Gene Cheung
National Institute of Informatics
$26^{\text {th }}$ November， 2017

Graph Signal Processing for Image Coding \＆Restoration

Acknowledgement

Collaborators:

- M. Kaneko (NII, Japan)
- A. Ortega (USC, USA)
- D. Florencio (MSR, USA)
- P. Frossard (EPFL, Switzerland)
- J. Liang, I. Bajic (SFU, Canada)
- V. Stankovic (U of Strathclyde, UK)
- X. Wu (McMaster U, Canada)
- P. Le Callet (U of Nantes, France)
- X. Liu (HIT, China)
- W. Hu, J. Liu, Z. Guo (Peking U., China)
- L. Fang (Tsinghua, HK)

- C.-W. Lin (National Tsing Hua University, Taiwan)

NII Overview

－National Institute of Informatics
－Chiyoda－ku，Tokyo，Japan．
－Government－funded research lab．
－60＋faculty in＂informatics＂： quantum computing，discrete algorithms，database，machine learning，computer vision，speech \＆ audio，image \＆video processing．

－Get involved！
－2－6 month Internships．
－Short－term visits via MOU grant．
－Lecture series， Sabbatical．

Introduction to APSIPA and APSIPA DL

APSIPA Mission: To promote broad spectrum of research and education activities in signal and information processing in Asia Pacific

APSIPA Conferences: ASPIPA Annual Summit and Conference

APSIPA Publications: Transactions on Signal and Information Processing in partnership with Cambridge Journals since 2012; APSIPA Newsletters

APSIPA Social Network: To link members together and to disseminate valuable information more effectively

APSIPA Distinguished Lectures: An APSIPA educational initiative to reach out to the community

Outline

- Graph Signal Processing
- Graph spectrum, GFT
- PWS Image Coding using GFT
- Prediction Residual Coding using GGFT
- Image Denoising using Graph Laplacian Regularizer
- Soft Decoding of JPEG Images w/ LERaG
- GSP for 3D Imaging
- Summary \& Ongoing Work

Outline

- Graph Signal Processing
- Graph spectrum, GFT
- PWS Image Coding using GFT
- Prediction Residual Coding using GGFT
- Image Denoising using Graph Laplacian Regularizer
- Soft Decoding of JPEG Images w/ LERaG
- GSP for 3D Imaging
- Summary \& Ongoing Work

Digital Signal Processing

- Discrete signals on regular data kernels.
- Ex.1: audio on regularly sampled timeline.
- Ex.2: image on 2D grid.
- Harmonic analysis tools (transforms,
 wavelets) for diff. tasks:
- Compression.
- Restoration.
- Segmentation, classification.

Smoothness of Signals

- Signals are often smooth.
- Notion of frequency, band-limited.
- Ex.: DCT:

$$
X_{k}=\sum_{n=0}^{N-1} x_{n} \cos \left(\frac{\pi}{N}\left(n+\frac{1}{2}\right) k\right)
$$

2D DCT basis is set of outer-product of 1D DCT basis in x - and y-dimension.

 desired signal

Graph Signal Processing

- Signals on irregular data kernels described by graphs.
- Graph: nodes and edges.
- Edges reveals node-to-node relationships.

1. Data domain is naturally a graph.

- Ex: ages of users on social networks.

2. Underlying data structure unknown.

- Ex: images: 2D grid \rightarrow structured graph.

> Graph Signal Processing (GSP) addresses the problem of processing signals that live on graphs.

Graph Signal Processing

Research questions*:

- Sampling: how to efficiently acquire / sense a graph-signal?
- Graph sampling theorems.
- Representation: Given graph-signal, how to compactly represent it?
- Transforms, wavelets, dictionaries.

- Signal restoration: Given noisy and/or partial graph-signal, how to recover it?
- Graph-signal priors.

Graph Fourier Transform (GFT)

Graph Laplacian:

- Adjacency Matrix A: entry $A_{i, j}$ has non-negative edge weight $w_{i, j}$ connecting nodes i and j.
- Degree Matrix D : diagonal matrix $w /$ entry $D_{i, i}$ being sum of column entries in row i of A.

$$
\mathrm{A}=\left[\begin{array}{cccc}
0 & w_{1,2} & 0 & 0 \\
w_{1,2} & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

$\mathrm{D}=\left[\begin{array}{cccc}w_{1,2} & 0 & 0 & 0 \\ 0 & w_{1,2}+1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
D_{i, i}=\sum_{j} A_{i, j}
$$

- Combinatorial Graph Laplacian L: L = D-A
- L is symmetric (graph undirected).

$$
\begin{aligned}
& L_{3,:} x=-x_{2}+2 x_{3}-x_{4} \\
& f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
\end{aligned}
$$

Graph Spectrum from GFT

- Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

$$
L u_{i}=\lambda_{i} \breve{u}_{i} \text { eigenvalue }
$$

1. Edge weights affect shapes of eigenvectors.
2. Eigenvalues (≥ 0) as graph frequencies.

- Constant eigenvector is DC.
- \# zero-crossings increases as λ increases.

