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ABSTRACT

Compression of arbitrary 3D geometry like a human figure in 3D
space is challenging. Existing 3D representations like point cloud
require encoding of input-specified 3D coordinates, resulting in a
large overhead. In this paper, assuming that there exists an under-
lying smooth 2D manifold in 3D space that describes the geometric
shape of a target object, we develop a new progressive 3D geom-
etry representation that signal-adaptively identifies new samples on
the manifold surface and encodes them efficiently as graph-signals.
Specifically, at each iteration, using previous encoded samples in
3D space, the encoder and decoder first synchronously interpolate
a continuous sampling kernel (a 3D mesh)—an approximation of
the target surface. We next distribute new sample locations on the
continuous kernel based on locally computed kernel curvatures, and
compute the signed distances between sample locations and the tar-
get surface as sample values. Finally, we connect new discrete sam-
ples into a graph for graph-based transform coding of the sample
values, which are transmitted to the decoder to refine 3D reconstruc-
tion. Experimental results show that our coding scheme outperforms
an existing mesh-bsed approach significantly at the low-bitrate re-
gion for two different datasets.

Index Terms— 3D geometry compression, graph signal pro-
cessing, progressive coding

1. INTRODUCTION

The advent of depth sensing technologies like Microsoft Kinect has
enabled real-time capturing of 3D geometry of arbitrarily shaped ob-
jects like human figures in a 3D scene1. Efficient compression and
transmission of captured 3D geometry to a receiver for viewpoint
synthesis remains a technical challenge. Existing representations
like point cloud require explicit encoding of a pre-specified set of
3D coordinates, which is expensive.

In this paper, assuming that there exists an underlying smooth
2D manifold in 3D space that describes the geometric surface of a
target object—a fair assumption given that immersive visual com-
munication typically involves animated subjects like humans—we
propose a new progressive 3D geometry representation that itera-
tively identifies new samples on the manifold and encodes them ef-
ficiently as a graph-signal [1–3], in order to incrementally improve
3D reconstruction at the decoder. Specifically, at each iteration, we
first construct a continuous sampling kernel by linearly interpolating
previously coded samples; the constructed kernel (3D mesh) is an
approximation of the target 3D surface. To refine the reconstruction,
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Fig. 1. Illustration of progressive graph-signal sampling & encoding.

we distribute new sample locations on the continuous kernel based
on locally computed curvatures—regions with large gradients are al-
located samples. Because kernel curvatures are computed from pre-
viously coded samples, sample locations can be deduced at the de-
coder without explicit signaling. We then compute signed distances
between sample locations on the kernel and the target 3D surface as
the signal to be encoded.

As an illustration, in Fig. 1 samples of the i-th iteration (black
circles) form a continuous kernel (connected planes denoted by the
red lines) that is an approximation of the target surface S. New
sample locations called knots (squares) are introduced on the kernel
surface, and the signed distances between knots and S are recorded
as sample values. Sample values are encoded and transmitted to the
decoder to reconstruct samples for the (i+ 1)-th iteration (green cir-
cles) that are on S. Unlike previous representations that require cod-
ing of pre-specified 3D coordinates (three numbers per sample), our
coding system chooses new sample locations freely on the continu-
ous kernel and encodes only samples’ signed distances (one number
per sample), which is an easier task.

In our implementation, the allocated samples are connected us-
ing edges (with weights that reflect pairwise similarities) into a graph
for efficient graph-signal compression using graph Fourier transform
(GFT) [1]. Experimental results show that our progressive encoding
scheme outperforms existing representations significantly at low bi-
trate regions for two different datasets.

The outline of the paper is as follows. We first discuss related
work in Section 2. We overview our coding system in Section 3. In
Section 4, we first study convergence of a simpler progressive sam-
pling and coding scheme in 2D space, which motivates our kernel
construction and sampling procecdures in 3D space. We describe
our graph-signal coding strategy using GFT in Section 5. Finally,
experimental results and conclusion are presented in Section 6 and
7, respectively.



2. RELATED WORK

There are numerous existing representations of 3D geometry cap-
tured from static natural scenes. In the image processing community,
multiple viewpoint images captured by an array of closely spaced
cameras were used [4]. However, it is not straightforward to entirely
remove redundancies across neighboring views using standard im-
age / video coding tools like HEVC [5]. Alternatively, point cloud—
unstructured captured 3D points of an object—has fast become pop-
ular. Existing point cloud compression techniques attempt to log-
ically structure the point set before compression, using kd-tree [6],
octree [7, 8], and 2D images via projection from 3D to 2D [9] (called
“geometry image” in [10]). As previously discussed, no matter what
support structure a coding scheme is using, the 3D coordinate of
each designated 3D point still requires explicit coding, which typi-
cally results in a large overhead.

