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NII Overview

• National Institute of Informatics

• Chiyoda-ku, Tokyo, Japan.

• Government-funded research lab.
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• Offers graduate courses & degrees 

through The Graduate University for 

Advanced Studies (Sokendai).

• 60+ faculty in “informatics”: 

quantum computing, discrete 
algorithms, database, machine 

learning, computer vision, speech & 

audio, image & video processing.

• Get involved!

• 2-6 month Internships.

• Short-term visits via 

MOU grant.

• Lecture series, 

Sabbatical.



APSIPA Distinguished Lecture Series 

www.apsipa.org 

Introduction to APSIPA and APSIPA DL
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APSIPA Mission: To promote broad spectrum of research and education 
activities in signal and information processing in Asia Pacific

APSIPA Conferences: ASPIPA Annual Summit and Conference 

APSIPA Publications: Transactions on Signal and Information Processing 
in partnership with Cambridge Journals since 2012; APSIPA Newsletters

APSIPA Social Network: To link members together and to disseminate 
valuable information more effectively

APSIPA Distinguished Lectures: An APSIPA educational initiative to reach 
out to the community



Outline

• Graph Signal Processing

• Graph spectrum

• Semi-supervised Graph Classifier

• Smoothness prior & MAP formulation

• Graph construction

• Graph Laplacian perturbation

• Lower bound min eigenvalue computation

• IRLS algorithm

• Experimental Results

• Conclusion
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Graph Signal Processing

• Signals on irregular data kernels described by 
graphs.

• Graph: nodes and edges.

• Edges reveals node-to-node relationships.

1. Data domain is naturally a graph.

• Ex:  ages of users on social networks.

2. Underlying data structure unknown.

• Ex:  images: 2D grid → structured graph.
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Graph Signal Processing (GSP) addresses the problem of 

processing signals that live on graphs.

[1] D. I. Shuman et al.,”The Emerging Field of Signal Processing on Graphs: Extending High-dimensional Data Analysis to Networks 

and other Irregular Domains,” IEEE Signal Processing Magazine, vol.30, no.3, pp.83-98, 2013.

example graph-signal



Graph Signal Processing

Research questions*:

• Sampling:  how to efficiently acquire / 

sense a graph-signal?

• Graph sampling theorems.

• Representation:  Given graph-signal, how 

to compactly represent it?

• Transforms, wavelets, dictionaries.

• Signal restoration:  Given noisy and/or 

partial graph-signal, how to recover it?

• Graph-signal priors.

8

node
edge

* Graph Signal Processing Workshop, Philadelphia, US, May 25-27, 2016. 

https://alliance.seas.upenn.edu/~gsp16/wiki/index.php?n=Main.Program



Graph Fourier Transform (GFT)

Graph Laplacian:

• Adjacency Matrix A:  entry Ai,j has non-negative

edge weight wi,j connecting nodes i and j.

• Degree Matrix D:  diagonal matrix w/ entry Di,i being 

sum of column entries in row i of A.

• Combinatorial Graph Laplacian L:   L = D-A 

• L is symmetric (graph undirected).

• L is a high-pass filter.

• L is related to 2nd derivative.
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Graph Spectrum from GFT

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

1. Edge weights affect shapes of eigenvectors.

2. Eigenvalues (≥ 0) as graph frequencies.

• Constant eigenvector is DC.

• # zero-crossings increases as λ increases.

• GFT defaults to DCT for un-weighted connected line.

• GFT defaults to DFT for un-weighted connected circle.
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iii uuL 
eigenvalue

eigenvector
1st AC eigenvector

1 2 3 4 8…2,1w 1 1
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Variants of Graph Laplacians

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

• Other definitions of graph Laplacians:

• Normalized graph Laplacian:

• Random walk graph Laplacian:

• Generalized graph Laplacian [1]:
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iii uuL 
eigenvalue

eigenvector

2/12/12/12/1   ADDILDDLn

ADILDLrw

11  

*DLLg 

Characteristics:

• Normalized.

• Symmetric. 

• No DC component.

• Normalized.

• Asymmetric.

• Eigenvectors not orthog.

• Symmetric.

• L plus self loops.

• Defaults to DST, ADST.

[1] Wei Hu, Gene Cheung, Antonio Ortega, "Intra-Prediction and Generalized Graph Fourier Transform for Image Coding," IEEE 

Signal Processing Letters, vol.22, no.11, pp. 1913-1917, November 2015.
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Semi-Supervised Graph Classifier Learning

• Binary Classifier: given feature vector xi of 

dimension K, compute f(xi) ∊ {0,1}.

