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NII Overview

• National Institute of Informatics

• Chiyoda-ku, Tokyo, Japan.

• Government-funded research lab.
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• Offers graduate courses & degrees 

through The Graduate University for 

Advanced Studies (Sokendai).

• 60+ faculty in “informatics”: 

quantum computing, discrete 
algorithms, database, machine 

learning, computer vision, speech & 

audio, image & video processing.

• Get involved!

• 2-6 month Internships.

• Short-term visits via 

MOU grant.

• Lecture series, 

Sabbatical.
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APSIPA Distinguished Lecture Series 

www.apsipa.org 

Introduction to APSIPA and APSIPA DL
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APSIPA Mission: To promote broad spectrum of research and education 
activities in signal and information processing in Asia Pacific

APSIPA Conferences: ASPIPA Annual Summit and Conference 

APSIPA Publications: Transactions on Signal and Information Processing 
in partnership with Cambridge Journals since 2012; APSIPA Newsletters

APSIPA Social Network: To link members together and to disseminate 
valuable information more effectively

APSIPA Distinguished Lectures: An APSIPA educational initiative to reach 
out to the community
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Digital Signal Processing

• Discrete signals on regular data kernels.

• Ex.1:  audio on regularly sampled timeline.

• Ex.2: image on 2D grid.

• Harmonic analysis tools (transforms, 

wavelets) for diff. tasks: 

• Compression.

• Restoration.

• Segmentation, classification.
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Smoothness of Signals 

• Signals are often smooth.

• Notion of frequency, band-limited.

• Ex.: DCT:

2D DCT basis is set of outer-product of

1D DCT basis in x- and y-dimension.
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desired signal

transform

transform coeff.

Compact signal

representation
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Graph Signal Processing

• Signals on irregular data kernels described by 
graphs.

• Graph: nodes and edges.

• Edges reveals node-to-node relationships.

1. Data domain is naturally a graph.

• Ex:  ages of users on social networks.

2. Underlying data structure unknown.

• Ex:  images: 2D grid → structured graph.

9

Graph Signal Processing (GSP) addresses the problem of 

processing signals that live on graphs.

[1] D. I. Shuman et al.,”The Emerging Field of Signal Processing on Graphs: Extending High-dimensional Data Analysis to Networks 

and other Irregular Domains,” IEEE Signal Processing Magazine, vol.30, no.3, pp.83-98, 2013.

example graph-signal



Graph Signal Processing

Research questions*:

• Sampling:  how to efficiently acquire / 

sense a graph-signal?

• Graph sampling theorems.

• Representation:  Given graph-signal, how 

to compactly represent it?

• Transforms, wavelets, dictionaries.

• Signal restoration:  Given noisy and/or 

partial graph-signal, how to recover it?

• Graph-signal priors.
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node
edge

*Graph Signal Processing Workshop, Philadelphia, US, May, 2016. https://alliance.seas.upenn.edu/~gsp16/wiki/index.php?n=Main.Program

*Graph Signal Processing Workshop, Pittsburgh, US, May, 2017. https://gsp17.ece.cmu.edu/



Graph Fourier Transform (GFT)

Graph Laplacian:

• Adjacency Matrix A:  entry Ai,j has non-negative

edge weight wi,j connecting nodes i and j.

• Degree Matrix D:  diagonal matrix w/ entry Di,i being 

sum of column entries in row i of A.

• Combinatorial Graph Laplacian L:   L = D-A 

• L is symmetric (graph undirected).

• L is a high-pass filter.

• L is related to 2nd derivative.
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Graph Spectrum from GFT

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

1. Edge weights affect shapes of eigenvectors.

2. Eigenvalues (≥ 0) as graph frequencies.

• Constant eigenvector is DC.

• # zero-crossings increases as λ increases.

• GFT defaults to DCT for un-weighted connected line.

• GFT defaults to DFT for un-weighted connected circle.

12

iii uuL 
eigenvalue

eigenvector
1st AC eigenvector

1 2 3 4 8…2,1w 1 1
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Variants of Graph Laplacians

• Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

• Other definitions of graph Laplacians:

• Normalized graph Laplacian:

• Random walk graph Laplacian:

• Generalized graph Laplacian [1]:

13

iii uuL 
eigenvalue

eigenvector

2/12/12/12/1   ADDILDDLn

ADILDLrw

11  

*DLLg 

Characteristics:

• Normalized.

