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In-Network View Synthesis for Interactive
Multiview Video Systems
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Abstract—Interactive multiview video applications endow
users with the freedom to navigate through neighboring view-
points in a 3D scene. To enable such interactive navigation with
a minimum view-switching delay, multiple camera views are sent
to the users, which are used as reference images to synthesize
additional virtual views via depth-image-based rendering. In
practice, bandwidth constraints may however restrict the number
of reference views sent to clients per time unit, which may in
turn limit the quality of the synthesized viewpoints. We argue
that the reference view selection should ideally be performed close
to the users, and we study the problem of in-network reference
view synthesis such that the navigation quality is maximized at
the clients. We consider a distributed cloud network architecture
where data stored in a main cloud is delivered to end users
with the help of cloudlets, i.e., resource-rich proxies close to the
users. In order to satisfy last-hop bandwidth constraints from
the cloudlet to the users, a cloudlet re-samples viewpoints of the
3D scene into a discrete set of views (combination of received
camera views and synthesized virtual views) to be used as
reference for the synthesis of additional virtual views at the client.
This in-network synthesis leads to better viewpoint sampling
given a bandwidth constraint compared to simple selection of
camera views, but it may however carry a distortion penalty
in the cloudlet-synthesized reference views. We therefore cast
a new reference view selection problem where the best subset
of views is defined as the one minimizing the distortion over a
view navigation window defined by the user under transmission
bandwidth constraints. We show that the view selection problem
is NP-hard, and propose an effective polynomial time algorithm
using dynamic programming to solve the optimization problem
under general assumptions that cover most of the multiview
scenarios in practice. Simulation results confirm the performance
gain offered by virtual view synthesis in the network. It shows
that cloud computing resources provide important benefits in
applications with limited resources.

Index Terms—Depth-image-based rendering, network process-
ing, cloud-assisted applications, interactive systems.

I. INTRODUCTION

Interactive free viewpoint video systems [1] endow users
with the ability to choose and display any virtual views of a 3D
scene, given original viewpoint images captured by multiple
cameras. In particular, a virtual view image can be synthesized
by the decoder via depth-image-based rendering (DIBR) [2]
using texture and depth images of two neighboring views that
act as reference viewpoints. One of the key challenges in

L. Toni, and P. Frossard are with École Polytechnique Fédérale de Lausanne
(EPFL), Signal Processing Laboratory - LTS4, CH-1015 Lausanne, Switzer-
land. Email: {laura.toni, pascal.frossard}@epfl.ch.

Gene Cheung is with the National Institute of Informatics, Tokyo, Japan.
Email Address: cheung@nii.ac.jp

This work was partially funded by the Swiss National Science Founda-
tion (SNSF) under the CHIST- ERA project CONCERT (A Context-Adaptive
Content Ecosystem Under Uncertainty), project nr. FNS 20CH21 151569.

Fig. 1. Considered scenario. Green lines represent abundant bandwidth
channels, red lines are bottleneck channels.

interactive multiview video streaming (IMVS) [3] systems is
to transmit an appropriate subset of reference views from a
potentially large number of camera-captured views, such that
the client enjoys high quality and low delay view navigation
even in resource-constrained environments [4]–[6].

In this paper, we propose a new paradigm to solve the
reference view selection problem and capitalize on cloud
computing resources to perform fine adaptation close to the
clients. We consider a hierarchical cloud framework, where
the selection of reference views is performed by a network
of cloudlets, i.e., resource-rich proxies that can perform per-
sonalized processing at the edges of the core network [7],
[8]. An adaptation at the cloudlets results in a smaller round-
trip time (RTT), hence more reactivity than more centralized
architectures. Specifically, we consider the scenario depicted
in Fig. 1, where a main cloud stores pre-encoded video from
different cameras, which are then transmitted to the edge
cloudlets that act as proxies for final delivery to users. We
assume that there is sufficient network capacity between the
main cloud and the edge cloudlets for the transmission of
all camera views, but there exists however a bottleneck of
limited capacity between a cloudlet and a nearby user1. In this
scenario, each cloudlet sends to a client the set of reference
views that respect bandwidth capacities and enable synthesis of
all viewpoints in the client’s navigation window. This window
is defined as the range of viewpoints within which the user can
freely navigate without any delay interacting with the cloudlet.

We argue that, in resource-constrained networks, re-
sampling the viewpoints of the 3D scene in the network—
i.e., synthesizing novel virtual views in the cloudlets that are
transmitted as new references to the decoder—is beneficial
compared to mere subsampling of the original set of camera
views. We illustrate this in Fig. 1, where the main cloud stores
three coded camera views: {1, 2, 3} while the bottleneck links

1In practice, the last-mile access network is often the bottleneck in real-time
media distribution.
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between cloudlet-user pairs can support the transmission of
only two views2. If user A requests a navigation window
[2.4, 2.8], the cloudlet can simply forward the closest camera
views 2 and 3. However, if user B requests the navigation
window [1.8, 2.2], transmitting camera views 1 and 3 results
in large synthesized view distortions due to the large distance
between reference and virtual views (called reference view
distance in the sequel). Instead, the cloudlet can synthesize
virtual views 1.8 and 2.2 using camera views 1, 2, 3 and send
these virtual views to the user B as new reference views
for the navigation window [1.8, 2.2]. This strategy may result
in smaller synthesized view distortion at the client due to
the smaller distance to the reference views. However, the in-
network virtual view synthesis may also introduce distortion
into the new reference views 1.8 and 2.2, which results in a
tradeoff that should be carefully considered when choosing the
views to be synthesized in the cloudlet.

Equipped with the above intuitions, we study the main
tradeoff between reference distortion and bandwidth gain.
Using a Gauss-Markov model, we first analyze the benefit
of synthesizing new reference images in the network. We
then formulate a new synthesized reference view selection
optimization problem. It consists in selecting or constructing
the optimal reference views that lead to the minimum distor-
tion for all synthesized virtual views in the user’s navigation
window subject to a bandwidth constraint between the cloudlet
and the user. We show that this combinatorial problem can be
solved optimally but is NP-hard. We then introduce a generic
assumption on the view synthesis distortion which leads to a
polynomial time solution with a dynamic programming (DP)
algorithm. We then provide extensive simulation results for
synthetic and natural sequences. They confirm the quality
gain experienced by the IMVS clients when synthesis is
allowed in the network, with respect to scenarios whose edge
cloudlets can only transmit camera views. They also show that
synthesis in the network allows to maintain good navigation
quality when reducing the number of cameras as well as when
cameras are not ideally positioned in the 3D scene. This is an
important advantage in practical settings, which confirms that
cloud processing resources can be judiciously used to improve
the performance of applications that have limited network
resources.

The remainder of this paper is organized as follows. Related
works are described in Section II. In Section III, we provide
a system overview and analyze the benefit of in-network view
synthesis via a Gauss-Markov model to impart intuitions.
The reference view selection optimization problem is then
formulated in Section IV. We propose general assumptions on
view synthesis distortion in Section V and derive an additional
polynomial time view selection algorithm. In Section VI, we
discuss the simulation results, and we conclude in Section VII.

II. RELATED WORK

Prior studies addressed the problem of providing inter-
activity in IMVS, while saving on transmitted bandwidth

2We consider integer index i for any camera view, while we assume that a
virtual view can have a non-integer index i.x, which corresponds to a position
between camera views i and i+ 1.

and view-switching delay [3], [9]–[14]. These works mainly
focused on optimizing the frame coding structure to improve
interactive media services. In the case of pre-stored camera
views, however, rather than optimal frame coding structures,
interactivity in network-constrained scenario can be addressed
by studying optimal camera selection strategies, where a subset
of selected camera views is actually transmitted to clients
such that the navigation quality is maximized and resource
constraints are satisfied [4]–[6], [15]–[18]. In [18], a real-
time multiview coding optimization is proposed for point-to-
point interactive streaming. The coding scheme is based on
a camera selection algorithm that predicts each user future
requests by observing his/her head position. Rather than real-
time coding, we mainly focus on pre-encoded video sequences
with real-time processing at the cloudlets for on-demand inter-
active streaming. We note that although virtual view synthesis
techniques have been studied intensively [19], [20], the view
synthesis problem remains challenging, especially when the
distance between cameras is large.