- GFT defaults to DCT for un-weighted connected line.
- GFT defaults to DFT for un-weighted connected circle.

Variants of Graph Laplacians

- Graph Fourier Transform (GFT) is eigen-matrix of graph Laplacian L.

$$
L u_{i}=\lambda_{i} u_{i} \longleftarrow \text { eigenvector }
$$

- Other definitions of graph Laplacians:
- Normalized graph Laplacian:

$$
L_{n}=D^{-1 / 2} L D^{-1 / 2}=I-D^{-1 / 2} A D^{-1 / 2}
$$

Characteristics:

- Normalized.
- Symmetric.
- No DC component.
- Random walk graph Laplacian:

$$
L_{r w}=D^{-1} L=I-D^{-1} A
$$

- Normalized.
- Asymmetric.
- Eigenvectors not orthog.
- Generalized graph Laplacian [1]:

$$
L_{g}=L+D^{*}
$$

- Symmetric.
- L plus self loops.
- Defaults to DST, ADST.

GSP and Graph-related Research

GSP: SP framework that unifies concepts from multiple fields.
Partial Differential

	graphical model, manifold learning, classifier learning
Machine Learning	
	Max cut, graph transformation
	Combinatorial Graph Theory

Computer Graphics

Graph Signal Processing* (GSP)

LaplaceBeltrami operator

Eq'ns

Outline

- Graph Signal Processing
- Graph spectrum, GFT
- PWS Image Coding using GFT
- Prediction Residual Coding using GGFT
- Image Denoising using Graph Laplacian Regularizer
- Soft Decoding of JPEG Images w/ LERaG
- GSP for 3D Imaging
- Summary \& Ongoing Work

PWS Image Compression using GFT

- DCT are fixed basis. Can we do better?
-42

- Idea: use adaptive GFT to improve sparsity [3].

1. Assign edge weight 1 to adjacent pixel pairs.
2. Assign edge weight 0 to sharp signal discontinuity.
3. Compute GFT for transform coding, transmit coeff.

$$
\alpha=\overleftarrow{\Psi \mathrm{X}}
$$

4. Transmit bits (contour) to identify chosen GFT to decoder (overhead of GFT).
[1] G. Shen et al., "Edge-adaptive Transforms for Efficient Depth Map Coding," IEEE Picture Coding Symposium, Nagoya, Japan, December 2010.

Transform Comparison

Transform Representation

Karhunen-Loeve
Transform (KLT)

Discrete Cosine
Transform (DCT)

Graph Fourier
Transform (GFT)
"Sparsest" signal representation given available statistical model
non-sparse signal representation across sharp boundaries

Transform Description

Can be expensive (if poorly structured)
little (fixed transform)

MR-GFT: Definition of the Search Space for Graph Fourier Transforms

Rate of transform coefficient vector α

Rate of transform description T

$$
\min _{\mathbf{W}} R_{\alpha}(\mathbf{x}, \mathbf{W})+\overleftrightarrow{R_{T}(\mathbf{W})}
$$

- In general, weights could be any number in $[0,1]$
- To limit the description cost R_{T}
- Restrict weights to a small discrete set $\mathcal{C}=\{1,0, c\}$

- "1": strong correlation in smooth regions
- "0": zero correlation in sharp boundaries
- "c": weak correlation in slowly-varying parts

MR-GFT: Derivation of Optimal Edge Weights for Weak Correlation

- Assume a 1D 1st-order autoregressive (AR) process $\quad \mathbf{x}=\left[x_{1}, \ldots, x_{N}\right]^{T}$ where,

$$
x_{k}=\left\{\begin{array}{lll}
\eta, & k=1 \\
x_{k-1}+e_{k}, & 1<k \leq N, & {[k-1, k] \in \mathcal{S} \longleftarrow \text { smooth }} \\
x_{k-1}+g+e_{k}, & 1<k \leq N, & {[k-1, k] \in \mathcal{P} \longleftarrow \text { jump }}
\end{array}\right.
$$

non-zero mean RV non-zero mean random var.