• Symmetric. 

• No DC component.

• Normalized.

• Asymmetric.

• Eigenvectors not orthog.

• Symmetric.

• L plus self loops.

• Defaults to DST, ADST.

[1] Wei Hu, Gene Cheung, Antonio Ortega, "Intra-Prediction and Generalized Graph Fourier Transform for Image Coding," IEEE 

Signal Processing Letters, vol.22, no.11, pp. 1913-1917, November 2015.



GSP and Graph-related Research

GSP:  SP framework that unifies concepts from multiple fields.

Graph Signal

Processing* (GSP)

Combinatorial

Graph Theory

Spectral

Graph Theory

Computer 

Vision

Computer Graphics

Machine 

Learning

spectral

clustering

eigen-analysis of 

graph Laplacian, 

adjacency matrices

graphical model, 

manifold learning, 

classifier learning

Laplace-

Beltrami 

operator

Laplace 

equation
Partial Differential 

Eq’ns

Max cut, graph 

transformation

DSP
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PWS Image Compression

using GFT

• DCT are fixed basis.  Can we do better?

• Idea:  use adaptive GFT to improve sparsity [3].

16

1. Assign edge weight 1 to adjacent pixel pairs.

2. Assign edge weight 0 to sharp signal discontinuity.

3. Compute GFT for transform coding, transmit coeff.

4. Transmit bits (contour) to identify chosen GFT to 

decoder (overhead of GFT).

xα 
GFT

[1]  G. Shen et al., “Edge-adaptive Transforms for Efficient Depth Map Coding,”  

IEEE Picture Coding Symposium, Nagoya, Japan, December 2010.

[2]  M. Maitre et al., “Depth and depth-color Coding using Shape-adaptive Wavelets,”  

Journal of Visual Communication and Image Representation, vol.21, July 2010, pp.513-522.

Shape-adaptive wavelets 

can also be done.



Transform Representation Transform Description

Karhunen-Loeve

Transform (KLT)

“Sparsest” signal representation given 
available statistical model

Can be expensive (if poorly 

structured)

Discrete Cosine 

Transform (DCT)

non-sparse signal representation
across sharp boundaries

little (fixed transform) 

Graph Fourier 

Transform (GFT)

minimizes the total rate of signal’s transform representation & 

transform description

Transform Comparison

17[1] Wei Hu, Gene Cheung, Antonio Ortega, Oscar Au, "Multiresolution Graph Fourier Transform for Compression of 

Piecewise Smooth Images," IEEE Transactions on Image Processing, vol.24, no.1, pp.419-433, January 2015.
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MR-GFT: Definition of the Search Space for 

Graph Fourier Transforms

• In general, weights could be any number in [0,1]

• To limit the description cost  

• Restrict weights to a small discrete set  

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

- "1": strong correlation in smooth regions

- "0": zero correlation in sharp boundaries

- "c": weak correlation in slowly-varying parts

18

Rate of transform coefficient vector Rate of transform description T

Histogram of inter-pixel difference

weak

zero

strong



MR-GFT: Derivation of Optimal Edge Weights for 

Weak Correlation

• Assume a 1D 1st-order autoregressive (AR) process  where,

• Assuming the only weak correlation exists between           and

k-th

smooth

jump

non-zero mean random var.

19

1 2 k-1 k N…
kkw ,11

…

non-zero mean RV

kth row

mean 

vector
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MR-GFT: Derivation of Optimal

Edge Weights for Weak Correlation (cont’d)

• Covariance matrix

• Precision matrix (tri-diagonal)

k-th row
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(k-1)-th row

k-th row

1 1 1

Graph Laplacian matrix!
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MR-GFT: Adaptive Selection of Graph Fourier 

Transforms

21

AEC-1

AEC
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Experimentation

• Setup

- Test images: depth maps of Teddy and Cones, and graphics images of Dude and Tsukuba.

- Compare against: HR-DCT, HR-SGFT, SAW, MR-SGFT in H.264.