In [21], an optimal camera view selection algorithm in
resource-constrained networks has been proposed based on
the users’ navigation paths. In [22] a bit allocation algorithm
over an optimal subset of camera views is proposed for
optimizing the visual distortion of reconstructed views in
interactive systems. Finally, in [23], [24] authors optimally
organize camera views into layered subsets that are coded and
delivered to clients in a prioritized fashion to accommodate for
the network and clients heterogeneity. While in these works
the selection is limited to camera views, we instead assume
virtual view synthesis in the cloud network.

In-network adaptation strategies allow to cope with net-
work resource constraints and are mainly categorized in i)
packet-level processing and ii) modification of the source
information. In the first category, packet filtering, routing
strategies [25], [26] or caching of media content information
[27] allow to save network resources while improving the
quality experienced by clients. In the second category — in-
network processing at the source level — the main objective
is usually to process the source data in the network reducing
both the communication volume and the processing required at
the client side. Transcoding strategies might be collaboratively
performed in peer-to-peer networks [28] or in the cloud [29].
Furthermore, source data can be compressed in the cloud [30],
[31] to efficiently address users’ requests.

Rather than media processing in the main cloud, offloading
resources to cloudlets might reduce the transmission latency
[7], [8]. This is beneficial for delay-sensitive / interactive ap-
plications [32], [33]. Because of the proximity of cloudlets to
users, cloudlet computing has been under intense investigation
for cloud-gaming applications, as shown in [34] and references
there in. The above works are mainly focused on multime-
dia processing, rather than on specific multiview scenarios.
However, the use of cloudlets in delay sensitive applications
motivates the idea of cloudlet-based view synthesis for IMVS.
Cloud processing for multiview system is considered in [35]–
[37]. In [37], view synthesis in the main cloud has been
introduced to offload clients’ terminals. However, authors
mainly address the problem of computational complexity at the
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clients’ terminal, knowing the view that clients will request.
In our work, we exploit cloud computing resources to face
bandwidth constraints in delay-sensitive applications, optimiz-
ing the quality navigation over a navigation window that takes
into account the uncertainty of interactive clients. Also, to limit
this uncertainty and still experience zero switching-delay in
IMVS, we consider view synthesis at the edge cloudlets rather
than at the main cloud. To the best of our knowledge, none
of the work investigating cloud processing have considered
the problem of multi-view interactive streaming under network
resource constraints.

III. BACKGROUND

A. System Model

Let V = {v1, . . . , vN} be the set of the N camera
viewpoints captured by the multiview system. For all camera-
captured views, compressed texture and depth maps are stored
at the main cloud, with each texture/depth map pair encoded
at the same rate using standard video coding tools like
H.264 [38] or HEVC [39]. Since typically network limi-
tations reside in the last-mile access network, we assume
an abundant channel from the main cloud to the cloudlets,
such that each cloudlet receives all camera-captured views3.
The possible viewpoints offered to the users are denoted
by U = {u1, u1+1/Q, . . . , uN}. The set U contains both
synthesized views and camera views for navigation between
the leftmost and rightmost camera views, v1 and vN . It is
equivalent to offering views u = k/Q, where k is a positive
integer and 1/Q is a pre-determined fraction that describes the
minimum view spacing between neighboring virtual views. We
consider that any virtual viewpoint u ∈ U can be synthesized
using a pair of left and right reference view images vL and
vR, vL < u < vR, via a known DIBR technique such as 3D
warping [40]. View synthesis can be performed in-network
(to generate new reference views) or at the user side (to
render desired views for observation). In both cases, the same
rendering method and distortion model apply.

Each user is served by an assigned cloudlet through a
bottleneck link of capacity C, expressed in number of views.
For each RTT, a user specifies a navigation window of
viewpoints he/she will navigate in a RTT duration, and the
serving cloudlet is responsible to deliver image data needed
to synthesize all views in the window. Specifically, the goal
of the cloudlet is to serve the user with the best subset of C
viewpoints in U that synthesize the best quality virtual views
in the navigation window. In this way, the user can experience
zero-delay view navigation at time t0 +T (see [13] for details)
with optimized visual quality.

B. Analysis of Cloudlet-based Synthesized Reference View

To impart intuition on why synthesizing new references at
in-network cloudlets may improve rendered view quality at an

3Our framework can be easily extended to other network settings as well.
For example, in the case of more constrained network resources between
the main cloud and the cloudlets, only a subset of the captured views
will be forwarded to the cloudlet, and the optimization problem is adapted
accordingly.

end user, we consider a simple model to capture correlations
among neighboring views. Let xv be the signal on camera
view v, modeled as a scalar random variable that represents
all visual information acquired from camera view v. Similar
to [41], [42], we assume that the information on neighboring
views are correlated following a Gauss-Markov model; i.e.,
the variable xv is correlated with xv−1 as follows:

xv = xv−1 + ev, ∀v ≥ 2 (1)

where ev is a zero-mean independent Gaussian variable with
variance σ2

v , and x1 = e1. A large σ2
v would mean views xv

and xv−1 are not similar. We can write N variables x1, . . . , xN
in matrix form:

Fx = e, x = F−1e (2)

where

F =




1 0 . . .
−1 1 0 . . .
0 −1 1 0 . . .
...

. . . . . .
0 . . . 0 −1 1



,

x =




x1

...
xN


 , e =




e1

...
eN




Given x is zero-mean, the covariance matrix C can be
computed as:

C = E[xxT ] = F−1E[eeT ](F−1)T (3)

where E[eeT ] = diag(σ2
1 , . . . , σ

2
N ) is a diagonal matrix. The

precision matrix Q is the inverse of C and can be derived as
follows:

Q = C−1 =
(
F−1 diag(σ2

1 , . . . , σ
2
N ) (F−1)T

)−1
(4)

= FT diag(σ2
1 , . . . , σ

2
N )−1 F

=




1
σ2
1

+ 1
σ2
2

− 1
σ2
2

0 . . .

− 1
σ2
2

1
σ2
2

+ 1
σ2
3

− 1
σ2
3

0 . . .

0 − 1
σ2
3

1
σ2
3

+ 1
σ2
4
− 1
σ2
4

...
. . . . . . . . .

0 − 1
σ2
N

1
σ2
N




which is a tridiagonal matrix.
When synthesizing a view xn using its neighbors xn−1 and

xn+1, we would like to know the resulting precision. Without
loss of generality, we write x as a concatenation of two sets
of variables, i.e. x = [y z]. For example, y can be the target
synthesized view and z can be its reference views used for
synthesis. It can be shown [43] that the conditional mean and
precision matrix of y given z are:

µy|z = µy −Q−1
yyQyz (z− µz)

Qy|z = Qyy (5)

Consider now a set of four views x1, x2, x3, x4, where
x1, x2, x4 are camera views transmitted from the main cloud.
Suppose further that the user window is [1.8, 2.2], and that
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only two reference views can be sent to clients because of
bandwidth limitation. The cloudlet has to choose between
using received x4 as right reference, or synthesizing new
reference x3 using received x2 and x4. Using the discussed
Gauss-Markov model (1) and the conditionals (5), we see that
synthesizing x3 using reference x2 and x4 results in precision:

Q3|(2,4) = Q33 =
1

σ2
3

+
1

σ2
4

(6)

1/Q33 is thus the additional noise variance when using new
reference x3̄ to synthesize x2. We can then compute the
conditional precision Q2|(1,3̄) given new reference x3̄:

Q2|(1,3̄) =
1

σ2
2

+
1

σ2
3 +

(
1
σ2
3

+ 1
σ2
4

)−1 (7)

In comparison, if a user uses received x4 as right reference,
x4 will accumulate two noise terms from x2 to x4:

x4 = x2 + e3 + e4 (8)

The resulting conditional precision of x2 given x1 and x4 is:

Q2|(1,4) =
1

σ2
2

+
1

σ2
3 + σ2

4

(9)

We now compare Q2|(1,3̄) in (7) with Q2|(1,4) in (9). We see

that if σ2
3 is very large relative to σ2

4 , then
(

1
σ2
3

+ 1
σ2
4

)−1

≈ σ2
4 ,

and Q2|(1,3̄) ≈ Q2|(1,4). That means that if view x3 is very
different from x2, then synthesizing new reference x3 does not
help improving precision of x2. However, if 1

σ2
3
< ∞, then

(
1
σ2
3

+ 1
σ2
4

)−1

< σ2
4 , and Q2|(1,3̄) > Q2|(1,4), which means

that in general it is worthwhile to synthesize new reference
x3. The reason can be interpreted from the derivation above:
by synthesizing x3 using both x2 and x4, the uncertainty
(variance) for the right reference has been reduced from σ2

4

to
(

1
σ2
3

+ 1
σ2
4

)−1

, improving the precision of the subsequent
view synthesis.

