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ABSTRACT

Hyperspectral imaging captures the spectral responses of dif-
ferent wavelengths per pixel for an entire image. Because
the number of spectral bands is large, efficient compression
of hyperspectral images is important. Leveraging on recent
advances in graph signal processing (GSP), in this paper we
propose to encode a hyperspectral image in groups of w spec-
tral bands using graph wavelets, exploiting correlations along
both the spatial and the spectral dimensions. Specifically,
along the spatial dimension, we estimate the inter-pixel cor-
relations for all adjacent pixel pairs from the last image in the
previous coded band group. Along the spectral dimension, we
first divide an image into different spatial regions with similar
spectral responses, and encode the spectral signature (correla-
tions along the spectrum) for each region as side information
(SI). The spatial / spectral correlations are used to compute
edge weights to construct a graph for signal-adaptive graph
wavelet based compression. Experimental results suggest that
our proposal can outperform existing schemes noticeably at
comparable complexity.

Index Terms— hyperspectral imaging, image compres-
sion, graph signal processing

1. INTRODUCTION

A hyperspectral image contains spectral responses of differ-
ent wavelengths for each pixel in an image, resulting in a large
volumetric dataset. Due to its large size, compression of hy-
perspectral images is important for storage and transmission.
Previous transforms proposed for lossy hyperspectral image
coding [1-7] can be broadly divided into two categories. In
the first category are fixed transforms such as the Discrete
Wavelet Transform (DWT), which do not adapt transform ba-
sis to the nature of the input signal, but can be efficiently im-
plemented in low complexity [1,2]. In the second category
are signal-adaptive transforms such as the Karhunen-Logve
Transform (KLT), which adjust its transform basis according
to the input signal towards sparse signal representation, but
typically suffer from high computation complexity [3, 4].
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In this paper, we optimize the usage of a critically sampled
biorthogonal graph wavelet design called graphBior [8] for
hyperspectral image compression. Unlike fixed transforms,
graphBior is signal-adaptive and leads to better coding perfor-
mance in general, yet unlike KLT, complexity of graphBior
is on par with that of DWT. To the best of our knowledge,
we are the first to employ signal-adaptive graph wavelets for
hyperspectral image compression. The key to successful de-
ployment of graphBior is the proper design of an underlying
graph with edge weights reflecting inter-node correlations.

Along the spatial dimension, we partition spectral bands
into groups of w consecutive bands for separate coding (for
random access purpose), and estimate inter-pixel correlations
for all adjacent pixel pairs from the last image in the previous
coded band group. Inter-pixel correlations are then mapped
to corresponding edge weights in the spatial sub-graph.

Along the spectral dimension, we divide an image into
different spatial regions with similar spectral responses, and
encode the spectral signature (correlations along the spec-
trum) for each region as side information (SI). The encoded
spectral signatures are mapped to edge weights in the spec-
tral sub-graph. In a low-complexity mode, we use graphBior
to perform filtering in the spatial and spectral sub-graphs in
sequence. In a high-complexity mode, we use graphBior to
perform filtering in the spatial sub-graph and use KLT along
the spectral dimension. Experimental results show that using
signal graph wavelets can lead to coding gain for both low-
and high-complexity modes. Note that we can apply other
filter designs besides graphBior with the same approach for
graph construction as proposed.

The outline of the paper is as follows. We first discuss
related works in Section 2. We provide an overview of graph
wavelets in Section 3 and describe our coding strategy in Sec-
tion 4. Finally, experiments and conclusion are presented in
Section 5 and 6, respectively.

2. RELATED WORK

Given that correlation among spectral components is more
significant than correlation among spatial samples, lossy en-
coding of hyperspectral images benefits from a separable ap-
proach, where a 1D transform is first applied along the spec-
tral dimension and then a 2D transform is applied in the spa-



tial dimension. Coding techniques providing the highest rate-
distortion performance apply a KLT in the spectral dimension
and are then coupled with JPEG 2000 Part 1[9], as in [3,4].
Recent contributions aim at providing equivalent coding per-
formance to KLT at a lower computational cost, either by ap-
plying a spatially subsampled KLT [3], a low complexity KLT
[10], a spectrally clustered KLT [6, 7], or by specially crafted
transforms [11]. Here we propose an innovative, efficient and
computationally feasible approach based on new coding tools
in graph signal processing.

