depth images, we use two 448×368 depth images from
the Middlebury dataset2: Teddy and Cones. We compare
for the two images the rate-PSNR performance of our pro-
posed SGFT against DCT and weighted GFT (WGFT) pro-
posed in [4], which uses a pre-trained non-negative weight
to represent the weak correlation between two spatially adja-
cent pixels that cross a detected image contour. For SGFT, we
search for the optimal negative edge weight per image, which
is transmitted as SI. Following the coding scheme proposed
in [4], as explained in Section 3, we only perform SGFT /

2http://vision.middlebury.edu/stereo/

(a) teddy (b) cones
Fig. 3. PSNR vs. Rate using SGFT, WGFT, and DCT for two depth
images: (a) Teddy, and (b) Cones.

WGFT on edge blocks which are detected and coded using
AEC [18]. The block size of SGFT and WGFT is set to 4×4,
and that of DCT is 8× 8. We use the single-resolution imple-
mentation of WGFT in [4]. Edge-aware intra-prediction [19]
is performed per block prior to transform coding of the depth
block; thus the prediction residual block is much closer to an
AC signal than the original block, and our statistical model
discussed in Section 2.1 is a reasonable fit. The set of quan-
tization parameters (QP) used for SGFT and WGFT is QP =
[16 24 32 40 48], whereas QP = [40 42 44 46 48] for DCT.

Fig. 3 compares the Rate-PSNR performances of SGFT,
WGFT, and DCT for Teddy and Cones for a typical PSNR
range. As shown in Fig. 3, both SGFT and WGFT signifi-
cantly outperform DCT by up to 5dB for Teddy and 6dB for
Cones in PSNR. Our proposed SGFT achieves further 0.3
to 0.5dB coding gain in PSNR compared to WGFT at some
bitrates. Though the additional coding gain from SGFT is
not very large, we have empirically demonstrated, for the first
time in the literature, that a statistical model specifying anti-
correlation—and its associated optimal decorrelation graph
transform in SGFT—can be effectively used in an image cod-
ing scenario.

5. CONCLUSION

We propose a new graph-based transform for depth image
coding called signed graph Fourier Transform (SGFT), based
on a graph that captures inter-pixel correlations and anti-
correlations. Our constructed graph is optimal in the sense
that its loopy graph Laplacian Q approximates the precision
matrix of a one-state Markov model, and hence the result-
ing SGFT approximates the optimal KLT. We show that the
self-loops in the graph are important to ensure Q is positive
semi-definite, and prove that the first eigenvector of Q is
piecewise constant. Experimental results show that a block-
based coding scheme using SGFT outperforms a previous
graph transform scheme using only positive graph edges.

Though we focus on depth image coding in this paper,
we believe that the simple graph construction with negative
edges and corresponding self-loops and unique characteristics
of SGFT basis can be useful in a broad range of image pro-
cessing tasks, such as image restoration and enhancement.
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