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Abstract—The ability to efficiently switch from one pre-
encoded video stream to another (e.g., for bitrate adaptation
or view switching) is important for many interactive streaming
applications. Recently, stream-switching mechanisms based on
distributed source coding (DSC) have been proposed. In order to
reduce the overall transmission rate, these approaches provide
a “merge” mechanism, where information is sent to the decoder
such that the exact same frame can be reconstructed given that
any one of a known set of side information (SI) frames is available
at the decoder (e.g., each SI frame may correspond to a different
stream from which we are switching). However, the use of bit-
plane coding and channel coding in many DSC approaches leads
to complex coding and decoding. In this paper, we propose an
alternative approach for merging multiple SI frames, using a
piecewise constant (PWC) function as the merge operator. In
our approach, for each block to be reconstructed, a series of
parameters of these PWC merge functions are transmitted in
order to guarantee identical reconstruction given the known side
information blocks. We consider two different scenarios. In the
first case, a target frame is first given, and then merge parameters
are chosen so that this frame can be reconstructed exactly at the
decoder. In contrast, in the second scenario, the reconstructed
frame and merge parameters are jointly optimized to meet a
rate-distortion criteria. Experiments show that for both scenarios,
our proposed merge techniques can outperform both a recent
approach based on DSC and the SP-frame approach in H.264,
in terms of compression efficiency and decoder complexity.

I. INTRODUCTION

In conventional non-interactive video streaming, a client
plays back successive frames in a pre-encoded stream in a
fixed order. In contrast, in interactive video streaming [1],
a client can switch freely in real-time among a number
of pre-encoded streams. Examples include switching among
multiple streams representing the same video encoded at
different bit-rates for real-time bandwidth adaptation [2], or
switching among views in a multi-view video [3–7]. See [1]
for more examples of interactive streaming. A major challenge
in interactive video streaming is to achieve efficient real-
time switching among pre-encoded video streams. A simple
approach would be to insert an intra-coded I-frame at each
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potential switching point [4]. But the relatively high rate
required for I-frames often makes it impractical to insert them
frequently in the streams, thus reducing the interactivity of
playback.

Fig. 1. Reconstructed coefficient value X̄b(k) as a piecewise constant function
f ( ) of coefficient Xb(k) of an SI frame. Specifically, given the k-th coefficient
Xb(k) in block b from either SI frame 1 or 2, f (x) maps either X1

b (k) or X2
b (k)

to the same X̄b(k) if they fall on the same constant interval of f ( ).

Towards a more efficient stream-switching mechanism, dis-
tributed source coding (DSC) has been proposed. DSC can in
principle achieve compression efficiency that is a function of
the worst-case correlation between the target frame and the
side information (SI) frames (from which the client may be
switching) [8–10]. As an example, illustrated in Fig. 1, in the
block-based DCT approach of [10], a desired k-th quantized
frequency coefficient value X̄b(k) in block b of the target frame
needs to be reconstructed using either X1

b(k) or X2
b(k), the

corresponding coefficients in SI frames 1 and 2, respectively.
A D-frame is transmitted so that it is possible to reconstruct
the exact same target frame given any one of the two SI frames
[10]. Thus we say that the D-frame supports a merge operation.
In particular, the least significant bits (LSBs) of X1

b(k) and
X2

b(k) are treated as “noisy” versions of the LSBs of X̄b(k).
The most significant bits (MSBs) of X̄b(k) are obtained from
the MSBs of X1

b(k) or X2
b(k), which are identical, while the D-

frame contains channel codes that can produce the actual LSBs
of X̄b(k) taking X1

b(k) or X2
b(k) as inputs. The channel codes

associated to these target frame coefficients compose the D-
frames, which potentially require significantly fewer bits than
an I-frame representation of the target frame [10].

There remain significant hurdles towards practical imple-
mentation of D-frames, however. First, the use of bit-plane
encoding and channel codes in proposed techniques [10]
means that the computation complexity at the decoder is high.
Second, because the average statistics of a transform coeffi-
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cient bit-plane for the entire image are used, non-stationary
noise statistics can lead to high rate channel codes, resulting
in coding inefficiency.