3. OVERVIEW OF GRAPH WAVELETS

Consider an undirected, weighted graph G = (V,€) com-
posed of a vertex set V of size N and an edge set £ specified
by (i, j,w; ;), where i,j € V, and w; ; € RT is the edge
weight between vertices ¢ and j. Thus a weighted graph can
be characterized by its adjacency matrix W with W (i, j) =
w; ;. A graph-signal is a mapping that assigns a value to each
vertex, denoted as x = [x1,...,zy]T

A bipartite graph is a graph whose vertices can be di-
vided into two disjoint sets such that no two vertices within
the same set are adjacent. To compactly represent a graph-
signal in the frequency domain, critically sampled biorthog-
onal wavelet filterbanks (graphBior) [8] have been proposed
to decompose signals on bipartite graphs into low-pass and
high-pass components. GraphBior filterbanks lead to com-
pact signal representation in the wavelet domain, resulting in
good compression performance. However, graph-signals typ-
ically live on general graphs that are not bipartite, so the orig-
inal non-bipartite graph must be decomposed into a sequence
of bipartite subgraphs, which can be accomplished with meth-
ods such as [12, 13]. Then the filterbanks can be applied iter-
atively in each subgraph, similar to separable filter for images
where filters in x- and y-dimension are applied separately.

4. GRAPH-BASED CODING FOR HYPERSPECTRAL
IMAGING

We now discuss how we construct a sparse graph for a hy-
perspectral image, so that graphBior can exploit its spatial
and spectral correlation for efficient compression. Let x be
a given hyperspectral image with K spectral bands, each of
size M. x;} denotes the intensity value of the ¢-th pixel in
the k-th band, where ¢ € {1,..., M} and k € {1,...,K}.
The graph for signal x is denoted by Gx(V, £), where each
vertex represents one pixel, and links between vertices can be
spatial (S) or spectral (F) sothat SUF = &,SNF = ).

4.1. Spatial Domain Connection

In hyperspectral images, spatial correlations are similar
across spectral bands. Hence once a spatial graph struc-
ture is learned in one band, it can be reused in the subsequent
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Fig. 1. Graph representation of hyperspectral image.

bands. To facilitate random access (component scalability),
we first divide the K spectral bands into groups of w consec-
utive bands. Then, for bands in the g-th group, the weights of
spatial edges are learned from the last image in the previously
coded (g-1)-th group. For example, as shown in Fig. 1, in the
first band of the g-th group (denoted as the ¢-th band), each
vertex is connected to its eight spatial neighbors of the same
band, since pixel values are typically correlated locally.

If there exists a sharp change in pixel value, the inter-pixel
correlation is weak. The weight of an edge is thus computed
based on intensity difference using a Gaussian kernel. For
instance, the edge weight w; (i, j) between vertex v; ; and its
neighbor v; ; is computed as:

- - 2
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where t — 1 is the index of the last band in the (g-1)-th group,
%4,¢—1, -1 are the decoded values, and ¢ is a parameter to
adjust weight sensitivity to intensity difference. The function
in (1) is widely used to compute graph weights for various
applications [14, 15]. Then the following bands in the g-th

group will reuse the same graph in the ¢-th band.

4.1.1. Low Complexity Implementation

To reduce computation complexity, instead of using a Gaus-
sian kernel to compute each edge weight using (1), we use the
inter-pixel difference value to select one discrete value from
a pre-determined set via thresholding. Specifically, we first
design a chosen number of non-uniform quantization bins for
the Gaussian function in (1) using the Lloyd’s algorithm [16].
We can then determine the correct bin a given inter-pixel dif-
ference belongs to via a binary decision tree of thresholds (bin
boundaries). Given the correct bin, the edge weight for the
inter-pixel difference is the bin centroid. The bin boundaries
are optimized once for all images, and as part of the codec,
there is no side information overhead per image.