Finally, we note that for a wide baseline camera setup
where the physical distance between each pair of neighboring
reference cameras is large, the noise variance σ2

i is large for
all i. That means the precisions in (7) and (9) are both small
in general. Thus while synthesizing a new reference view in-
network would still help according to our argument above, in
general the synthesized view quality is poor, and the additional
gain may be marginal.

IV. REFERENCE VIEW SELECTION PROBLEM

We now formalize the NP-hard synthesized reference view
selection problem and introduce an assumption on the distor-
tion of synthesized viewpoints.

A. Problem Formulation

Interactive view navigation means that a user can construct
any virtual view within a specified navigation window with
zero view-switching delay, using viewpoint images transmitted
from the main cloud as reference [13]. We denote this navi-
gation window by [U0

L, U
0
R] that depends on the user’s current

observed viewpoint. If bandwidth is not a concern, for best
synthesized view quality the edge cloudlet would send to the
user all camera-captured views in V as reference to synthesize
virtual view u, ∀u ∈ [U0

L, U
0
R]. When this is not feasible due

to limited bandwidth C between the serving cloudlet and the
user, only a subset of views T is sent as set of reference views.
At the client, the navigation window reconstructed from views
in T leads to an aggregate distortion D(T ) evaluated as

D(T ) =
∑

u∈[U0
L,U

0
R]

min
vL,vR∈T

{du(vL, vR, D(vL), D(vR))}

(10)

where D(v) is the distortion of viewpoint image v, due to
lossy compression for a camera-captured view, or due to DIBR
synthesis for a virtual view, and du(vL, vR, D(vL), D(vR)) is
the distortion of the virtual view u synthesized using left and
right reference views vL and vR with distortions D(vL) and
D(vR), respectively.

In the case of limited network-resources, among all subsets
T ⊂ U of synthesized and camera-captured views that satisfy
the bandwidth constraint, the cloudlet must select the best
subset T ∗ that minimizes the aggregate distortion D(T ) of
all virtual views u ∈ [U0

L, U
0
R], i.e.,

T ? : arg min
T
D(T ) (11)

s.t |T | ≤ C
T ⊆ U

We note that (11) differs from existing reference view selection
formulations [16], [17], [24] in that the cloudlet has the extra
degree of freedom to synthesize virtual view(s) as new refer-
ence(s) for transmission to the user. In (10), for each virtual
view u the best reference pair in T is selected for synthesis.
Note that, unlike [16], the best reference pair may not be the
closest references, since the quality of synthesized u depends
not only on the view distance between the synthesized and
reference views, but also on the distortions of the references.

B. Shared optimality of reference views assumption

We consider first an assumption on the synthesized view
distortion du( ) called the shared optimality of reference views:

if du(vL, vR, D(vL), D(vR)) ≤ du(v′L, v
′
R, D(v′L), D(v′R))

then du′(vL, vR, D(vL), D(vR)) ≤ du′(v′L, v
′
R, D(v′L), D(v′R))

(12)

for max{vL, v′L} ≤ u, u′ ≤ min{vR, v′R}. In words, this
assumption (12) states that if the virtual view u is better
synthesized using the reference pair (vL, vR) than (v′L, v

′
R),

then another virtual view u′ is also better synthesized using
(vL, vR) than (v′L, v

′
R). This means that if (vL, vR) is the

best reference pair for a view u, then (vL, vR) is also the
best reference pair for view u′ ∈ [vL + 1/Q, vR − 1/Q]. In
the following we show that the assumption holds in most 3D
scenes.
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Motivation on the shared optimality of reference views as-
sumption: We see intuitively that this assumption is reasonable
for smooth 3D scenes; a virtual view u tends to be similar to
its neighbor u′, so a good reference pair (vL, vR) for u should
also be good for u′. We can also argue for the plausibility of
this assumption as a consequence of two functional trends
in the synthesized view distortion dv( ) that are observed
empirically to be true generally. For simplicity, consider for
now the case where the reference views vL, vR, v′L, v

′
R have

zero distortion, i.e. D(vL) = D(vR) = D(v′L) = D(v′R) = 0.
The first trend is the monotonicity in predictor’s distance
[22]; i.e., the further-away are the reference views to the
target synthesized view, the worse is the resulting synthesized
view distortion. This trend has been successively exploited for
efficient bit allocation algorithms [22], [44]. In our scenario,
this trend implies that reference pair (vL, vR) is better than
(v′L, v

′
R) at synthesizing view u if the pair is closer to u, i.e.

|u− vL|+ |vR − u| ≤ |u− v′L|+ |v′R − u| (13)

where max{vL, v′L} < u < min{vR, v′R}.
It is easy to see that if reference pair (vL, vR) is closer to u

than (v′L, v
′
R), it is also closer to u′, thus better at synthesizing

u′. Without loss of generality, we write new virtual view u′

as u′ = u+ δ. We can then write:

|(u+ δ)− vL|+ |vR − (u+ δ)| = u− vL + vR − u
≤ u− v′L + v′R − u
≤ |(u+ δ)− v′L|+ |v′R − (u+ δ)|

(14)

where max{vL, v′L} < u′ < min{vR, v′R}.
Consider now the case where the reference views

vL, vR, v
′
L, v
′
R have non-zero distortions. In [45], another

functional trend is empirically demonstrated, where a reference
view vL with distortion D(vL) was well approximated as
a further-away equivalent reference view v#

L < vL with no
distortion D(v#

L ) = 0. Thus a better reference pair (vL, vR)
than (v′L, v

′
R) at synthesizing u just means that the equivalent

reference pair for (vL, vR) are closer to u than the equivalent
reference pair for (v′L, v

′
R). Using the same previous argument,

we see that the equivalent reference pair for (vL, vR) are also
closer to u′ than (v′L, v

′
R), resulting in a smaller synthesized

distortion. Hence, we can conclude that the assumption of
shared optimality of reference views is a consequence of these
two functional trends. �

We can graphically illustrate possible solutions to the
optimization problem (11) under the assumption of shared
optimality of reference views. Fig. 2(a) depicts the selected
reference views for virtual views in the navigation window.
In the figure, the x-axis represents the virtual views in the
window [U0

L, U
0
R] that require synthesis. Correspondingly,

on the y-axis are two piecewise constant (PWC) functions
representing the left and right reference views selected to
synthesize each virtual view u in the window, assuming that
for each u ∈ [U0

L, U
0
R] there must be one selected reference

pair (vL, vR) such that vL ≤ u ≤ vR. A constant line
segment—e.g., v = v1 for U0

L ≤ u ≤ v3 in Fig. 2(a)—means

0 u

v5

v
u=v

contradiction with 

the shared ref. optimality

v4

v3

v2

v1

UL
v4v3v2 0

UR

(a)

0 u

v
u=v

v4

contradiction with the 

independence of ref. views

v3v2

v4

v3

v2

v1

v5

UL
0

UR

(b)

Fig. 2. Reference view assignment in (a) contradicts the shared reference
assumption. Reference view assignment in (b) respects the shared reference
assumption but contradicts the independence of reference optimality assump-
tion.

that the same reference is used for a range of virtual views.
This graphical representation results in two PWC functions—
left and right reference views—above and below the u = v
line. The set of selected reference views are the unions of the
constant step locations in the two PWC functions.