There exists a vast literature on 3D mesh compression with novel
techniques like mesh wavelet transforms (MWTs) [11, 12]; see sur-
veys like [13] for details. There are also progressive mesh compres-
sion schemes [14] where points in the original mesh are divided into
refinement batches and transmitted in sequence. Nonetheless, the
exact 3D coordinate of each point still requires coding, which is ex-
pensive. In contrast, our scheme freely picks sampling locations on
the continuous smooth manifold and encodes only signed distances,
resulting in coding gain.

Recent advances in graph signal processing (GSP) [15] have
led to the development of new coding tools such as graph Fourier
transforms (GFT) [1, 2] and wavelets [3]. These tools have been
used also for 3D data: compression of human body sequence [16],
and compression of dynamic 3D point cloud [17, 18]. Unlike these
works, our scheme combines manifold sampling and graph-signal
compression into one unified framework for 3D representation.

3. SYSTEM OVERVIEW

We first overview our 3D geometry coding system. We assume that
the input to our system is a continuous 3D surface specified by a 3D
mesh—connected triangles in 3D space, where each triangle cor-
ner is defined by a triple denoting its Cartesian coordinate. A point
cloud (collection of 3D points in space) captured by a depth sensing
camera like MS Kinect can be converted to a 3D mesh easily using
known tools such as MeshLab2.

Given an input 3D mesh, we perform our proposed progressive
graph-signal sampling and coding stretegy as follows. First, a small
initial subset of the original set of 3D coordinates are selected and
coded explicitly for transmission to the decoder. Because the size of
this dataset is kept small, the coding cost is not expensive. We then
draw triangles using the received 3D coordinates to build a contin-
uous kernel. Given a continuous kernel, new discrete sample loca-
tions (called knots in the sequel) on the kernel are identified based
on locally computed curvatures. For each knot, a normal vector is
computed, and the distance between the knot and the target surface
along the normal vector is recorded as a sample value. We connect
the knots with edges, where an edge weight wi,j , 0 < wi,j ≤ 1, is
computed based on geometric locations of knots i and j. Because
knot locations are known at both encoder and decoder, no extra cod-
ing overhead is required to explicitly specify the graph. The collec-
tion of connected sample values now compose a graph-signal, which
we can encode using any graph-based transform or wavelet tools in
the GSP literature [1–3].

2http://www.meshlab.net/
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Fig. 2. (a) Sampling kernel at the i-th iteration; (b) Sampling kernel
at the (i+ 1)-th iteration.

The crux in our framework resides in two crucial steps: i) how
to construct a continuous kernel from existing samples, and ii) how
to select new samples from a constructed continuous kernel. We
describe these two steps next.

4. SAMPLING & KERNEL CONSTRUCTION

We first investigate the convergence of our progressive sampling ap-
proach by studying the simpler 2D case. Based on the insights we
have developed, we describe our method to address the two afore-
mentioned key issues.

4.1. Progressive 2D Sampling

We consider a progressive sampling process for a target planar poly-
gon curve. Let the polygon curve be defined by its M vertices
P = {P1, . . . ,PM}, where each vertex Pi = (xi, yi) has a 2D
Cartesian coordinate. We can write the curve P in parametric form:
P(u), u ∈ [0, 1], is a point along the curve P, where P(0) = P1

and P(1) = PM .
Our goal is to show that a simple progressive sampling strategy

to select samples sj on curve P will result in a continuous sam-
pling kernel Q (piecewise linear interpolation of samples si) that
converges to P. The strategy is as follows: at each iteration i, we
connect each pair of neighboring samples sj and sj+1 with a straight
line, and choose the midpoint of the line as the new sample location
(called knot) h = (si + sj)/2. At knot h, we identity a normal vec-
tor n based on the orientation of line segment from sj to sj+1. We
compute the signed distance between h and curve P along direc-
tion n—sample value x—which is encoded and transmitted to the
decoder to reconstruct sample s′ on P. At iteration i + 1, this new
sample s′ is inserted between previous samples sj and sj+1, and the
procedure repeats. An example is shown in Fig. 2, where the target
curve is blue and the approximating continuous kernels are red. We
see that new samples are inserted in the (i + 1)-th iteration relative
to the i-th iteration, resulting in a kernel that is closer to the target
curve.

We now sketch a proof to show that using this sampling strategy,
continuous kernel Q will converge to the target P. We first see that at
each iteration i, insertion of new sample s′ between previous sample
pairs sj and sj+1 means that the curve distance (Euclidean distance
between two points on curve P along P) between neighboring sam-
ples must strictly decrease. This is true because s′ always divides
the curve segment from sj to sj+1 into two shorter segments.