• Results

HR-DCT:      6.8dB
HR-SGFT:    5.9dB
SAW:            2.5dB
MR-SGFT:   1.2dB

22



Subjective Results

HR-DCT HR-SGFT MR-GFT

23BJTU 11/25/2017



Mode Selection

red:  WGFT
blue: UGFT

24BJTU 11/25/2017



Edge Coding for PWS 

Image Compression

• Arithmetic Edge Coding [1,2]: 

• Coding of sequence of between-pixel edges, or 

chain code with symbols {l, s, r}.

• Design a variable-length context tree (VCT) to 

compute symbol probabilities for arithmetic coding.

[2] Amin Zheng, Gene Cheung, Dinei Florencio, "Context Tree based Image Contour Coding using A 

Geometric Prior," IEEE Transactions on Image Processing, vol.26, no.2, pp.574-589, February 2017.

[1]  I. Daribo, G. Cheung, D. Florencio, “Arbitrarily Shaped Sub-block Motion Prediction in Depth Video 

Compression using Arithmetic Edge Coding," IEEE Trans on Image Processing, Nov 2014.

25
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Motivation

• Intra-prediction

: prediction residuals

• Discontinuities at block boundaries

- intra-prediction will not be chosen or bad prediction

Intra-prediction in H.264

𝑥0 𝑥1 𝑥2 𝑥3 𝑥4

Boundary pixel

(predictor)
Predicted pixels 𝑥𝑖

[1]  W. Hu et al., “Intra-Prediction and Generalized Graph Fourier Transform for Image Coding,” IEEE Signal 

Processing Letters, vol.22, no.11, pp. 1913-1917, November, 2015.
27



Optimal 1D Intra prediction

• Optimal prediction in terms of resulting 

in a zero-mean prediction residual

• Default to conventional intra-prediction 

when                            , i.e.,   

Class k

Class l

28

Histogram of inter-pixel difference

class1
class3

class0class0
class2

bin average approximation error

Assume a 1D 1st-order autoregressive (AR) process 
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Generalized Graph Fourier Transform

• The precision matrix of the prediction residual

= +

Combinatorial Laplacian
Degree matrix for 

boundary verticesGeneralized Laplacian

29

• Default to the DCT if                    and 

• Default to the ADST [1]  if                    and 

[1]  J. Han et al., “Jointly Optimized Spatial Prediction and Block Transform for video and Image Coding,” 

IEEE Transactions on Image Processing, vol.21, no.4, April 2012, pp.1874-1884.

inaccuracy of intra-prediction

discontinuities within signal

Variance of approx. error



Experimental Results
• Test images: PWS images and natural images

• Compare proposed intra-prediction (pIntra) + GGFT against: 

- edge-aware intra-prediction (eIntra) + DCT

- eIntra + ADST

- eIntra + GFT 

30BJTU 11/25/2017



Spectral Folding & Critical Sampling

• Spectral Folding:

• (Sub)sampling a bandlimited signal at freq. fs 

→ freq. content replication at fs. 

• Nyquist Sampling Theorem:

• To avoid aliasing, sample at 2x max. freq. of 

bandlimited signal.

• Multirate Wavelet Filterbank:

• System of “perfect reconstruction” bandpass filters 

31
analysis filter synthesis filter
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Bipartite Graph Approximation

• Problem: GraphBior [1,2] (critically sampled, 

perfect reconst. wavelet) for bipartite graph only!

• Idea [3]:

• Successively find bipartite graph approximation.

• Criteria for graph approx [1]:

• Preserve graph structure, minimize eigenvalue=1.

32

sub-matrix for 2 

partitionsKL divergence

bipartite 

graph 

Laplacian

   bb

KL
L

LLLD
b 2,1rank||min 

[3] Jin Zeng, Gene Cheung, Antonio Ortega, "Bipartite Subgraph Decomposition for Critically Sampled Wavelet Filterbanks on 

Arbitrary Graphs," IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, March, 2016.

[2] S. Narang and A. Ortega, “Compact support biorthogonal wavelet filterbanks for arbitrary undirected 

graphs,” IEEE Transactions on Signal Processing, vol. 61, no. 19, pp. 4673–4685, Oct 2013.