- Assuming the only weak correlation exists between x_{k-1} and x_{k}
mean
$\mathbf{F} \mathbf{X}=\mathbf{b}$
$x_{1}=\eta$
$x_{2}-x_{1}=e_{2}$
$\quad \ldots$
$x_{k}-x_{k-1}=g+e_{k}$
\ldots
$x_{N}-x_{N-1}=e_{N}$
$\mu=\left[\begin{array}{llllllll}0 & \cdots & 0 & m_{g} & \cdots & m_{g}\end{array}\right]^{T}$

MR-GFT: Derivation of Optimal

Edge Weights for Weak Correlation (cont'd)

- Covariance matrix

$$
\begin{aligned}
\mathbf{C} & =E\left[(\mathbf{x}-\mu)(\mathbf{x}-\mu)^{T}\right] \\
& =E\left[\mathbf{x x}^{T}\right]-\mu \mu^{T} \\
& =E\left[\mathbf{F}^{-1} \mathbf{b} \mathbf{b}^{T}\left(\mathbf{F}^{T}\right)^{-1}\right]-\mu \mu^{T} \\
& =\mathbf{F}^{-1} E\left[\mathbf{b b}^{T}\right]\left(\mathbf{F}^{T}\right)^{-1}-\mu \mu^{T}
\end{aligned}
$$

- Precision matrix (tri-diagonal)
$E\left[\mathbf{b b}^{\tau}\right]=\left[\begin{array}{cccccccc}\sigma_{1}^{2} & 0 & & \cdots & 0 & \cdots & & 0 \\ 0 & 1 & & \cdots & 0 & \cdots & & 0 \\ & & \ddots & & & & & \\ 0 & 0 & \cdots & 1 & 0 & \cdots & & 0 \\ 0 & 0 & \cdots & 0 & \sigma_{s}^{2}+m_{s}^{2}+1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 1\end{array}\right]$

$$
\left[\begin{array}{ccc}
1+\frac{1}{\sigma_{1}^{2}} & -1 & \\
-1 & 2 & -1
\end{array}\right.
$$

$$
\mathbf{Q}=\mathbf{C}^{-1}=
$$

$$
\begin{array}{lr}
\ddots & \ddots \\
-1 & 2
\end{array}
$$

$$
c=W_{k-1, k}=\frac{1}{\sigma_{g}^{2}+1}
$$

BJTU 11/25/2017

MR-GFT: Adaptive Selection of Graph Fourier Transforms

Experimentation

- Setup
- Test images: depth maps of Teddy and Cones, and graphics images of Dude and Tsukuba.
- Compare against: HR-DCT, HR-SGFT, SAW, MR-SGFT in H. 264.
- Results

HR-DCT: 6.8 dB
HR-SGFT: 5.9 dB
SAW: $\quad 2.5 \mathrm{~dB}$
MR-SGFT: 1.2 dB

Subjective Results

HR-DCT

HR-SGFT

BJTU 11/25/2017

MR-GFT

Mode Selection

red: WGFT blue: UGFT

Edge Coding for PWS Image Compression

(a)

)

Fig. 2. (a) An example of a contour represented by a four-connected chain codes: east-s-r-s-l-l-s-r-1-r-s-l-r-s-s-r-l-s-s.
(b) directional code.

$$
P\left(x_{i} \mid \mathbf{x}_{1}^{i-1}\right)=P\left(x_{i} \mid \mathbf{w}\right)
$$

- Coding of sequence of between-pixel edges, or chain code with symbols $\{l, s, r\}$.
- Design a variable-length context tree (VCT) to compute symbol probabilities for arithmetic coding.
(b)

- Arithmetic Edge Coding [1,2]:

Outline

- Graph Signal Processing
- Graph spectrum, GFT
- PWS Image Coding using GFT
- Prediction Residual Coding using GGFT
- Image Denoising using Graph Laplacian Regularizer
- Soft Decoding of JPEG Images w/ LERaG
- GSP for 3D Imaging
- Summary \& Ongoing Work

Motivation

- Intra-prediction

Intra-prediction in H. 264

- Discontinuities at block boundaries
- intra-prediction will not be chosen or bad prediction

Histogram of inter-pixel difference

Optimal 1D Intra prediction

Assume a 1D 1st-order autoregressive (AR) process

$$
x_{n}=x_{n-1}+\hat{\mu}_{i\left(\mu_{n}\right)}+g_{i\left(\mu_{n}\right)}
$$

bin average

approximation error

- Optimal prediction in terms of resulting in a zero-mean prediction residual
- Default to conventional intra-prediction when $\hat{\mu}_{a}=\hat{\mu}_{b}=0$, i.e.,

$$
\left[x_{0}, \ldots, x_{0}\right]^{T}
$$

Generalized Graph Fourier Transform

- The precision matrix of the prediction residual

- Default to the DCT if $\alpha_{a}=0$ and $\alpha_{b}=1$
- Default to the ADST [1] if $\alpha_{a}=1_{\text {ind }} \alpha_{b}=1$

$$
\alpha_{a}=\sigma_{g_{0}}^{2} / \sigma_{g_{a}}^{2}
$$

discontinuities within signal
$\alpha_{b}=\sigma_{g_{0}}^{2} / \sigma_{g_{b}}^{2}$
Variance of approx. error