Given that the curve distance between neighboring samples
strictly decreases, there are only two possible cases for two neigh-
boring samples when the number of iterations is sufficiently large: i)



Fig. 3. Barycentric coordinate system, with n = 3.

the two neighboring samples are on the same line segment in P, ii)
the two neighboring samples are on two neighboring line segments
of P. In the first case, the kernel Q has already converged to P.
In the second case, a straight line connecting the two neighboring
samples and the portion of curve P denoted by the two samples
form a local triangle. One can then easily show that the area of that
triangle will monotonously decrease to zero as more samples are
inserted in-between.

4.2. 3D Kernel Construction

Having developed insights into the sampling & reconstruction prob-
lem in 2D, we now turn to the more challenging problem in 3D.
While in 2D we interpolate every pair of neighboring samples sj
and sj+1 with a straight line to construct a continuous 1D kernel (1D
curve in 2D space), in 3D we identify every neighborhood of three
samples and interpolate with a linear plane to construct a continuous
2D kernel (2D manifold in 3D space).

To ease discussion, we use a Barycentric coordinate system3,
in which the coordinate of a point of a simplex—in this paper a
triangle—is computed as the center of mass. For example, see Fig. 3
where the coordinates of the corners of the large triangle are A :
(2n, 0, 0), B : (0, 2n, 0), C : (0, 0, 2n), where n = 3. If a point is
inside this triangle, then it has positive coordinates. If all coordinates
of a point are integers, we call this point a grid point. We can easily
compute the coordinate of a grid point, which can be viewed as the
weighted sum of mass of the corners. We can then index it by that
coordinate.

Specifically, at each iteration i, we first assume that samples
from the previous iteration collectively form a triangular mesh (not
necessarily watertight). We traverse each edge e in the mesh with
endpoints pj and pk. We compute the midpoint m = (pj + pk)/2,
which is a potential knot to collect a new sample for this iteration. If
edge e is in the mesh interior, then it is incident on two triangles with
respective surface normals n1 and n2. We assign normal direction
to knot m as n̄ = (n1 + n2)/2. As an example, in Fig. 3 the edge
e is incident to triangles Top face and Bottom face with respective
normals n1 and n2. For e, normal vector n̄ is computed.

If a sample at knot m is collected according to a local criteria (to
be discussed in Section 4.3), then the signed distance between knot
m and the target surface along direction n̄ is recorded as a sample
value. The recorded sample values are coded as a graph-signal using
GFT that is discussed in Section 5.

3https://en.wikipedia.org/wiki/Barycentric coordinate system
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Fig. 4. (a) Sampling kernel in the ith stage; (b) Sampling kernel in
the (i+ 1)th stage

Because we do not assume a watertight mesh, there may be
boundary edges in the mesh with only one incident triangle (see
Fig. 3), and we cannot compute a normal direction n̄ for these edges
in the same manner. To simplify this problem, we assume that the
boundary of the original mesh is described by a planar curve that is
coded separately, using which it would be easy to compute a normal
for these boundary edges.

We construct a triangular mesh (and hence a continuous kernel)
using the coded samples in each iteration as follows. As shown in
Fig. 3, new samples (blue points (4, 0, 4), (0, 4, 4) and (4, 4, 0)) are
midpoints of edges from the previous iteration (edges AB, BC and
CA). If all samples on the midpoints are collected, we connect them
to a triangle. If any sample is missing due to selection criteria de-
scribed in Section 4.3, then we use the knot (edge midpoint) as a
replacement to connect a triangle nonetheless. The idea is that a
sample is not selected because the local kernel curvature is small,
and hence the difference between the knot location and the actual
manifold sample at the knot should be small. As an example, in
Fig. 4 we see improvement of 3D surface reconstruction from itera-
tion i to iteration i+ 1.

4.3. 3D Samples Selection

If we collect samples for every identified knot as described in Sec-
tion 4.2, then the number of samples will increase exponentially, re-
sulting in a large coding cost. Instead, we determine if an identified
knot should collect a new sample in a signal-adaptive manner based
on a local curvature criteria. Specifically, we consider a triple of
midpoints on three edges of a triangle at the same time. For exam-
ple, see the three block dots in Fig. 3. For a given edge ei of the
triangle, we compute the normal difference di between the surface
normals n1 and n2 of the two triangles incident on ei. Finally, we
compute the sum of the absolute normal differences for the three
edges:

∑
|di|. This sum reflects the local kernel smoothness at this

triangle. If
∑
|di| is larger than a threshold τ , then we allocate a

sample for the midpoint of each edge in this triangle. Otherwise,
it means that the local kernel at this triangle is sufficiently smooth,
hence no more sampling is needed.