[1] S. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter banks for graph 

structured data,” IEEE Transactions on Signal Processing, vol. 60, no. 6,pp. 2786–2799, June 2012.
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Graph Laplacian Regularizer

• (graph Laplacian quadratic form) [1]) is one variation measure 

→ graph-signal smoothness prior.

• Signal Denoising:

• MAP formulation:

34
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[1] P. Milanfar, “A Tour of Modern Image Filtering: New Insights and Methods, Both Practical and Theoretical,” IEEE Signal 

Processing Magazine, vol.30, no.1, pp.106-128, January 2013.



Graph Laplacian Regularizer for Denoising 

1. Choose graph:

• Connect neighborhood graph.

• Assign edge weight:

2. Solve obj. in closed form:

• Iterate until convergence.

35[1] W. Hu, G. Cheung, M. Kazui, "Graph-based Dequantization of Block-Compressed Piecewise Smooth Images," IEEE Signal 

Processing Letters,  vol.23, no.2, pp.242-246, February 2016. 
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Analysis of Graph Laplacian Regularizer

• Show                          converges to continuous functional      , 
analysis of       explains how             penalizes candidates:

• Derive optimal                        for denoising: graph is 

discriminant for small noise, robust when very noisy.

• We interpret graph Laplacian regularization as anisotropic 
diffusion, show that it not only smooths but may also 

sharpens the image, promote piecewise smooth images
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[1] J. Pang, G. Cheung, "Graph Laplacian Regularization for Inverse Imaging: Analysis in the Continuous Domain," IEEE 

Transactions on Image Processing, vol. 26, no.4, pp.1770-1785, April 2017.
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Denoising Experiments (natural images)

• Subjective comparisons (             )40 I

Original Noisy, 16.48 dB K-SVD, 26.84 dB

BM3D, 27.99 dB PLOW, 28.11 dB OGLR, 28.35 dB

BJTU 11/25/2017



38

• Subjective comparisons (             )30 I

Original Noisy, 18.66 dB BM3D, 33.26 dB NLGBT, 33.41dB OGLR, 34.32 dB

Denoising Experiments (depth images)

[1] W. Hu et al., "Depth Map Denoising using Graph-based Transform and Group Sparsity," IEEE International Workshop on 

Multimedia Signal Processing, Pula (Sardinia), Italy, October, 2013.
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Soft Decoding of JPEG Images

• Setting: JPEG compresses natural images:

1. Divide image into 8x8 blocks, DCT.

2. Perform DCT transform per block and quantize:

3. Quantized DCT coeff entropy coded.

• Decoder:  uncertainty in signal reconstruction:

40

(Y / Q ),    =i i iq round Y Ty

DCT Coefficients

8x8 pixel block

quantization parameter

DCT 

Q Y ( 1)Q , 1,2, ,64.i i i i iq q i   

[1] A. Zakhor, “Iterative procedures for reduction of blocking effects in transform image coding,” IEEE Transactions on Circuits and 

Systems for Video Technology,, vol. 2, no. 1, pp. 91–95, Mar 1992.

[2] K. Bredies and M. Holler, “A total variation-based JPEG decompression model,” SIAM J. Img. Sci., vol. 5, no. 1, pp. 366–393, Mar. 2012.

[3] H. Chang, M. Ng, and T. Zeng, “Reducing artifacts in jpeg decompression via a learned dictionary,” IEEE Transactions on Signal 

Processing,,vol. 62, no. 3, pp. 718–728, Feb 2014.



Graph Laplacian Regularizer for Denoising 

1. Choose graph:

• Connect neighborhood graph.

• Assign edge weight:

2. Solve obj. in closed form:

• Iterate until convergence.

41[1] W. Hu, G. Cheung, M. Kazui, "Graph-based Dequantization of Block-Compressed Piecewise Smooth Images," IEEE Signal 

Processing Letters,  vol.23, no.2, pp.242-246, February 2016. 
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Comments:

1. L is NOT normalized.

2. Why works well for PWS signals?
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Spectral Clustering

• Normalized Cut [1]:

• Problem is NP-hard, so:

1. Rewrite as:

2. Relax to:

42
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Eigenvectors of Normalized graph Laplacian

• Define:

• Problem rewritten as:

• v1 minimizes obj → Sol’n is 2nd eigenvector of Ln.