Experimental Results

- Test images: PWS images and natural images
- Compare proposed intra-prediction (pIntra) + GGFT against:
- edge-aware intra-prediction (elntra) + DCT
- elntra + ADST
- elntra + GFT

Spectral Folding \& Critical Sampling

- Spectral Folding:
- (Sub)sampling a bandlimited signal at freq. f_{s} \rightarrow freq. content replication at f_{s}.

- Nyquist Sampling Theorem:
- To avoid aliasing, sample at $2 x$ max. freq. of bandlimited signal.

- Multirate Wavelet Filterbank:
- System of "perfect reconstruction" bandpass filters

Bipartite Graph Approximation

- Problem: GraphBior [1,2] (critically sampled, perfect reconst. wavelet) for bipartite graph only!
- Idea [3]:
- Successively find bipartite graph approximation.
- Criteria for graph approx [1]:

- Preserve graph structure, minimize eigenvalue=1.
[1] S. Narang and A. Ortega, "Perfect reconstruction two-channel wavelet filter banks for graph structured data," IEEE Transactions on Signal Processing, vol. 60, no. 6,pp. 2786-2799, June 2012.
[2] S. Narang and A. Ortega, "Compact support biorthogonal wavelet filterbanks for arbitrary undirected graphs," IEEE Transactions on Signal Processing, vol. 61, no. 19, pp. 4673-4685, Oct 2013.

Bipartite Subgraph Decomposition Example

Outline

- Graph Signal Processing
- Graph spectrum, GFT
- PWS Image Coding using GFT
- Prediction Residual Coding using GGFT
- Image Denoising using Graph Laplacian Regularizer
- Soft Decoding of JPEG Images w/ LERaG
- GSP for 3D Imaging
- Summary \& Ongoing Work

Graph Laplacian Regularizer

- $\mathrm{x}^{T} \mathrm{Lx}$ (graph Laplacian quadratic form) [1]) is one variation measure \rightarrow graph-signal smoothness prior.
- Signal Denoising: nodal domain

- MAP formulation:

fidelity term

Graph Laplacian Regularizer for Denoising

1. Choose graph:

- Connect neighborhood graph.
- Assign edge weight:

$$
w_{i, j}=\exp \left(\frac{-\left\|x_{i}-x_{j}\right\|_{2}^{2}}{\sigma_{1}^{2}}\right) \exp \left(\frac{-\left\|l_{i}-l_{j}\right\|_{2}^{2}}{\sigma_{2}^{2}}\right)
$$

2. Solve obj. in closed form:

$$
\min _{x}\|y-x\|_{2}^{2}+\mu \mathrm{x}^{T} \mathrm{~L} \mathrm{x}
$$

- Iterate until convergence.

TABLE I
PERFORMANCE COMPARISON IN PSNR (DB) at $Q F=15$

Images	$Q F=15$					
	JPEG	TV	DicTV	TGV	ANCE	Prop
Dude	37.00	34.23	37.58	37.19	37.99	$\mathbf{3 8 . 1 7}$
Teddy	31.46	32.30	31.60	31.52	32.14	32.33
Tsukuba	33.13	35.29	34.19	33.68	34.69	$\mathbf{3 6 . 2 2}$
Ballet	35.63	36.48	36.77	36.15	37.28	37.49
Champagne	36.82	34.12	37.46	37.00	37.73	37.68
Gain	1.57	1.89	0.86	1.27	0.41	-

Analysis of Graph Laplacian Regularizer

- Show $S_{\mathrm{G}}(\mathbf{u})=\mathbf{u}^{\mathrm{T}} \mathbf{L u}$ converges to continuous functional S_{Ω}, analysis of S_{Ω} explains how $\mathbf{u}^{\mathrm{T}} \mathbf{L u}$ penalizes candidates:

$$
\operatorname{prior}(\mathbf{x})=\mathbf{x}^{T} \mathbf{L} \mathbf{x} \rightarrow S_{\Omega}(x)=\int_{\Omega} \nabla x^{T} \mathbf{G}^{-1} \nabla x(\sqrt{\operatorname{det} \mathbf{G}})^{2 \gamma-1} d \mathbf{s}
$$

- Derive optimal $S_{\mathrm{G}}(\mathbf{u})=\mathbf{u}^{\mathrm{T}} \mathbf{L u}$ for denoising: graph is discriminant for small noise, robust when very noisy.