In this paper, we propose to use a piecewise constant (PWC)
function1 as the signal merging operator. This approach oper-
ates directly on quantized frequency coefficients (instead of
using a bit-plane representation) and does not require channel
codes. As will be discussed in detail in Section VI-C, our
signal merging approach can be interpreted as a generalization
of coset coding [12], where we explicitly optimize the merged
target values for improved rate-distortion (RD) performance.
The basic idea is summarized in Fig. 1, which depicts a
floor function characterized by two parameters: a step size
W and a shift c. In our approach, the encoder selects W and
c to guarantee that X1

b(k) and X2
b(k) are in the same constant

interval and thus map to the same reconstruction value. A W
will be chosen for each frequency k, based on the statistics of
the various Xb(k) across all blocks b. Then, given W it will be
possible to adjust c so that the reconstructed value matches a
desired target, X̄b(k). A value of c will be chosen for each k
and b, so that the bitrate required by our proposed technique
is dominated by the cost of transmitting c. In this paper, we
will formulate the problem of selecting c and W, and develop
techniques for RD optimization of this selection.

We consider two scenarios. In the first one, fixed target
merging, we will assume that X̄b(k) has been given, e.g., by
first generating an intra-coded version of the target frame, and
using the corresponding quantized coefficient values as targets.
We will show how to choose W to guarantee that X̄b(k) can
be reconstructed. We will also show that given W, c is fixed.
This type of merging is useful when there are cycles in the
interactive playback, i.e., frame A is an SI frame for frame B
and B is an SI frame for A. This will be the case in static
view switching for multiview video streaming, to be discussed
in Section III.

In the second scenario, optimized target merging, we select
W, c and X̄b(k) based on an RD criteria, where distortion
is computed with respect to a desired target X0

b(k). In this
scenario, we can use smaller values for W, and no longer
need to select a fixed c for given W and X̄b(k). This allows us
to optimize c so as to significantly reduce the rate needed to
encode the merging information. This approach can be used
when there are no cycles in the interactive playback, e.g., in
dynamic view switching scenarios (also discussed in Section
III). Experimental results show significant compression gains
over D-frames [10] and SP-frames in H.264 [13] at reduced
decoder computation complexity.

The paper is organized as follows. We first summarize
related work in Section II. We then provide an overview of
our coding system in Section III. We discuss the use of PWC
functions for signal merging in Section IV. We present our
PWC function parameter selection methods for fixed target
merging and optimized target merging in Section V and
VI, respectively. Finally, we present experimental results and
conclusions in Section VII and VIII, respectively.

1An earlier conference version of this paper was presented in 2013 [11].

II. RELATED WORK

The H.264 video coding standard [14] introduced the con-
cept of SP-frames [13] for stream-switching. In a nutshell, first
the difference between one SI frame and the target picture is
lossily coded as the primary SP-frame. Then, the difference be-
tween each additional SI frame and the reconstructed primary
SP-frame is losslessly coded as a secondary SP-frame; lossless
coding ensures identical reconstruction between primary and
each of the secondary SP-frames. One drawback of SP-frames
is coding inefficiency. Due to lossless coding in secondary
SP-frames, their sizes can be significantly larger than conven-
tional P-frames. Further, the number of secondary SP-frames
required is proportional to the number of SI frames, resulting
in large storage costs. As we will discuss, our proposed scheme
encodes only one merge frame for all SI frames, and hence
the storage requirement is lower than for SP-frames.

There exist proposals to improve coding performance of the
original SP-frames [15, 16]. [15] first proposed Flex SP, where
one quantization module in the primary SP-frame coder was
moved to the secondary SP-frame coder to improve quality of
primary SP-frames. [15] then proposed Hybrid SP, where two
coding modes—choosing between Flex SP and original SP—
were employed, resulting in better RD performance. Similar in
principle, [16] proposed to remove one of the two quantization
modules in the primary SP-frame coder to improve quality of
primary SP-frames, while still retaining the drift-free stream-
switching property using a different secondary SP-frame con-
struction strategy. While [15, 16] do improve performance, the
relatively large sizes of secondary SP-frames due to losselss
coding is still unavoidable. That means the worst-case stream-
switching cost using secondary SP-frames remains much larger
than our proposal.

While DSC has been proposed for designing interactive and
stream-switching mechanisms in the past decade [2, 8–10, 17],
partly due to the computation complexity required for bit-
plane and channel coding in common DSC implementations,
DSC is not widely used nor adopted into any video coding
standards. In contrast, our proposed coding tool involves only
quantization (PWC function) and entropy coding of function
parameters, both of which are computationally simple. Further,
we demonstrate coding gain over a previously proposed DSC-
based approach [10] in Section VII.