Under the assumption of shared reference optimality, we
see that the selected reference views in Fig. 2(a) cannot be an
optimal solution. Specifically, virtual views v3 − 1/Q and v3

employ references [v1, v4] and [v2, v5] respectively. However,
if references [v1, v4] are better than [v2, v5] for virtual view
v3 − 1/Q, they should be better for virtual view v3 also
according to shared reference optimality in (12). An example
of an optimal solution candidate under the assumption of
shared reference optimality is shown in Fig. 2(b).

The shared reference optimality assumption thus reduces
the number of reference sets that are candidate solutions of
the reference views selection problem in (11), i.e., it reduces
the search space in the optimization. However, even under
this assumption the problem remains NP-hard, as proven in
the Appendix. In the following section, we introduce a second
assumption on the distortion function that allows us to solve
the reference view selection problem in polynomial time.

V. OPTIMAL VIEW SELECTION ALGORITHM

We now introduce an additional assumption on the syn-
thesized distortion function that holds in most common 3D
scenes. Then we detail the DP algorithm to solve (11) and
analyze the DP algorithm’s computation complexity.

A. Independence of reference optimality assumption

The second assumption on the synthesized view distortion
du( ) is the independence of reference optimality, which states
that the selection of the best left (right) reference view for
viewpoint u does not depend on the selection of the right (left)
reference view used during the synthesis. More formally:

if du(vL, vR, D(vL), D(vR)) ≤ du(v′L, vR, D(v′L), D(vR))

then du(vL, v
′
R, D(vL), D(v′R)) ≤ du(v′L, v

′
R, D(v′L), D(v′R))

(15)

for max{vL, v′L} ≤ u ≤ min{vR, v′R}. In words, the assump-
tion (15) states that if vL is a better left reference than v′L
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Λ(v1, v2) =

{
v1 if du(v1, vR, D(vl), D(vR)) ≤ du(v2, vR, D(v2), D(vR))
v2 otherwise (18)

Ψ(uL, vL, vR, n) =





min
v>uL

v− 1
L∑

u=vL

du(vL, vR, D(vL), D(vR)) + Ψ(v, v, vR, n− 1)

if n ≥ 1
vR− 1

L∑
u=vL

du(vL, vR, D(vL), D(vR)) o.w.

(19)

0 u

v
u=v

v4v3v2UL
0

UR

v4

v3

v2

v1

v5

(a)

0 u

v
u=v

v2 v3 v4UL
0

UR

v2

v3

v4

v5

v1

(b)

Fig. 3. Reference view assignments in (a) and (b) are optimal solution
candidates under both assumptions. We name these two cases “shared-left”
and “shared-right”, respectively.

when synthesizing virtual view u using vR as right reference,
then vL remains the best left reference to synthesize u even
if a different right reference v′R is used.

Motivations on the independence of reference optimality
assumption: This assumption essentially states that contribu-
tions towards the synthesized image from the two references
are independent from each other, which is reasonable since
each rendered pixel in the synthesized view is typically copied
from one of the two references, but not both. We can also argue
for the plausibility of this assumption as a consequence of the
two aforementioned functional trends in the synthesized view
distortion dv( ) in Section IV. Consider first the case where
the reference views vL, vR, v′L, v

′
R have zero distortion. The

monotonicity in predictor’s distance in (13) for a common
right reference view becomes

|u− vL|+ |vR − u| ≤ |u− v′L|+ |vR − u|
−→ |u− vL| ≤ |u− v′L| (16)

where max{vL, v′L} < u < vR. Thus if vL is preferred to v′L
for vR > u, it will hold also for v′R as long as v′R > u. Con-
sider now the case where the reference views vL, vR, v′L, v

′
R

have non-zero distortions. Introducing the equivalent reference
views v#

L < vL with no distortion D(v#
L ) = 0, the same

argument of (16) holds for the equivalent reference views,
leading to |u− v#

L | ≤ |u− v′#L |, ∀vR > u. �

We illustrate different optimal solution candidates to (11)
now under both virtual view distortion assumptions to impart
intuition. We see that the assumption of independence of ref-
erence optimality would prevent the reference view selection
in Fig. 2(b) from being an optimal solution. Specifically, we

see that both v3 and v4 are feasible right reference views
for virtual views v2 − 1/Q and v2. Regardless of which left
references are selected for these two virtual views, if v3 is a
strictly better right reference than v4, then having both virtual
views select v3 as right reference will result in a lower overall
distortion (and vice versa). If v3 and v4 are equally good
right reference views resulting in the same synthesized view
distortion, then selecting just v4 without v3 can achieve the
same distortion with one fewer right reference view. Thus the
selected reference views in Fig. 2(b) cannot be optimal.

We can thus make the following observation: as virtual view
u increases, an optimal solution cannot switch right reference
view from current vR earlier than u = vR. Conversely, as
virtual view u decreases, an optimal solution cannot switch left
reference view from current vL earlier than u = vL−1/Q. As
examples, Fig. 3 provides solutions of left and right reference
views for virtual views in the navigation window. In the
figure, on the x-axis are the virtual views u in the window
[U0
L, U

0
R] that require synthesis. Correspondingly, on the y-axis

are the left and right reference views (blue and green PWC
functions respectively) selected to synthesize each virtual view
u in the window. We see that the reference view selections
in Fig. 3(a) and Fig. 3(b) are optimal solution candidates to
(11). Thus, the optimal reference view selections must be
graphically composed of “staircase” virtual view ranges as
shown in Fig. 3(a) and Fig. 3(b). In other words, either a shared
left reference view vsL is used for multiple virtual view ranges
[ui, ui+1) where each range has the same vsL as left reference
(“shared-left” case), or a shared right reference view vsR is
used for multiple ranges [ui, ui+1), where each range has vsR
as its right reference (“shared-right” case). This motivates us
to design an efficient DP algorithm to solve (11) optimally in
polynomial time.

B. DP Algorithm

We first define a recursive function Φ(uL, vL, k) as the min-
imum aggregate synthesized view distortion of views between
uL and U0

R, given vL is the selected left reference view for
synthesizing view uL, and there is a budget of k additional
reference views. To analyse Φ(uL, vL, k), we consider the
two “staircase” cases identified by Fig. 3(a) and Fig. 3(b)
separately, and show how Φ(uL, vL, k) can be evaluated in
each of the cases.

Consider first the “shared-left” case (Fig. 3(a)) where a
shared left reference view is employed in a sequence of
virtual view ranges. A view range represents a contiguous
range of virtual viewpoints that employ the same left and
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right reference view v, v > uL, creating a new range of virtual views [uL, v). Virtual views in

range [uL, v) are synthesized using a shared left reference vL and the newly selected reference

view v, resulting in distortion du(vL, v, D(vL), D(v)) for each virtual view u, uL ≤ u < v. The

aggregate distortion function Φ(uL, vL, k) for this case is the distortion of views in [uL, v) plus

a recursive term Φ(v, Λ(vL, v), k − 1) to account for aggregate synthesized view distortions to

the right of v:

Φ(uL, vL, k) =

v− 1
L∑

u=uL

du(vL, v, D(vL), D(v)) + Φ(v, Λ(vL, v), k − 1) (18)

where k − 1 is the remaining budget of additional reference views, and Λ(v1, v2) chooses the

better of the two left reference views, v1 and v2, for the recursive function Φ( ). In particular,

using any right reference view vR and virtual view u, where max{v1, v2} < u < vR, we set

Λ(v1, v2) = v1 if virtual view u is better synthesized using v1 as left reference than v2 (and

set Λ(v1, v2) = v2 otherwise). {LT:Maybe with (18) we can delete this above explanation.}
Formally, the left reference selection function Λ(v1, v2) is defined as:

Λ(v1, v2) =

⎧
⎨
⎩

v1 if du(v1, vR, D(vl), D(vR)) ≤ du(v2, vR, D(v2), D(vR))

v2 otherwise
(19)

Given our two assumptions, we know that the selected left reference Λ(v1, v2) remains better

for all other virtual views u in [max{v1, v2}, vR].