$$
\mathbf{v}_{i}=\left[\mathbf{f}_{1}(i) \mathbf{f}_{2}(i) \ldots \mathbf{f}_{N}(i)\right]^{\mathrm{T}}
$$

$$
\text { distance } \longrightarrow d_{i j}^{2}=\left\|\mathbf{v}_{i}-\mathbf{v}_{j}\right\|_{2}^{2}
$$

$$
\xrightarrow[w_{i j}]{\text { edge weight }}=\left(\rho_{i} \rho_{j}\right)^{-\gamma} \psi\left(d_{i j}\right)
$$

> Non-local self-similarity and MMSE formulation
obtain Optimal regularizer S_{G}

$$
\begin{array}{ll}
\text { metric } & \vec{G}=\sum_{n=1}^{N} \nabla f_{n} \cdot \nabla f_{n}{ }^{\mathrm{T}},
\end{array}
$$

- We interpret graph Laplacian regularization as anisotropic diffusion, show that it not only smooths but may also sharpens the image, promote piecewise smooth images

Denoising Experiments (natural images)

- Subjective comparisons $\left(\sigma_{I}=40\right)$

Original

BM3D, 27.99 dB

Noisy, 16.48 dB

PLOW, 28.11 dB

K-SVD, 26.84 dB

OGLR, 28.35 dB

Denoising Experiments (depth images)

- Subjective comparisons ($\sigma_{\mathrm{I}}=30$)

Original

Noisy, 18.66 dB

BM3D, 33.26 dB

NLGBT, 33.41 dB OGLR, 34.32 dB

Outline

- Graph Signal Processing
- Graph spectrum, GFT
- PWS Image Coding using GFT
- Prediction Residual Coding using GGFT
- Image Denoising using Graph Laplacian Regularizer
- Soft Decoding of JPEG Images w/ LERaG
- GSP for 3D Imaging
- Summary \& Ongoing Work

Soft Decoding of JPEG Images

- Setting: JPEG compresses natural images:

1. Divide image into 8×8 blocks, DCT.
2. Perform DCT transform per block and quantize:

3. Quantized DCT coeff entropy coded.

- Decoder: uncertainty in signal reconstruction:

$$
q_{i} \mathrm{Q}_{i} \leq \mathrm{Y}_{i} \leq\left(q_{i}+1\right) \mathrm{Q}_{i}, i=1,2, \cdots, 64
$$

Graph Laplacian Regularizer for Denoising

1. Choose graph:

- Connect neighborhood graph.
- Assign edge weight:

$$
w_{i, j}=\exp \left(\frac{-\left\|x_{i}-x_{j}\right\|_{2}^{2}}{\sigma_{1}^{2}}\right) \exp \left(\frac{-\left\|l_{i}-l_{j}\right\|_{2}^{2}}{\sigma_{2}^{2}}\right)
$$

2. Solve obj. in closed form:

$$
\min _{x}\|y-x\|_{2}^{2}+\mu x^{T} L x
$$

- Iterate until convergence.

Comments:

1. \mathbf{L} is NOT normalized.
2. Why works well for PWS signals?

$$
2+2+2
$$

TABLE I
Performance Comparison in PSNR (DB) at $Q F=15$

Images	$Q F=15$					
	JPEG	TV	DicTV	TGV	ANCE	Prop
Dude	37.00	34.23	37.58	37.19	37.99	$\mathbf{3 8 . 1 7}$
Teddy	31.46	32.30	31.60	31.52	32.14	$\mathbf{3 2 . 3 3}$
Tsukuba	33.13	35.29	34.19	33.68	34.69	$\mathbf{3 6 . 2 2}$
Ballet	35.63	36.48	36.77	36.15	37.28	$\mathbf{3 7 . 4 9}$
Champagne	36.82	34.12	37.46	37.00	$\mathbf{3 7 . 7 3}$	37.68
Gain	1.57	1.89	0.86	1.27	0.41	-

pixel intensity difference

pixel location difference

Spectral Clustering

- Normalized Cut [1]:

- Problem is NP-hard, so:

1. Rewrite as:

$$
\min _{\mathrm{f}}^{\operatorname{ard} \frac{\mathrm{f}}{} \frac{\mathrm{f}^{T} \mathrm{Lf}}{\mathrm{f}^{T} \mathrm{Df}}} \quad \text { s.t. } f_{i}= \begin{cases}\frac{1}{\operatorname{vol}(A)} & \text { if } i \in A \\ \frac{-1}{\operatorname{vol}(B)} & \text { if } i \in B\end{cases}
$$