• Classifier Learning: given partial / noisy labels 

(xi, yi), train classifier f(xi).

• GSP Approach [1]:

1. Construct similarity graph with +/- edges.

2. Pose MAP graph-signal restoration problem.

3. Perturb graph Laplacian to ensure PSD.

4. Solve num. stable MAP as sparse lin. system.
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[1] Yu Mao, Gene Cheung, Chia-Wen Lin, Yusheng Ji, “Image Classifier Learning from Noisy Labels via Generalized Graph 

Smoothness Priors,” IEEE IVMSP Workshop, Bordeaux, France, July 2016. (Best student paper award)

example graph-based classifier

[2] G. Cheung, W.-T. Su, Y. Mao, C.-W. Lin, "Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights," submitted 

to Special Issue on "Graph Signal Processing" in IEEE Journal on Selected Topics of Signal Processing, November 2016. (arXiv)



Graph-Signal Smoothness Prior

• Smoothness: signal “consistent” w/ underlying graph.

• Q1: how to define smoothness w.r.t. graph with +/- edges?

• Q2: is signal smoothness prior robust to errs?

• Q3: is signal smoothness prior easy to solve?

14
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Graph-Signal Smoothness Prior:

Candidate 1

• Shift-based Smoothness Prior [1]:

• Prior minimizes sums of sample values despite negative edges!
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[1] S. Chen, A. Sandryhaila, J. Moura, and J. Kovacevic, “Signal recovery on graphs: Variation minimization,” IEEE 

Transactions on Signal Processing, vol. 63, no.17, September 2015, pp. 4609–4624.

w=-1

shifted version of signal



Graph-Signal Smoothness Prior:

Candidate 2
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[1] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D, vol. 60, 

no.1-4, November 1992, pp. 259–268.

• Total Variation (TV) [1] on graph:

• Prior minimizes diffs in every pair!

w=1

degree 0 at node 2



Graph-Signal Smoothness Prior:

Candidate 3

• Graph Laplacian Regularizer [1]:

• Promote large / small inter-node differences depending on 

edge signs.

• Sensible, but numerically unstable.
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[1] J. Pang and G. Cheung, “Graph Laplacian regularization for image denoising: Analysis inn the continuous 

domain,” in IEEE Transactions on Image Processing, vol. 26, no.4, April 2017, pp. 1770–1785.

w=1

eigenvalues / graph freqs

GFT coeff

Promote large difference
Promote small difference



MAP Problem Formulation

• Label Noise Model: uniform noise model [1]

• Probability of observing noisy y given ground truth x:

• MAP formulation:

18

[1] A. Brew, D. Greene, and P. Cunningham, “The interaction between supervised learning and crowdsourcing,” 

Computational Social Science and the Wisdom of Crowds Workshop at NIPS, Whistler, Canada, December 2010.

fidelity term graph-signal 

smoothness prior

perturbation matrix 

to ensure PSD!



Graph Construction:  add positive edges

• Given feature vector per sample in high dim. space.

• First to construct (dis)similarity graph with +/- edges from 

features.

• Positive edge weights reflect inter-node similarity:

• Optimization of feature weights in [1].
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[1] J. Z. Huang, M. K. Ng, H. Rong, and Z. Li, “Automated variable weighting in k-means type clustering,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no.5, May 2005, pp. 657–668.

inter-node 

feature distance



Graph Construction:  add negative edges

Centroid-based: add 

negative edge connecting 

cluster centroids.

• Robust, not precise.

20

Boundary-based: add negative edges connecting boundary 

nodes of two clusters.

• Precise, not robust.

Idea:  use convex combination as we iterate:

    2211* L1LL  
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Example:  10-node graph

• Centroid-based 1st e-vector: peaks at neg. edge endpoints.

• Boundary-based 1st e-vector: same level @ boundary nodes.

• Low graph frequencies of indefinite L are useful in restoration [1].

21

w=0.1, or -1

[1] A. Knyazev, “Signed Laplacian for spectral clustering revisited,” January 2017, https://arxiv.org/abs/1701.01394.



Finding Perturbation Matrix:
min norm

• Minimum norm criteria: smallest △ to ensure PSD:   

• Sol’n is special case of Thm 5.1 in [1]:

• Observations:

1. L+△ is PSD (good).

2. L+△ preserves same eigen-vectors (good).

3. Eigenvalue 0 has p+1 eigen-vectors (bad).

22

[1] A. N. Higham and S. H. Cheng, “Modifying the inertia of matrices arising in optimization,” ELSEVIER Linear 

Algebra and its Applications, vol. 275-279, May 1998, pp. 261–279.

assume has p negative 

eigenvalues



Finding Perturbation Matrix:
eigen-structure preservation

• Perturb to ensure PSD while preserving frequency components

(eigenvectors) and frequency preferences.   