We now consider the “shared-right” case (Fig. 3(b)) where a newly selected view v is actually

a common right reference view for a sequence of virtual view ranges from uL to v. We first define

a companion recursive function Ψ(uL, vL, vR, n) that returns the minimum aggregate synthesized
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a companion recursive function Ψ(uL, vL, vR, n) that returns the minimum aggregate synthesized

view distortion from view uL to vR, given that vL is the selected left reference view, vR is the

common right reference view, and there is a budget of n other left reference views in addition

to vL. We can write Ψ(uL, vL, vR, n) recursively as follows:

Ψ(uL, vL, vR, n) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
v>uL

v− 1
L∑

u=vL

du(vL, vR, D(vL), D(vR)) + Ψ(v, v, vR, n − 1)

if k ≥ 1
vR− 1

L∑
u=vL

du(vL, vR, D(vL), D(vR))o.w.

(20)

In more details, the equation (20) states that Ψ(uL, vL, vR, n) is the synthesized view distortion

of views in the range [uL, v), plus the recursive distortion Ψ(v, v, vR, n − 1) from view v to vR

with a reduced reference view budget n − 1.

We can now put the two cases together into a complete definition of Φ(uL, vL, k), resultingin

Φ(uL, vL, k) = min
v>vL

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min

⎡
⎢⎢⎢⎢⎣

v− 1
L∑

u=uL

du(vL, v, D(vL), D(v)) + Φ(v, Λ(vL, v), k − 1)

︸ ︷︷ ︸
“shared-left” case

, (21)

min
1≤n≤k−1

Ψ(uL, vL, v, n) + Φ(v, v, k − n − 1)
︸ ︷︷ ︸

“shared-right” case

⎤
⎥⎥⎦

⎫
⎪⎪⎬
⎪⎪⎭

The relation (21) states that Φ(uL, vL, k) examines each candidate reference view v, v > vL,

which can be used either as right reference for synthesizing virtual views in [uL, v) with left

reference vL (“shared-left” case), or as a common right reference for a sequence of n+1 virtual

view ranges within the interval [uL, v) (“shared-right” case).

When the remaining view budget is k = 1, the relation in (21) Φ(uL, vL, 1) simply selects a

right reference view v, v ≥ U0
R, which minimizes the aggregate synthesized view distortion for

the range [uL, U0
R]:

Φ(uL, vL, 1) = min
v≥U0

R

U0
R∑

u=uL

du(vL, v, D(vL), D(v)) (22)

Having defined Φ(uL, vL, k), we can identify the best K reference views by calling Φ(U0
L, v, K)

repeatedly to identify the best leftmost reference view v, v ≤ U0
L, and start the selection of the
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right reference view v, v ≥ U0
R, which minimizes the aggregate synthesized view distortion for

the range [uL, U0
R]:

Φ(uL, vL, 1) = min
v≥U0

R

U0
R∑

u=uL

du(vL, v, D(vL), D(v)) (22)

Having defined Φ(uL, vL, k), we can identify the best K reference views by calling Φ(U0
L, v, K)

repeatedly to identify the best leftmost reference view v, v ≤ U0
L, and start the selection of the

DRAFT December 14, 2015

n views

(b) “shared-right” case

Fig. 4. Visual illustration of the DP recursion for both “shared-left” and
“shared-right” cases. Each arrow identifies a viewpoint range. Above each
arrow we provide the minimum distortion for the considered range either in
terms of recursive functions or explicit sum of synthetic distortion.

right reference views. The algorithm selects a new right
reference view v, v > uL, creating a new range of virtual
views [uL, v), as depicted in Fig. 4(a). Virtual views in range
[uL, v) are synthesized using a shared left reference vL and
the newly selected reference view v, resulting in distortion
du(vL, v,D(vL), D(v)) for each virtual view u, uL ≤ u < v.
The aggregate distortion function Φ(uL, vL, k) for this case
is the distortion of views in [uL, v) plus a recursive term
Φ(v,Λ(vL, v), k−1) to account for aggregate synthesized view
distortions to the right of v:

Φ(uL, vL, k) (17)

=

v− 1
L∑

u=uL

du(vL, v,D(vL), D(v)) + Φ(v,Λ(vL, v), k − 1)

where k − 1 is the remaining budget of additional refer-
ence views, and Λ(v1, v2) chooses the better of the two left
reference views, v1 and v2, for the recursive function Φ( ).
Formally, the left reference selection function Λ(v1, v2) is
defined in (18). Given our two assumptions, we know that the
selected left reference Λ(v1, v2) remains better for all other
virtual views u in [max{v1, v2}, vR].

We now consider the “shared-right” case (Fig. 3(b)) where
a newly selected view v is actually a common right reference
view for a sequence of virtual view ranges from uL to v.
This means that viewpoints in the range [uL, v] share the right
reference view v, but they may select left reference view(s)
that differ from vL, since they do not necessarily share also the
left reference view. It follows that other reference views can
be selected in the range [uL + 1/Q, v − 1/Q], as depicted in
Fig. 4(b). To select these remaining reference views, we define
a companion recursive function Ψ(uL, vL, vR, n) that returns
the minimum aggregate synthesized view distortion from view
uL to vR, given that vL is the selected left reference view, vR
is the common right reference view, and there is a budget
of n other left reference views in addition to vL. We can
write Ψ(uL, vL, vR, n) recursively resulting in (19). In more
details, (19) states that Ψ(uL, vL, vR, n) is the synthesized
view distortion of views in the range [uL, v), plus the recursive

distortion Ψ(v, v, vR, n−1) from view v to vR with a reduced
reference view budget n− 1.

We can now put the two cases together into a complete
definition of Φ(uL, vL, k), resulting in (20). The equation (20)
states that Φ(uL, vL, k) examines each candidate reference
view v, v > vL, which can be used either as right reference
for synthesizing virtual views in [uL, v) with left reference
vL (“shared-left” case), or as a common right reference for
a sequence of n + 1 virtual view ranges within the interval
[uL, v) (“shared-right” case).

When the remaining view budget is k = 1, in (20)
Φ(uL, vL, 1) simply selects a right reference view v, v ≥ U0

R,
which minimizes the aggregate synthesized view distortion for
the range [uL, U

0
R]:

Φ(uL, vL, 1) = min
v≥U0

R

U0
R∑

u=uL

du(vL, v,D(vL), D(v)) (21)

Having defined Φ(uL, vL, k), we can identify the best C
reference views by calling Φ(U0

L, v, C) repeatedly to identify
the best leftmost reference view v, v ≤ U0

L, and start the
selection of the K − 1 remaining reference views as follows

min
v≤U0

L

Φ(U0
L, v, C − 1) (22)

C. Computation Complexity

Our proposed DP algorithm requires two different tables to
be stored. The first time Ψ(uL, vL, vR, n) is computed, the re-
sult can be stored in entry [(uL−U0

L)/Q][(vL−U0
L)/Q][(vR−

U0
L)/Q][n] of a DP table Ψ∗, so that subsequent calls with the

same arguments can be simply looked up. Analogously, the
first time Φ(uL, vL, k) is called, the computed value is stored
in entry [(uL−U0

L)/Q][(vL−U0
L)/Q][k] of another DP table

Φ∗ to avoid repeated computation in future recursive calls.
We bound the computation complexity of our proposed

algorithm (20) by computing a bound on the sizes of the
required DP tables and the cost in computing each table
entry. For notation convenience, let the number of reference
views and synthesized views be Sv = (V − 1)/Q and
Su = (U0

R − U0
L)/Q, respectively. The size of DP table

Φ∗ is no larger than Su × Sv × C. The cost of computing
an entry in Φ∗ using (20) over all possible reference views
v involves the computation of the “shared-left” case with
complexity O(Su) and the one of the “shared-right” case
with complexity O(C). Thus, each table entry has complexity
O(SvSu+SvK). Hence the complexity of completing the DP
table Φ∗ is O(S2

uS
2
vC+SuS

2
vC

2). Given that in typical setting
Su � C, the complexity for computing DT table Φ∗ is thus
O(S2

uS
2
vC).