• If f* optimal to norm. cut, v* is PWS → well rep. PWS signals!

• f* optimal when nodes easy to cluster: 

• Easy-to-cluster graph has small Fiedler number.

• Disadvantage:

• v1 not constant vector (DC) → cannot well rep. smooth patch. 43
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Left E-vector random walk graph Laplacian 

(LERaG)
• Disadvantage:

• Lrw is asymmetric → no orthogonal e-vectors w/ real e-values.

• So,  left Eigenvector Random Walk Graph Laplacian (LERaG) [1]:

44[1] Xianming Liu, Gene Cheung, Xiaolin Wu, Debin Zhao, "Random Walk Graph Laplacian based Smoothness Prior for Soft Decoding 

of JPEG Images," accepted to IEEE Transactions on Image Processing, October 2016.

projection of signal x

to D1/2, then Ln



Comparison of Graph-signal Smoothness Priors

• Different graph Laplacian matrices

• Combinatorial graph Laplacian:

• Symmetrically normalized graph Laplacian:

• Random walk graph Laplacian:

• Doubly stochastic graph Laplacian [1]:

45

Graph Laplacian Symmetric Normalized DC e-vector

Combinatorial Yes No Yes

Symmetrically Normalized Yes Yes No

Random Walk No Yes Yes

Doubly Stochastic [1] Yes Yes Yes

[1] A. Kheradmand and P. Milanfar, “A general framework for regularized, similarity-based image restoration,” IEEE Transactions on 

Image Processing, vol. 23, no. 12, pp. 5136–5151, Dec 2014.



LERaG for Soft Decoding of JPEG Images

• Problem: reconstruct image given indexed quant. bin in 8x8 DCT.

46

0~ 221

min 

k

k

k

Td 

• Procedure: 

1. Initialize per-block

MMSE sol’n via 

Laplacian prior.

2. Solve per-patch signal 

restoration problem w/ 
2 priors:

1. Sparsity prior

2. Graph-signal 

smoothness prior

[1] Xianming Liu, Gene Cheung, Xiaolin Wu, Debin Zhao, "Random Walk Graph Laplacian based Smoothness Prior for Soft Decoding 

of JPEG Images," IEEE Transactions on Image Processing, vol.26, no.2, pp.509-524, February 2017.



Soft Decoding Algorithm w/ Prior Mixture

• Objective:

• Optimization:

1. Laplacian prior provides an initial estimation;

2. Fix x and solve for α;

3. Fix α and solve for x.

47

sparsity prior graph-signal smoothness

prior

quantization bin constraint

fidelity term

graph-signal,

code vector
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Evolution of 2nd Eigenvector

• 2nd Eigenvector becomes more PWS:

• PWS means:

1. better pixel clusters, 

2. smaller Fidler number (2nd eigenvalue),

3. Smaller smoothness penalty term.

48BJTU 11/25/2017



Experimental Setup

• Compared methods

• BM3D: well-known denoising algorithm

• KSVD: with a large enough over-complete dictionary (100x4000); our 

method uses a much smaller one (100x400).

• ANCE: non-local self similarity  [Zhang et al. TIP14]

• DicTV: Sparsity + TV     [Chang et al, TSP15]

• SSRQC: Low rank + Quantization constraint  [Zhao et al. TCSVT16]

49BJTU 11/25/2017



PSNR / SSIM Comparison
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Subjective Quality Evaluation
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Subjective Quality Evaluation
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Other Comparisons

• Computation complexity:

• Comparisons w/ other graph regularizers:

53
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Graph-Signal Sampling / Encoding for 3D 

Point Cloud

• Problem: Point clouds require encoding specific 3D coordinates.

• Assumption: smooth 2D manifold in 3D space.

• Proposal: progressive 3D geometry rep. as series of graph-signals. 

1. adaptively identifies new samples on the manifold surface, and 

2. encodes them efficiently as graph-signals.

• Example:

1. Interpolate 𝑖𝑡ℎ iteration samples (black circles) to a continuous kernel (mesh), 

an approximation of the target surface S.