5. GRAPH-BASED SAMPLE ENCODING

5.1. Graph Construction

Given a set of selected new sample values in vector form x, we first
construct a graph G to connect them as nodes, so that the sample
values together can be interpreted as a graph-signal. Specifically, we



first connect each sample knot to its k nearest neighboring knots (k-
nn) in Euclidean distance. That means each node (knot) is connected
to at least k other nodes. For each edge connecting nodes i and j,
we compute its edge weight wi,j using a Gaussian kernel:

wi,j = exp

(
−‖li − lj‖22

σ2

)
(1)

where li is the 3D coordinate of sample knot i and σ is a pre-chosen
parameter. The idea is that edge weight wi,j should reflect the simi-
larity between signal sample values xi and xj on the two connected
nodes. Gaussian kernel is commonly used in the GSP literature to
compute edge weights [1–3].

5.2. Graph Fourier Transform

Having define edges weights wi,j , we can define an adjacency ma-
trix A where Ai,j = wi,j , and a diagonal degree matrix D where
Di,i =

∑
j Ai,j . The combinatorial graph Laplacian L = D −A

can then be defined. Performing eigen-decomposition on L leads to
a set of eigenvalues λi (interpreted as graph frequencies) and eigen-
vectors φi (together compose a graph Fourier transform (GFT))
[15]. We can then compute GFT coefficients a = Φx, perform
quantization (using a chosen quantization parameter) and entropy
encoding for transmission of the sample values to the decoder.

At the decoder, the graph G can be first constructed based on
knot locations, which are known from previous samples. From G,
Laplacian L and GFT Φ can be computed, so that inverse GFT can
be performed from quantized coefficients â: x̂ = Φ−1â. The re-
covered sample values x̂ can be placed at their respective knots to
reconstruct this iteration of samples on the target surface.

For complexity reason, instead of performing eigen-decomposition
for Φ and computing a = Φx, one can choose a lifting implemen-
tation of GFT [19], or employ a graph wavelet instead [3], where the
complexity in both cases is O(n logn).

6. EXPERIMENTS

6.1. Experimental Setup

We test our scheme on two different datasets. The MIT dataset4

provides mesh in .obj format, which include the 3D coordinate of
each vertex and a list of triangle faces defined by vertices. A second
dataset from [20] contains 15 different facial expressions, each of
which has roughly 2000 vertices. We include both datasets for di-
versity, since the second dataset has density that is much higher than
that of MIT’s.

We execute our coding scheme (graph-signal sampling or GSS)
as follows. We fix the number of coding layers (iterations) to 5. For
each layer, we tune the threshold τ for signal-adaptive sampling for
optimal performance. When coding GFT coefficients, we use differ-
ent quantization parameters (QP) to induce different rate-distortion
(RD) tradeoffs. We construct the convex hull of all data points gener-
ated using different combinations of parameters to discover the best
performance points of our coding scheme.

For competitor, we choose a mesh coding scheme called Out-of-
Core (OoC) [21]—a popular lossless mesh codec—which encodes
the original mesh directly. OoC does not perform progressive cod-
ing. We execute OoC with different input bit-depths to induce dif-
ferent RD tradeoffs. In contrast, our progressive scheme GSS does
not encode 3D coordinates directly, but places knots on continuous

4http://people.csail.mit.edu/drdaniel/mesh animation/
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Fig. 5. (a) R-D curve of dateset1; (b) R-D curve of dataset2.

(a) (b)

Fig. 6. (a) Decoded meshes for dataset1; (b) Decoded mesh for
dataset2. Left is GSS and right is OoC, and both encoded at roughly
the same rate.

kernels from which signed distances to the mesh are computed and
encoded. The distortion metric we employ is the method proposed
in [22], which is commonly used in the mesh compression literature.

6.2. Experimental Results

The RD-curves for the two datasets are shown in Fig. 5. We ob-
serve that our proposed GSS outperforms OoC noticeably at the low-
bitrate region for both datasets. At the high-bitrate region, because
our scheme does not reproduce the exact position of each vertex, it
is much harder for our proposal to reduce distortion to close to zero.
However, as we can observe in Fig. 6, encoded 3D surfaces by GSS
are actually very reasonable and visually pleasing; compared to 3D
surfaces encoded by OoC at roughly the same bitrates, our surfaces
are more natural and smooth. Thus, one future work is to identify a
metric for evaluation that is more suitable for surface-wise compari-
son rather than point-wise comparison.

7. CONCLUSION

Previous 3D geometry representations like point cloud require ex-
plicit coding of a pre-defined discrete set of 3D coordinates, which
is costly. In this paper, assuming that there exists a smooth under-
lying 2D manifold that describes the shape of a target object, we
propose a new progressive representation, where, at each iteration,
new samples on the continuous manifold are introduced in a signal-
adaptive manner to refine previous 3D reconstruction. Each layer of
samples are connected using edges (with weights that reflect inter-
sample similarities) for efficient graph-based transform coding. Ex-
perimental results show that our representation outperforms previous
coding schemes significantly at the low bitrate region.
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