4.1.2. Executing graphBior Spatially

Given the constructed spatial-domain edge connections, we
can apply graphBior along the spatial dimension. However,
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Fig. 2. (a) A patch of band 50 in Yellowstone uncalibrated
scene( with water pixel in blue and farmland pixel in green,
and contour of water region marked in red; (b) Spectral sig-
natures for water and farmland pixel.

the spatial graph is four-colorable, and hence the graph must
first be decomposed into two bipartite subgraphs (indexed by
1) for two successive executions of graphBior. For simplicity,
we allocate horizontal and vertical edges into one bipartite
subgraph (I = 1), and diagonal and anti-diagonal edges into
the other subgraph (I = 2). Then with 2-dimensional graph-
Bior, the signal is decomposed into four channels, i.e., {LL,
LH, HL, HH} channels, where sparsity is achieved in high-
pass channels.

To enable multi-level decomposition, the wavelet co-
efficients are downsampled to LL channel after one level
decomposition, and for each bipartite subgraph, the adja-
cency matrix Wf; for vertices in LL of ¢-th band is given
by the square of the current adjacency matrix Wf,z’ ie.,
Wf; = (Wfl)z(LL, LL). Horizontal/Vertical edges are

removed from Wf/2 so that the resulting downsampled sub-
graph only contains diagonal edges and remains bipartite.

4.2, Spectral Domain Connection

It has been observed that spectral domain correlations are
distinctly different for different materials [17]. For exam-
ple, Fig. 2 shows the spectral signatures (intensities along the
spectral dimension) for two pixels in water and farmland re-
spectively. The Pearson correlation coefficient [18] between
the two signatures is as low as -0.07, which confirms their
differences. Therefore, it is reasonable to have different edge
structures for regions with different materials.

In practice, for our specific class of test images, we only
segment out water regions (if they exist), since water has
a very unique spectral signature, and is easy to detect via
thresholding due to its low frequency response compared
with other materials. Specifically, for each image, we exam-
ine band 50, and if the pixel intensity is less than a threshold
(pre-set to 2200), it is marked as a white pixel; otherwise it is
marked as a black pixel. Then we apply Canny edge detec-
tion [19] to find the contour of the water region, as shown in
Fig. 2(a), then encode it using arithmetic edge coding (AEC)
[20], which has been shown to be efficient.

After segmentation, we learn the edge weights for adja-
cent bands for different regions based on their spectral signa-
tures. Specifically, we calculate the average spectral vectors
{Bp}p=1,2 for pixels in (p = 1) or outside (p = 2) the wa-
ter region. Then the edge weights are computed based on the
inter-pixel differences. For example, as shown in Fig. 1, a
pixel in the k-th band is linked to pixels of the same spatial
location in adjacent bands, resulting in a line graph. The edge
weight, for example the one between v; , and v; ;1 in region
p is computed as:

wg:(ka k+1)=-exp < (Bplk+1) — ﬂp(k))Q) o
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where o is the variance of {|3,(k + 1) — Bo(k) |}

4.2.1. Low Complexity Implementation

Similar to the quantization procedure in Sec. 4.1, we replace
the Gaussian kernel in (2) with a set of discrete values to re-
duce computational cost. The resulting spectral weights are
encoded with arithmetic coding [21] to be sent as side in-
formation. In addition, to enable multi-level decomposition,
after one level decomposition, the wavelet coefficients are
downsampled to L channel and the adjacency matrix sz '
for vertices in L within region p is given by the square of the
current adjacency matrix W7, i.e., Wf = (W7)*(L, L).

4.3. Coding Scheme for Low/High Complexity Mode

Under low complexity mode, we construct a graph and apply
graph wavelet filtering in both spectral and spatial domains,
which has approximately the same complexity as DWT.
Given the hyperspectral image x divided into band groups of
size w each, and quantization parameter (QP), the implemen-
tation takes the following steps:

1. Detect water region, and encode its contour with AEC;

2. Find the spectral signatures 3,, p = 1,2, and encode
the spectral weights with arithmetic coding;

3. For the first band group, apply multi-level spectral
graphBior and spatial DWT, and encode the wavelet
coefficients with AGP [22] for given QP.

4. For the following groups, first decode the last image in
previously encoded group and learn the spatial graph;
then apply multi-level graphBior in both spectral and
spatial domain, and encode the wavelet coefficients
with AGP for given QP.