We can perform similar procedure to estimate the complex-
ity in computing DP table Ψ∗. The size of the table in this
case is upper-bounded by Su×Sv ×Sv ×C. The complexity
in computing each entry is O(Su). Thus the complexity of
computing DP table Ψ∗ is O(S2

uS
2
vC). which is the same as

DP table Φ∗. Thus the overall computation complexity of our
solution in (20) is also O(S2

uS
2
vC).
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Φ(uL, vL, k) = min
v>vL





min




v− 1
L∑

u=uL

du(vL, v,D(vL), D(v)) + Φ(v,Λ(vL, v), k − 1)

︸ ︷︷ ︸
“shared-left” case

, min
1≤n≤k−1

Ψ(uL, vL, v, n) + Φ(v, v, k − n− 1)

︸ ︷︷ ︸
“shared-right” case








(20)

TABLE I
VIEWPOINTS NOTATION.

Camera ID as in [46], “Bikes” 0 1 2 3 4 5 6 7 8 9 . . . 48
Camera ID as in [46], “Mansion” and “Church” 25 26 27 28 29 30 31 32 33 34 . . . 73

Camera ID as in [46], “Statue” 50 51 52 53 54 55 56 57 58 59 . . . 98
Camera ID in our work 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 2.125 . . . 6
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(d) Church

Fig. 5. Validation of the proposed optimization model with equally spaced
cameras set V = {0, 1, 2, . . . , 5, 6}, and a navigation window [0.75, 5.25]
for “Mansion”, “Statue”, “Bikes”, and “Church” sequences.

VI. SIMULATION RESULTS

A. Settings

We study the performance of our algorithm and we show
the distortion gains offered by cloudlets-based virtual view
synthesis. For a given navigation window [U0

L, U
0
R], we pro-

vide the average quality at which viewpoints in the navigation
window is synthesized. This means that we evaluate the aver-
age distortion of the navigation window as (1/N)

∑U0
R

u=U0
L
du,

with N being the number of synthesized viewpoints in the
navigation window, and we then compute the corresponding
PSNR. In our algorithm, we have considered the following
model for the distortion of the synthesized viewpoint u from
reference views VL, VR

du(VL, VR, DL, DR) = αDmin + (1− α)βDmax

+ [1− α− (1− α)β]DI (23)

TABLE II
PARAMETERS FOR THE THEORETICAL DISTORTION MODEL IN (23).

Mansion Statue Bikes Church
γ 0.2 0.2 0.5 0.5
DI 450 100 200 850
d 50 25 50 25

where Dmin=min{DL, DR}, Dmax=max{DL, DR}, DI is
the inpainted distortion, and α = exp (−γ|u− Vmin|d) , β =
exp (−γ|u− Vmax|d) with d is the distance between two con-
secutive camera views vi and vi+1, Vmin = VL if DL ≤ DR,
Vmin = VR otherwise, and Vmax = VL if DL > DR,
Vmax = VR. The model can be explained as follows. A virtual
synthesis u, when reconstructed from (VL, VR) has a relative
portion α ∈ [0, 1] that is reconstructed at a distortion Dmin,
from the dominant reference view, defined as the one with
minimum distortion. The remaining portion of the image, i.e.,
1 − α, is either reconstructed by the non-dominant reference
view for a portion β, at a distortion Dmax, or it is inpainted, at
a distortion DI . The parameters γ and DI depend on the scene
geometry. While γ describes the reduction of the camera view
correlation with the inter-camera distance, DI corresponds to
the inpainted distortion and depends on both the scene and the
inpainting strategy.

The results have been carried out using 3D sequences
“Mansion”, “Statue”, “Bikes” and “Church” [46], where 51
cameras acquire the scene with uniform spacing between the
camera positions. The spacing between camera positions is
5.33 mm for “Statue”, 5 mm for “Bikes”, and 10 mm for
“Mansion” and “Church”. Among all camera views provided
for both sequences, only a subset represents the set of camera
views V available at the cloudlet, while the remaining are
virtual views to be synthesized. Table I depicts how the camera
notation used in [46] is adapted to our notation. Finally, in
Table II we provide the per-sequence parameters adopted in
the theoretical model in (23) and derived by curve fitting.

In the following, we compare the performance achieved
by virtual view synthesis in the cloudlets with respect to the
scenario in which cloudlets only send to users a subset of
camera views. We denote by Ts the subset of selected reference
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views when synthesis is allowed in the network, and by Tns the
subset of selected reference views when only camera views can
be sent as reference views, i.e., when synthesis is not allowed
in the network. For both the cases of network synthesis and
no network synthesis, the best subset of reference views is
evaluated both with the proposed view selection algorithm
and with an exact solution, i.e., an exhaustive search of all
possible combinations of reference views. For the proposed
algorithm, the distortion is evaluated both with experimental
computation of the distortion, where the results are labeled
“Proposed Alg. (Experimental Dist)”, and with the model in
(23), results labeled “Proposed Alg. (Theoretical Dist)”. For
all three algorithms, once the optimal subset of reference
view is selected, the full navigation window is reconstructed
experimentally and the mean PSNR of the actual reconstructed
sequence is computed.

In the following, we first validate the distortion model in
(23) as well as the proposed optimization algorithm. Then,
we provide simulation using the model in (23) and study the
gain offered by network synthesis.

B. Performance of the view selection algorithm

In Fig. 5, we provide the mean PSNR as a function of
the available bandwidth C in the setting of a regular spaced
cameras set V = {0, 1, 2, . . . , 5, 6}, and a navigation window
[0.75, 5.25] requested by the user. Results are provided for the
“Mansion”, the “Statue”, “Bikes” and the “Church” sequences
in Fig. 5(a), Fig. 5(b), Fig. 5(c), and Fig. 5(d), respectively. For
the “Mansion” sequence, the proposed algorithm with experi-
mental distortion perfectly matches the exhaustive search. Also
the proposed algorithm based on theoretical distortion nicely
matches the exhaustive search method, with the exception of
the experimental point at C = 4 in the network synthesis
case. In that experiment, the algorithm selects as best subset
Ts = {0.75, 2, 4, 5.25} rather than Ts = {0.75, 2, 3, 5.25}
selected by the exhaustive search. The good match is verified
also for the other sequences in Fig. 5(b)−(d). Fig. 5(a) also
shows the gain achieved in synthesizing reference views at
the cloudlets. For C = 2, the optimal sets of reference views
are Ts = {0.75, 5.25} and Tns = {0, 6}. The possibility of
selecting the view at position 0.75 as reference view reduces
the reference view distance for viewpoints in [0.75, 5.25] com-
pared to the case in which camera view 0 is selected. Thus, as
long as the viewpoint 0.75 is synthesized at a good quality in
the network, synthesizing in the network improves the quality
of the reconstructed region of interest, when the bandwidth C
is limited. Increasing the channel capacity reduces the quality
gain between synthesis and no synthesis at the cloudlets. For
C = 4, for example, the virtual viewpoint 0.75 is used to
reconstruct the views range [0.75, 2) of the navigation window.
Thus, the benefit of selecting 0.75 rather than 0 is limited to
a portion of the navigation window and this portion usually
decreases for large C. Similar considerations can be derived
from Fig. 5(b)−(c), for the remaining sequences.

Table III further provides the SSIM values for the same
settings as for the experiments in Fig. 5, i.e., navigation
window [0.75, 5.25] and subset optimized with the proposed

TABLE III
SSIM VALUE ASSOCIATED TO THE RESULTS IN FIG. 5, I.E., SSIM
EXPERIENCED OVER THE NAVIGATION WINDOW [0.75, 5.25] WITH

OPTIMIZED REFERENCE VIEW SET FOR DIFFERENT SEQUENCES.

C
2 3 4 5

Mansion - Synthesis 0.865 0.900 0.912 0.921
Mansion - No Synthesis 0.828 0.878 0.895 0.910
Statue - Synthesis 0.957 0.964 0.968 0.971
Statue - No Synthesis 0.942 0.958 0.964 0.967
Bikes - Synthesis 0.895 0.933 0.948 0.958
Bikes - No Synthesis 0.800 0.890 0.929 0.946
Church - Synthesis 0.766 0.839 0.875 0.905
Church - No Synthesis 0.662 0.760 0.822 0.855

TABLE IV
OPTIMAL SUBSETS FOR THE SCENARIO OF FIG. 9.