2. Relax to:

$$
\min _{\mathrm{f}} \frac{\mathrm{f}^{T} \mathrm{Lf}}{\mathrm{f}^{T} \mathrm{Df}} \quad \text { s.t. } \mathrm{f}^{T} \mathrm{D} 1=0
$$

Eigenvectors of Normalized graph Laplacian

- Define:

$$
\mathrm{v}:=\mathrm{D}^{1 / 2} \mathrm{f} \quad \mathrm{v}_{1}:=\mathrm{D}^{1 / 2} 1
$$

- Problem rewritten as:

$$
\min _{x}\|\mathrm{y}-\mathrm{x}\|_{2}^{2}+\mu \mathrm{x}^{T} \mathrm{~L}_{\mathrm{n}} \mathrm{x}
$$

candidate objective

- \mathbf{v}_{1} minimizes obj \rightarrow Sol' n is $2^{\text {nd }}$ eigenvector of \mathbf{L}_{n}.
- If \mathbf{f}^{*} optimal to norm. cut, \mathbf{v}^{*} is PWS \rightarrow well rep. PWS signals!
- f* optimal when nodes easy to cluster:
- Easy-to-cluster graph has small Fiedler number.
- Disadvantage:

- \mathbf{v}_{1} not constant vector (DC) \rightarrow cannot well rep. smooth patch.

Left E-vector random walk graph Laplacian (LERaG)

- Disadvantage:
- \mathbf{L}_{w} is asymmetric \rightarrow no orthogonal e-vectors $w /$ real e-values.
- So, left Eigenvector Random Walk Graph Laplacian (LERaG) [1]:

$$
\mathbf{x}^{T} \mathcal{L}_{r}^{T} \mathcal{L}_{r} \mathbf{x}=\left(\mathbf{x}^{T} \mathbf{D}^{1 / 2} \mathcal{L}_{n}\right) \mathbf{D}^{-1}\left(\mathcal{L}_{n} \mathbf{D}^{1 / 2} \mathbf{x}\right)
$$

$$
\gamma=\mathcal{L}_{n} \mathbf{D}^{1 / 2} \mathbf{x}
$$

projection of signal \mathbf{x}
to $\mathbf{D}^{1 / 2}$, then \mathbf{L}_{n}

$$
\frac{\gamma^{T} \gamma}{d_{\max }} \leq \gamma^{T} \mathbf{D}^{-1} \gamma \leq \frac{\gamma^{T} \gamma}{d_{\min }} \Rightarrow\left(d_{\min }^{-1}\right) \gamma^{T} \gamma
$$

Comparison of Graph-signal Smoothness Priors

- Different graph Laplacian matrices
- Combinatorial graph Laplacian: $\mathbf{L}=\mathbf{D}-\mathbf{W}$
- Symmetrically normalized graph Laplacian: $\mathcal{L}_{n}=\mathbf{D}^{-1 / 2} \mathbf{L D}^{-1 / 2}$
- Random walk graph Laplacian: $\mathcal{L}_{r}=\mathbf{D}^{-1} \mathbf{L}$
- Doubly stochastic graph Laplacian [1]: $\mathcal{L}_{d}=\mathbf{I}-\mathbf{C}^{-1 / 2} \mathbf{W C}^{-1 / 2}$

Graph Laplacian	Symmetric	Normalized	DC e-vector
Combinatorial	Yes	No	Yes
Symmetrically Normalized	Yes	Yes	No
Random Walk	No	Yes	Yes
Doubly Stochastic [1]	Yes	Yes	Yes

LERaG for Soft Decoding of JPEG Images

- Problem: reconstruct image given indexed quant. bin in 8×8 DCT.
- Procedure:

1. Initialize per-block MMSE sol'n via Laplacian prior.
2. Solve per-patch signal restoration problem w/ 2 priors:
3. Sparsity prior
4. Graph-signal smoothness prior

Soft Decoding Algorithm w/ Prior Mixture

- Objective: fidelity term
sparsity prior graph-signal smoothness
.
$\arg \min \|\mathbf{x}-\mathbf{\Phi} \boldsymbol{\alpha}\|_{2}^{2}+\lambda_{1}\|\boldsymbol{\alpha}\|_{0}+\lambda_{2} \mathbf{x}^{T}\left(d_{\text {min }}^{-1}\right) \mathbf{L} \mathbf{D}^{-1} \mathbf{L} \mathbf{x}$,

graph-signal, $工\{\mathbf{x}, \boldsymbol{\alpha}\}$

code vector s.t. $\mathbf{q} \mathbf{Q} \preceq \mathbf{T M x} \prec(\mathbf{q}+1) \mathbf{Q}$
quantization bin constraint

- Optimization:

1. Laplacian prior provides an initial estimation;
2. Fix \mathbf{x} and solve for \mathbf{a};
3. Fix \mathbf{a} and solve for \mathbf{x}.