Under high complexity mode, we replace spectral graph-
Bior with KLT, which provides better spectral decorrelation:

1. For the first band group, apply multi-level spectral KLT
and spatial DWT, and encode the wavelet coefficients
with AGP for given QP;



2. For the following groups, first decode the last image in
previous group and learn the spatial graph; then apply
multi-level spectral KLT and spatial graphBior, and en-
code the wavelet coefficients with AGP for given QP.

5. EXPERIMENTAL RESULTS

In this section, we demonstrate the lossy coding performance
of the proposed scheme in low-/high-complexity mode. We
employ the datasets of AVIRIS Yellowstone uncalibrated
scene 0, 3, 10, 11 and 18 [23], using 224 bands of size
512x680. Each dataset is divided into 7 groups given w = 32.

5.1. Experiment Settings

In low-complexity mode, we apply 5-level graphBior de-
composition in both spatial and spectral domain (denoted
as graphBior in demonstration). To demonstrate the effect
of spectral graphBior, we additionally generate results with
spectral edges all set to 1 (denoted as graphBior w/o spectral
edge). We compare to JPEG2000 multi-component com-
pression [24], which has been exploited by several authors
for hyperspectral image compression [25]. Irreversible 9/7
Integer Wavelet Transform (IWT) is applied with 5-level in
spatial domain and 5-level in spectral domain, implemented
with Kakadu software [26].

In high-complexity mode, we apply spectral KLT and
5-level spatial graphBior (KLT+graphBior). We compare to
spectral KLT coupled with spatial DWT CDF 9/7 (KLT+DWT)
which is reported to provide the best results in existing works
[25]. The irreversible Karhunen Loéve Transform is com-
puted with the Spectral Transform software [27] and applied
along the spectral dimension, and 5 levels of DWT are ap-
plied in the spatial dimension, then the wavelet coefficients
are encoded with AGP.

5.2. Rate-Distortion Performance

The rate-distortion curves are shown in Fig.3. In low-
complexity mode, it is shown that our proposed graphBior-
based coding scheme outperforms JPEG2000 significantly,
and graphBior with spectral edge is better than graphBior
without spectral edge. We conclude that our graph construc-
tion in spatial and spectral domains is effective.

In high-complexity mode, KLT+graphBior outperforms
KLT+DWT, and the SNR gain at low bitrate is larger than
at high bitrate, since the improvement due to spatial wavelet
transform vanishes for medium to high bitrate. Note that the
result here is not as good as the one with KLT coupled with
JPEG2000 due to the adopted entropy coding scheme, but
since we focus on comparing different transforms, it is fair
to use the same entropy coding.

In Table 1, we show the average SNR gain of different
schemes over JPEG2000, calculated with the Bjontegaard
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Fig. 3. R-D curve for different transforms. The images used
are the Yellowstone uncalibrated (a) scene0 and (b) scenel0.

metric [28]. High-complexity KLT+graphBior has about 1dB
gain over KLT+DWT. Low-complexity graphBior has about 2
to 3dB gain over JPEG2000, and graphBior w/o spectral edge
also has 1 to 2dB gain. This again validates the advantage of
graph wavelet transform over fixed transform.

Table 1. Average gain of different schemes over JPEG2000
in SNR(dB).

High complexity Low complexity
KLT+graphBior | KLT+DWT | graphBior | w/o spectral
sce0 4.82 3.92 2.19 0.96
sce3 9.69 9.04 2.72 1.36
scel0 8.36 7.17 3.59 2.47
scell 8.30 6.68 3.32 2.09
scel8 8.47 7.96 1.95 1.15

6. CONCLUSION

In this paper, we propose a graph-wavelet based hyperspec-
tral image compression scheme. To enable signal adaptivity
in the wavelet basis, we construct our graph based on spa-
tial and spectral correlation. Specifically, along the spatial
dimension, the edge weights for all adjacent pixel pairs are es-
timated from the last image in the previous coded band group.
Along the spectral dimension, the image is divided into dif-
ferent spatial regions with similar spectral responses, and the
spectral signature for each region is used to decide spectral
edge weights. Experimental results suggest that our proposal
can outperform existing schemes at comparable complexity.
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