C Ts Tns

2 {0.75, 5.25} {000,666}
3 {0.75,333, 5.25} {000,333,666}
4 {0.75,222,444, 5.25} {000,222,444,666}
5 {0.75,222,333,444, 5.25} {000,222,333,444,666}
6 {000,111,222,333,444, 5.25} {000,111,222,333,444,666}
7 {000,111,222,333,444,555,666} {000,111,222,333,444,555,666}

algorithm based on theoretical distortion. The gain in synthe-
sizing reference views at the cloudlets is also clear from the
SSIM metric, which is a more visually-reliable metric than
PSNR.

Finally, we show the gain in synthesizing at the cloudlet
with synthetic images. In particular, Fig. 6 displays the view-
point 5 of the “Statue” sequence (Fig. 6(a)) that is respectively
i) synthesized from {0, 6} when no synthesis is allowed at the
cloudlets (Fig. 6(b)) and ii) synthesized from {0.75, 5.25} in
the case of synthesis allowed at the cloudlets (Fig. 6(c)). The
red box in Fig. 6(a) highlights the area in Fig. 6(b) and Fig.
6(c), respectively, that is mostly affected by the synthesis. The
achieved gain can be visually observed also for the sequence
“Bikes” in Fig. 7.

We then compare in Fig. 8 the performance of the ex-
haustive search algorithm with our optimization method in
the case of non-equally spaced cameras. The “Statue” se-
quence is considered with unequally spaced cameras set V =
{0, 1.5, 2, 2.75, 4, 5, 6}, and a navigation window [0.75, 5.25]
at the client. Similarly to the equally spaced scenario, the
performance of proposed optimization algorithm matches the
one of the exhaustive search. This confirms the validity of
our assumptions and the optimality of the DP optimization
solution. Also in this case, a quality gain is offered by virtual
view synthesis in the network, with a maximum gain achieved
for C = 2, with optimal reference views Ts = {0.75, 5.25}
and Tns = {0, 6}.

C. Network synthesis gain

Now, we aim at studying the performance gain due to
synthesis in the network for different scenarios. However,
multiview video sequences (with both texture and depth maps)
currently available as test sequences have a very limited
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Fig. 6. Synthesized viewpoint 5 from Ts = {0.75, 5.25} and Tns = {0, 6} with and without synthesis, respectively, for the “Statue” sequence.
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Fig. 7. Synthesized viewpoint 5 from Ts = {0.75, 5.25} and Tns = {0, 6} with and without synthesis, respectively, for the “Bikes” sequence.

number of views (e.g., 8 views in the Ballet video sequences4).
Because of the lack of test sequences, we consider synthetic
scenarios and we adopt the distortion model in (23) both for
solving the optimization algorithm and evaluating the system
performance. The following results are meaningful since we
already validated our synthetic distortion model in the previous
subsection. For the sake of brevity, in the following we show
simulation results carried out in few main scenarios. We refer
to [47] for a more complete set of results.

We consider the cases of equally spaced cameras
(V = {0, 1, 2, . . . , 5, 6}) and unequally spaced cameras
(V = {0, 1, 3, 5, 7, 8} and V = {0, 2, 3, 4, 7, 8}) capturing the
scene of interest. In Fig. 9, we show the mean PSNR as a func-
tion of the available channel capacity C when the navigation
window requested by the user is [0.75, 5.25] and cameras are
equally spaced. The distortion of the synthesized viewpoints
is evaluated with (23), with γ = 0.2, DI = 200, and d = 25.
The case of synthesis in the network is compared with the one
in which only camera views can be sent to clients. In Table IV,
we show the optimal subsets Ts and Tns associated to each
simulation point in Fig. 9, where camera views indexes are
highlighted in bold. We observe that the case with synthesis
in the network performs best in terms of quality over the
navigation window. When C = 2, Ts : {0.75, 5.25} for the
network synthesis case, and Tns : {0, 6}, otherwise. However,
the larger the channel capacity the less the need for sending
virtual viewpoints. When C = 6, for example, both camera

4http://research.microsoft.com/en-us/um/people/sbkang/3dvideodownload/
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Fig. 8. Validation of the proposed optimization model for “Statue” sequence
with unequally spaced cameras V = {0, 1.5, 2, 2.75, 4, 5, 6} and a navigation
window [0.75, 5.25].

views 0 and 1 can be sent, thus there is no gain in transmitting
only view 0.75. Finally, when C = 7 and all camera views
can be sent to clients, Ts = Tns = V , with V being the set of
camera views. As expected, sending synthesized viewpoints
as reference views leads to a quality gain only in constrained
scenarios in which the channel capacity does not allow to send
all views required for reconstructing the navigation window of
interest.

We now study the gain in allowing network synthesis
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TABLE V
SELECTED SUBSET OF REFERENCE VIEWS AND ASSOCIATED QUALITY FOR SCENARIOS WITH [U0

L, U
0
R] = [0.75, 7.25] , d = 25 MM, γ = 0.2,

Dmax = 200.

V = {0, 1, 3, 5, 7, 8}, case a) V = {0, 2, 3, 4, 7, 8}, case b)
C Ts PSNR Tns PSNR C Ts PSNR Tns PSNR
2 {0.75, 7.25} 29.39 {000,888} 28.04 2 {0.75, 7.25} 29.08 {000,888} 28.04
3 {0.75,333, 7.25} 32.35 {000,333,888} 31.13 3 {0.75,444, 7.25} 32.33 {000,444,888} 31.49
4 {0.75,333,555, 7.25} 35.24 {000,333,555,888} 33.87 4 {000,222,444, 7.25} 34.18 {000,222,444,888} 33.21
5 {000,111,333,555, 7.25} 35.85 {000,111,333,555,888} 35.017 5 {000,222,444,777,888} 34.92 {000,222,444,777,888} 34.92
6 {000,111,333,555,777,888} 36.56 {000,888} 36.56 6 {000,222,333,444,777,888} 35.60 {000,222,444,777,888} 35.60
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Fig. 9. PSNR (in dB) as a function of the channel capacity C for different
channel capacity values C for a regular spaced camera set with varying dis-
tance among cameras, γ = 0.3, DI = 300, navigation window [0.75, 5.25],
and camera set V = {0, 1, 2, . . . , 5, 6} (equally spaced cameras).
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Fig. 10. PSNR (in dB) vs. U0
L for a camera set V = {0, 2, 3, 4}, navigation

window [U0
L, 4], with d = 50, γ = 0.2, and DI = 200.

when camera views are not equally spaced. In Table V,
we provide the optimal subsets of reference views for both
sets of unequally spaced cameras (V = {0, 1, 3, 5, 7, 8} and
V = {0, 2, 3, 4, 7, 8}). Similarly to the case of equally spaced
cameras, we observe that virtual viewpoints are selected as
reference views (i.e., they are in the best subset Ts) when
the bandwidth C is limited. For the camera set a) the virtual
view 0.75 is selected as reference view also for C = 4, while
the camera set b) prefers to select the camera views 0, 2 at
C = 4. This is justified by the fact that in the latter scenario,

the viewpoint 0.75 is synthesized from (VL, VR) = (0, 2) thus
at a larger distortion than the viewpoint 0.75 in scenario a),
where the viewpoint is synthesized from (VL, VR) = (0, 1).
This distortion penalty makes the synthesis worthy when the
channel bandwidth is highly constrained (C = 2, 3), but not
in the other cases.