2. New sample locations, knots (squares), are located on the kernel surface.

3. Signed distances between knots and S are recorded as sample values.

4. Sample values (green circles) are encoded as a graph-signal via GFT.
55
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Graph-Signal Sampling / Encoding for 3D 

Point Cloud

• Experimental Results:

56

(a) Dataset1 (b) Dataset2

[1] Mingyuan Zhao, Gene Cheung, Dinei Florencio, Xiangyang Ji, "Progressive Graph-Signal Sampling and Encoding for Static 3D 

Geometry Representation," IEEE International Conference on Image Processing, Beijing, China, September, 2017.



Pre-Demosiac Light Field Image 

Compression Using Graph Lifting Transform

• Problem: Sub-aperture images in Light field data are huge. 

• Proposal: postpone demosiacking to decoder. 
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Pre-Demosiac Light Field Image 

Compression Using Graph Lifting Transform

• Experimental Results:

58[1] Y.-H. Chao, G. Cheung, A. Ortega, "Pre-Demosiac Light Field Image Compression Using Graph Lifting 

Transform," IEEE Int’l Conf. on Image Processing, Beijing, China, September, 2017. (Best student paper award)

Dataset: EPFL light field image dataset

Baseline: All-intra HEVC coding in YUV4:2:0 and RGB 4:4:4



Outline

• Graph Signal Processing

• Graph spectrum, GFT

• PWS Image Coding using GFT

• Prediction Residual Coding using GGFT

• Image Denoising using Graph Laplacian Regularizer

• Soft Decoding of JPEG Images w/ LERaG

• GSP for 3D Imaging

• Summary & Ongoing Work
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Summary

• Graph Signal Processing (GSP)

• Spectral analysis tools to process signals on graphs.

• PWS Image Compression 

• Graph Fourier Transform

• Generalized GFT

• Arithmetic Edge Coding

• Graph-signal Smoothness for Inverse Problems

• Image denoising w/ graph Laplacian regularizer

• New regularizer LERaG soft decoding of JPEG Images

• GSP for 3D Imaging

• 3D point cloud compression, light field image compression

60BJTU 11/25/2017



Other GSP Works:

Semi-Supervised Graph Classifier Learning

• Binary Classifier: given feature vector xi of 

dimension K, compute f(xi) ∊ {0,1}.

• Classifier Learning: given partial / noisy labels 

(xi, yi), train classifier f(xi).

• GSP Approach [1]:

1. Construct similarity graph with +/- edges.

2. Pose MAP graph-signal restoration problem.

3. Perturb graph Laplacian to ensure PSD.

4. Solve num. stable MAP as sparse lin. system.
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[1] Yu Mao, Gene Cheung, Chia-Wen Lin, Yusheng Ji, “Image Classifier Learning from Noisy Labels via Generalized Graph 

Smoothness Priors,” IEEE IVMSP Workshop, Bordeaux, France, July 2016. (Best student paper award)

example graph-based classifier

[2] G. Cheung, W.-T. Su, Y. Mao, C.-W. Lin, "Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights," submitted 

to IEEE Transactions on Signal and Information Processing over Networks, November 2016. (arXiv)



Other GSP Works

• Coding of spectral image [1], 3D point cloud w/ GFT.

• Coding of graph data w/ graph wavelets.

• Political leaning estimation [2].

• Wireless signal / power estimation [3].

[2] B. Renoust et al., "Estimation of Political Leanings via Graph-Signal Restoration," 

IEEE International Conference on Multimedia and Expo, Hong Kong, China, July, 2017

[3] M. Kaneko, G. Cheung, W.-t. Su, C.-W. Lin, "Graph-based Joint Signal / Power 

Restoration for Energy Harvesting Wireless Sensor Networks," IEEE Globecom, 

Singapore, December, 2017.
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[1] J. Zeng, G. Cheung, Y.-H. Chao, I. Blanes, J. Serra-Sagrista, A. Ortega, "Hyperspectral 

Image Coding using Graph Wavelets," IEEE International Conference on Image 

Processing, Beijing, China, September, 2017.



Q&A

• Email:  cheung@nii.ac.jp

• Homepage: http://research.nii.ac.jp/~cheung/

63BJTU 11/25/2017