Evolution of $2^{\text {nd }}$ Eigenvector

- $2^{\text {nd }}$ Eigenvector becomes more PWS:

(a) initialization, LERaG - 76453.02,
$2{ }^{\text {nd }}$ Eigenvalue -0.001079

(c) iter $=2$, LERaG $=14057.09$,
$2^{\text {th }}$ Eigenvalue $=35 e-6$

- PWS means:

1. better pixel clusters,
2. smaller Fidler number (2 $2^{\text {nd }}$ eigenvalue),
3. Smaller smoothness penalty term.

Experimental Setup

- Compared methods
- BM3D: well-known denoising algorithm
- KSVD: with a large enough over-complete dictionary (100x4000); our method uses a much smaller one (100x400).
- ANCE: non-local self similarity [Zhang et al. TIP14]
- DicTV: Sparsity + TV [Chang et al, TSP15]
- SSRQC: Low rank + Quantization constraint [Zhao et al. TCSVT16]

PSNR / SSIM Comparison

QUALITY COMPARISON WITH RESPECT TO PSNR (IN DB) AND SSIM AT QF $=40$

Images	JPEG		BM3D [38]		KSVD [8]		ANCE [18]		DicTV [3]		SSRQC [20]		Ours	
	PSNR	SSIM												
Butterfy	29.97	0.9244	31.35	0.9555	31.57	0.9519	31.38	0.9548	31.22	0.9503	32.02	0.9619	32.87	0.9627
Leaves	30.67	0.9438	32.55	0.9749	33.04	0.9735	32.74	0.9728	32.45	0.9710	32.13	0.9741	34.42	0.9803
Hat	32.78	0.9022	33.89	0.9221	33.62	0.9149	33.69	0.9169	33.20	0.8988	34.10	0.9237	34.46	0.9268
Boat	33.42	0.9195	34.77	0.9406	34.28	0.9301	34.64	0.9362	26.08	0.7550	33.88	0.9306	34.98	0.9402
Bike	28.98	0.9131	29.96	0.9356	30.19	0.9323	30.31	0.9357	29.75	0.9154	30.35	0.9411	31.14	0.9439
House	35.07	0.8981	36.09	0.9013	36.05	0.9055	36.12	0.9048	35.17	0.8922	36.49	0.9072	36.55	0.9071
Flower	31.62	0.9112	32.81	0.9357	32.63	0.9271	32.67	0.9314	31.86	0.9084	33.02	0.9362	33.37	0.9371
Parrot	34.03	0.9291	34.92	0.9397	34.91	0.9371	35.02	0.9397	33.92	0.9227	35.11	0.9401	35.32	0.9401
Pepper512	34.21	0.8711	34.94	0.8767	34.89	0.8784	34.99	0.8803	34.24	0.8639	35.05	0.8795	35.19	0.8811
Fishboat512	32.76	0.8763	33.61	0.8868	33.36	0.8809	33.60	0.8861	32.53	0.8496	33.68	0.8859	33.73	0.8871
Lena512	35.12	0.9089	36.03	0.9171	35.82	0.9146	36.04	0.9177	34.85	0.8986	36.09	0.9187	36.11	0.9191
Airplane512	33.36	0.9253	34.38	0.9361	34.36	0.9341	34.53	0.9358	33.75	0.9134	35.81	0.9355	36.07	0.9439
Bike512	29.43	0.9069	30.47	0.9299	30.66	0.9258	30.71	0.9298	30.05	0.9043	32.26	0.9372	32.55	0.9387
Statue512	32.78	0.9067	33.61	0.9188	33.55	0.9149	33.55	0.9193	32.53	0.8806	34.88	0.9249	34.95	0.9273
Average	32.44	0.9097	33.52	0.9264	33.50	0.9229	33.57	0.9258	32.25	0.8945	33.91	0.9283	34.41	0.9311

Subjective Quality Evaluation

(a) $\operatorname{BM} 3 \mathrm{D}(23.91,0.8266)$

(b) KSVD $(24.55,0.8549)$

(c) ANCE $(24.34,0.8532)$

(d) DicTV $(23.42,0.8176)$

Subjective Quality Evaluation

Other Comparisons

- Computation complexity:

TIME	BM3D	KSVD	ANCE	DicTV	SSRQC	Proposed
Average	373.35	209.71	307.43	39.53	70.32	143.73

- Comparisons w/ other graph regularizers:

	Images	Combinatorial	Normalized	Doubly Stochastic
LERaG				
Butterfly	25.42	24.70	25.15	$\mathbf{2 5 . 5 7}$
Leaves	24.99	24.54	24.84	$\mathbf{2 5 . 1 7}$
Hat	27.53	27.42	27.43	$\mathbf{2 7 . 5 6}$
Boat	26.99	26.94	26.98	$\mathbf{2 6 . 9 9}$
Bike	23.12	23.01	23.09	$\mathbf{2 3 . 1 7}$
House	29.87	29.83	29.86	$\mathbf{2 9 . 8 9}$
Flower	25.84	25.78	25.82	$\mathbf{2 5 . 8 7}$
Parrot	27.97	27.95	27.97	$\mathbf{2 8 . 0 2}$
Average	26.46	26.27	26.39	$\mathbf{2 6 . 5 3}$

Outline

- Graph Signal Processing
- Graph spectrum, GFT
- PWS Image Coding using GFT
- Prediction Residual Coding using GGFT
- Image Denoising using Graph Laplacian Regularizer
- Soft Decoding of JPEG Images w/ LERaG
- GSP for 3D Imaging
- Summary \& Ongoing Work

Graph-Signal Sampling / Encoding for 3D Point Cloud

- Problem: Point clouds require encoding specific 3D coordinates.
- Assumption: smooth 2D manifold in 3D space.
- Proposal: progressive 3D geometry rep. as series of graph-signals.

1. adaptively identifies new samples on the manifold surface, and
2. encodes them efficiently as graph-signals.

- Example:

1. Interpolate $i^{\text {th }}$ iteration samples (black circles) to a continuous kernel (mesh), an approximation of the target surface \boldsymbol{S}.
2. New sample locations, knots (squares), are located on the kernel surface.
3. Signed distances between knots and \boldsymbol{S} are recorded as sample values.
4. Sample values (green circles) are encoded as a graph-signal via GFT.

Graph-Signal Sampling / Encoding for 3D Point Cloud

- Experimental Results:

Pre-Demosiac Light Field Image Compression Using Graph Lifting Transform

- Problem: Sub-aperture images in Light field data are huge.

- Proposal: postpone demosiacking to decoder.

Pre-Demosiac Light Field Image Compression Using Graph Lifting Transform

- Experimental Results:

Dataset: EPFL light field image dataset
Baseline: All-intra HEVC coding in YUV4:2:0 and RGB 4:4:4

Outline

- Graph Signal Processing
- Graph spectrum, GFT
- PWS Image Coding using GFT
- Prediction Residual Coding using GGFT
- Image Denoising using Graph Laplacian Regularizer
- Soft Decoding of JPEG Images w/ LERaG
- GSP for 3D Imaging
- Summary \& Ongoing Work

Summary

- Graph Signal Processing (GSP)
- Spectral analysis tools to process signals on graphs.
- PWS Image Compression
- Graph Fourier Transform
- Generalized GFT
- Arithmetic Edge Coding
- Graph-signal Smoothness for Inverse Problems
- Image denoising w/ graph Laplacian regularizer
- New regularizer LERaG soft decoding of JPEG Images
- GSP for 3D Imaging
- 3D point cloud compression, light field image compression

Other GSP Works: Semi-Supervised Graph Classifier Learning

- Binary Classifier: given feature vector x_{i} of dimension K, compute $f\left(x_{i}\right) \in\{0,1\}$.
- Classifier Learning: given partial / noisy labels $\left(x_{i}, y_{i}\right)$, train classifier $f\left(x_{i}\right)$.

- GSP Approach [1]:

example graph-based classifier

1. Construct similarity graph with $+/-$ edges.
2. Pose MAP graph-signal restoration problem.
3. Perturb graph Laplacian to ensure PSD.
4. Solve num. stable MAP as sparse lin. system.

Other GSP Works

- Coding of spectral image [1], 3D point cloud w/ GFT.
- Coding of graph data w/ graph wavelets.
- Political leaning estimation [2].
- Wireless signal / power estimation [3].

```
[1] J. Zeng, G. Cheung, Y.-H. Chao, I. Blanes, J. Serra-Sagrista, A. Ortega, "Hyperspectral Image Coding using Graph Wavelets," IEEE International Conference on Image Processing, Beijing, China, September, 2017.
```


[2] B. Renoust et al., "Estimation of Political Leanings via Graph-Signal Restoration,"
IEEE International Conference on Multimedia and Expo, Hong Kong, China, July, 2017
[3] M. Kaneko, G. Cheung, W.-t. Su, C.-W. Lin, "Graph-based Joint Signal / Power Restoration for Energy Harvesting Wireless Sensor Networks," IEEE Globecom,

Q\&A

- Email: cheung@nii.ac.jp
- Homepage: http://research.nii.ac.jp/~cheung/