In Fig. 10, the average quality of the client navigation is
provided as a function of the left extreme view U0

L of the
navigation window [U0

L, 4] with the camera set V = {0, 2, 3, 4}
with d = 50, γ = 0.2, and DI = 200 in (23). It is worth noting
that U0

L ranges from 0 to 1.875 and only view 0 is a camera
view in this range. When U0

L = 0 and C = 2, the reference
views 0 and 4 perfectly cover the entire navigation window
requested by the user, so there is no need for sending any
virtual viewpoint as reference view. This is no more true for
U0
L > 0. When the channel capacity is C = 2, the gain in

allowing synthesis at the cloudlets increases with U0
L. This is

justified by the fact that in a very challenging scenario (i.e.,
limited channel capacity), the larger U0

L the less efficient it is
to send the reference view 0 to reconstruct images in [U0

L, 4].
At the same time, sending 2 and 4 as reference views would
not allow to reconstruct the viewpoints lower than 2. This gain
in allowing network synthesis is reflected in the PSNR curves
of Fig. 10, where we can observe an increasing gap between
the case of synthesis allowed and not allowed for C = 2.
This gap is however reduced for the scenario of C = 3. This
is expected since the navigation window is a limited one, at
most ranging from 0 to 4 and 3 reference views cover the
navigation window pretty well.

We now consider a scenario in which the camera views
position is not a priori given. In Fig. 11(a), we provide the
mean PSNR as a function of the variance σ2

v , which defines
the randomness of the camera views positions when acquiring
the scene. More in details, we consider a navigation window
[U0
L, U

0
R] = [2, 6]. We then define a deterministic camera views

set VD = {0, 1, 2, . . . , 6, 7}, which is the best camera view
set since it is aligned with the requested viewpoint navigation
window. For each value of σ2

v , we generate a random cameras
set V as V = VD + [n0, n1, . . . , n7], where each ni is a
gaussian random variable with zero mean and variance σ2

v with
ni and nj mutually independent for i 6= j. Thus, the larger
σ2
v , the larger the probability for the camera view set to be not

aligned with the navigation window. For each realization of V ,
we run our optimization for both the cases of allowed and not
allowed synthesis and we evaluate the experienced quality. For
each σ2

v value we simulate 400 runs and we provide in Fig.
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Fig. 11. PSNR (in dB) vs. σ2
v (a) and vs. the sampling distance L (b) for

d = 50, γ = 0.2, and DI = 200.

11(a) the averaged quality. What it is interesting to observe
is that even if camera views are not perfectly aligned with
the navigation window of interest (i.e., even for large variance
values) the quality degradation with respect to the case of
σ2
v = 0 is limited, about 0.5 dB for C = 3, when network

synthesis is allowed. On the contrary, when synthesis is not
allowed in the cloudlet, the quality substantially decreases with
σ2
v , experiencing a PSNR loss of almost 1.5dB. This means

that network synthesis can compensate for cameras not ideally
positioned in the 3D scene, as in the case of user generated
content systems.

Finally, we study performance of the cloudlet-based view
synthesis for a varying number of acquiring cameras. In
particular, given the set of equally spaced viewpoints U , we
assume that one every L viewpoints in U is a camera view,
i.e., there are L − 1 virtual viewpoints between consecutive
camera views. Being the viewpoints in U equally spaced, say
at distance d, Ld is the distance between consecutive cameras.
In the following, we provide the quality behavior for L ranging
from 1 to 12. For each value of the sampling distance L, we
simulate a navigation window spanning a range of 20d. The
navigation window is selected uniformly at random and the
optimization algorithm evaluates the best subset of reference
views. The experienced quality is averaged over 400 runs and
evaluated for different values of L. In Fig. 11(b), we show the
mean quality for the navigation as a function of the sampling
distance L, for the scenario with C = 2, d = 50, γ = 0.2,
and DI = 200 in (23). It is worth noting that for a user to
navigate at given quality, a much higher value of sampling
distance L can be used when network synthesis is allowed,
with respect to the value of L required with no network
synthesis. For example, a mean quality in the navigation of
33 dB is achieved with L = 5 when network synthesis is
not allowed as opposed to L = 10 when allowing network
synthesis. This means that when synthesis is allowed, half of
the number of camera views can be used respect to the case
in which no synthesis is allowed. Thus, view synthesis in the
network allows to maintain a good navigation quality when
reducing the number of cameras.

VII. CONCLUSION

When interactive multiview video systems face limited
bandwidth constraints, we argue that synthesizing reference
views in the cloud improve the quality of navigation at the

Fig. 12. Example of items set S and collection of sets C, with |S| = 5,
K = 4, and C = {(1, 2), (1, 3), (2, 4), (3, 4, 5)}.

client side. In particular, we propose a synthesized reference
view selection optimization problem aimed at finding the best
subset of viewpoints to be transmitted to the decoder as
reference views. This subset is not limited to captured camera
views as in previous approaches but it can also include virtual
viewpoints. The problem is formalized as a combinatorial op-
timization problem, which is shown to be NP-hard. However,
we show that, under the general assumption that the distortion
of synthesized viewpoints is well-behaved, the problem can
be solved in polynomial time via a dynamic programming
algorithm. Simulation results validate the performance gain
of the proposed method and show that synthesizing reference
views can improve image quality at the client by up to
2.1dB in PSNR. We finally demonstrate that view synthesis
in the network obviates to non optimal camera sampling and
permits to increase the distance between camera views without
affecting the quality of the navigation. This first work on
virtual view synthesis in the cloudlets shows the potentiality
of using cloud processing resources for interactive multimedia
applications that are a priori quite greedy in terms of network
resources.

APPENDIX

We now outline a proof-by-construction, showing that the
reference view selection problem (11) is NP-hard under the
shared optimality assumption. We reduce the known NP-hard
set cover (SC) problem [48] to a special case of the reference
view selection problem. In SC, we are given a set of items S
(called the universe), together with a defined collection C of
subsets of items in S. The SC problem is to identify no more
than K subsets from collection C that covers S, i.e., a smaller
collection C′ ⊆ C with |C′| ≤ C such that every item in S
belongs to at least one subset in collection C′.

We construct a special case of our reference view selection
problem as follows. We first construct the set of undistorted
reference views S = {1, 2, . . . , |S|}. We set Q = 2 and the
navigation window to [U0

L, U
0
R] = [1, |S|+ 1

2 ]. For each virtual
view i + 1

2 with i ∈ S , it exists at least one view v > |S|
such that the reference view pair (VL, VR) = (i, v) leads to
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a synthesized view distortion di+ 1
2
(i, v, 0, 0) = D̄ < ∞. We

call this view v a matching right reference view. The selection
of |S| left references 1, . . . , |S| consumes |S| views worth
of bandwidth already. See Fig. 12 for an illustration, where
the low PWC function shows that view i is selected as left
reference view in the range [i, i+ 1

2 ]. We note that given this
fixed selection of left reference views, any possible selection
of right reference views will satisfy the shared optimality of
reference views assumption.

For each subset j in collection C = {1, . . . , |C|} in the
SC problem, we now construct in addition a matching right
reference view |S| + j, such that if item i belongs to sub-
set j in the SC problem, then the synthesized distortion
di+ 1

2
(i, |S| + j, 0, 0) at virtual view i + 1

2 will be D̄ given
right reference view |S|+ j is used. Thus the selection of this
right reference view |S| + j will enable distortion D̄ < ∞
for all the virtual views i + 1

2 (items i) in the subset j. In
Fig. 12, we provide an example where |S| = 5, C = 4, and
C = {(1, 2), (1, 3), (2, 4), (3, 4, 5)}. The corresponding binary
decision we ask is: given channel bandwidth of |S|+C, is there
a reference view selection such that the resulting synthesized
view distortion is |S|D̄ or less?

From construction, it is clear that to minimize overall
distortion, left reference views 1, . . . , |S| must be first selected
in any solution with distortion <∞. Given remaining budget
of C additional views, if distortion of |S|D̄ is achieved, then
C or fewer additional matching right reference views |S|+ j
are selected to achieve synthesized distortion of D̄ at each of
the virtual view i+ 1

2 , i ∈ {1, . . . , |S|}. Thus these additional
C or fewer selected right reference views correspond exactly
to C subsets in collection C in the SC problem that covers
all items i in the set S. Thus solving this special case of
the reference view selection problem is no easier than solving
the SC problem, and therefore the reference view selection
problem is also NP-hard. �
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