• One sol’n is △=λmin I, i.e. shift all eigenvalues up by η=λmin.

• Intuition:  signal variations + signal energies

• Q: computed lower-bound for λmin w/o eigen-decomposition?

23

signal energies
signal variations
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Lower Bound λmin

• Matrix Inertia:

• Haysworth Inertia Additivity:

• EvalBound (Lt, t)

• Step 1: divide Nt nodes in Lt into r and Nt – r nodes. 

• Eigen-decompose Lt
1,1 to find smallest eigenvalue λt

1,1.

• Perturb Lt by augmented eigenvalue κt
min

24

Schur complement

[1] G. Cheung et al., "Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights," submitted to 

Special Issue on "Graph Signal Processing" in IEEE Journal on Selected Topics of Signal Processing, November 2016.

Ensure Lt
1,1 is PD.



Lower Bound λmin

• Haysworth Inertia Additivity:

• Step 2: ensure SC of Lt
1,1 is PSD:

• if Nt – r ≤ r, 

• eigen-decompose Lt / Lt
1,1 to find smallest eigenvalue λt

2.

• Compute lower bound: 

• if Nt – r > r, 

• Define

• Recursively call

• Return

25

[1] G. Cheung et al., "Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights," submitted to 

Special Issue on "Graph Signal Processing" in IEEE Journal on Selected Topics of Signal Processing, November 2016.

Complexity O(N2 r).



IRLS Optimization
• MAP formulation:

• Iterative Recursive Least Square (IRLS) [1]:

• Replace L0-norm with weighted L2-norm, solve iteratively.

• Sparse linear system of equations:

• Solve via conjugate gradient instead of matrix inversion.

26

diagonal matrix w/ weights b’s

[1] I. Daubechies, R. Devore, M. Fornasier, and S. Gunturk, “Iteratively re-weighted least squares minimization for 

sparse recovery,” Communications on Pure and Applied Mathematics, vol. 63, no.1, January 2010, pp. 1–38.

mimics L0-norm
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Experimental Setup

• KEEL database [1], face gender dataset [2].

• Features extracted for each sample; ex., local binary pattern (LBP).

• 70% / 30% are training / testing data.

• Graph construction: 

• kNN for positive edges (k=3).

• Centroid / boundary-based negative edges.

• Comparison schemes:

1. Linear SVM, SVM with RBF kernel

2. RobustBoost

3. Graph-Pos, Graph-MinNorm

4. Graph-Bandlimited, Graph-AdjSmooth, Graph-Wavelet

28

[2] L. Spacek, “Face recognition data, university of essex, uk,” http://cswww.essex.ac.uk/mv/allfaces/faces94.html, Feb. 2007.

[1] J. A.-F. et al., “Keel: A software tool to assess evolutionary algorithms to data mining problems,” Soft Computing, vol. 13, 

no.3, February 2009, pp. 307–318.



Experimental Results

• Comparisons w/ other classifiers:
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Torino Visit 05/15/2017 31



Experimental Results

• λmin versus computed lower bound:
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Conclusion

• Graph Signal Processing (GSP)

• Tools to process signals that live on graphs.

• Graph-based binary classifier

• Similarity graph with +/- edges, given features.

• Perturbed graph Laplacian that is PSD.

• Fast computation of min eigenvalue lower bound.

• Fast MAP solver via IRLS, conjugate gradient.
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Other GSP Works

• Coding of LF, spectral image [1], 3D point cloud w/ GFT.

• Coding of graph data w/ graph wavelets.

• Political leaning estimation [2].

• Wireless signal / power estimation [3].

[2] B. Renoust et al., "Estimation of Political Leanings via Graph-Signal Restoration," 

submitted to IEEE International Conference on Acoustics, Speech and Signal Processing, 

New Orleans, USA, March, 2017

[3] M. Kaneko, G. Cheung, W.-t. Su, C.-W. Lin, "Graph-based Joint Signal / Power 

Restoration for Energy Harvesting Wireless Sensor Networks," submitted to IEEE 

Globecom, Singapore, December, 2017.
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[1] J. Zeng, G. Cheung, Y.-H. Chao, I. Blanes, J. Serra-Sagrista, A. Ortega, "Hyperspectral 

Image Coding using Graph Wavelets," accepted to IEEE International Conference on 

Image Processing, Beijing, China, September, 2017.



Q&A

• Email:  cheung@nii.ac.jp

• Homepage: http://research.nii.ac.jp/~cheung/
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