[2, 18] also considered switching among multiple bitrate
videos, using Wyner-Ziv (WZ) coding techniques. However,
the problem considered there is not the same as our work. First,
[2, 18] did not consider identical reconstruction for drift-free
stream-switching. This can be observed in their experimental
results (Fig. 13 and 14 in [2]), where there is a gap in
PSNR between WZ switching and the “switching-to” videos.
In contrast, our coding tools guarantee identical reconstruction
and drift-free stream-switching. Second, [2, 18] considered an
on-line scenario, where a switching controller at the server has
knowledge about the requested switching (e.g., from quality 1
to quality 2) to estimate the appropriate amount of WZ bits
for transmission to the receiver. In contrast, we consider an
off-line coding scenario, where multiple switching streams are
known at coding time, but exactly from which stream one is
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Fig. 2. Example of an acyclic picture interactivity graph (PIG) for dynamic
view switching. Each picture Πv,t has subscript indicating its view index v and
time instant t. After viewing picture Π2,1 of stream 2, the client can choose
to keep watching the same stream and jump to Π2,2, or switch to Π1,2 or
Π3,2 of stream 1 and 3, respectively.

switching is not known till actual streaming.
One of the primary applications of our proposed merge

frame is interactive media systems, which have attracted
considerable interest [19]. In particular, a range of media data
types have been considered for interactive applications in the
past: images [20], light-fields [21, 22], volumetric images [23],
videos [8, 9, 24–28] and high-resolution videos [29–32]. In
principle, our proposed merge frame can be applicable in some
of these scenarios where DSC techniques have been proposed
previously. In this paper we focus on real-time switching
among multiple pre-encoded video streams, as discussed in
Section III.

This paper extends our earlier work [11], by providing a
more detailed presentation and evaluation of the system, as
well as introducing two new concepts. First, we study the fixed
target merging case (Section V). Second, for the optimized
target merging case, we develop a new algorithm to compute
a locally optimal probability function P(c) for shift c—one that
leads to more efficient entropy coding of c, and small signal
reconstruction distortion after merging (Section VI). We will
show in our experiments, described in Section VII, that our
new algorithm leads to significantly better RD performance
than our previously published work [11].

III. SYSTEM OVERVIEW

A. IVSS System Overview

We overview our coding system for interactive video stream
switching (IVSS), in which our proposed merge frame is
a key enabling component. In the sequel, a “picture” is a
raw captured image in a video sequence, while a “frame”
is a particular coded version of the picture (e.g., I-frame,
P-frame). In this terminology, a “picture” can have multiple
coded versions or “frames”.

In an IVSS system, there are multiple pre-encoded video
streams that are similar (e.g., videos capturing the same 3D
scene from different viewpoints [7]). During video playback
of a single stream, at a switch instant, the client can switch
from a picture of the original stream to a picture of a dif-
ferent destination stream. Fig. 2 illustrates an example picture
interactivity graph (PIG) for three streams, where there is a
switch instant every two pictures in time. An arrow Πp → Πq
indicates that a switch is possible from picture Πp to picture

Fig. 3. Example of a cyclic picture interactivity graph (PIG) for static view
switching. Each picture Πv,t has subscript indicating its view index v and
time instant t. After viewing Π2,2 of stream 2, the client can choose to keep
watching stream 2 in time and jump to Π2,3, or change to Π1,2 or Π3,2 of
stream 1 and 3, respectively, corresponding to the same time instant as Π2,2.
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Fig. 4. Example of our proposed stream-switching mechanism to enable a
switch from picture 2 of stream 2 to picture 3 of stream 1. Each frame Fv,t
is denoted by frame type F (I-, P- or M-frame), view v and instant t. A solid
directed edge indicates the relationship between a differentially coded frame
and its predictor. Specifically, SI frames P(1)

1,3 and P(2)
1,3 are first differentially

coded using predictor frames P1,2 and P2,2, respectively. M-frame M1,3 is
encoded to merge the two SI frames into an identical reconstruction.

Πq. This particular graph is acyclic, i.e., it has no loops and
we cannot have both Πp → Πq and Πq → Πp.

The scenario in Fig. 2 is an example of dynamic view
switching [33], where a frame at time t is always followed
by a frame at time t + 1. In contrast, in static view switching
a user can stop temporal playback and interactively select the
angle from which to observe a 3D scene frozen in time [34].
Fig. 3 shows an example of static view switching, where the
corresponding graph is cyclic, i.e., it contains loops so that we
can have both Πp → Πq and Πq → Πp. We will discuss the
merge frame design for the cyclic case in Section V.

B. Stream-Switch Mechanism in IVSS

For each possible switch Πp → Πq, we first encode a P-
frame Pq | p for picture Πq, where a decoded frame of Πp is
used as a predictor. Reconstructed Pq | p is called a SI frame,
which constitutes a particular reconstruction of destination Πq.
Because there are in general multiple origins for a given desti-
nation (the in-degree for destination picture in the PIG), there
are multiple corresponding SI frames. Multiple reconstructions
of the same Πq creates a problem for the following frame(s)
that use Πq as a predictor for predictive coding; it is not known
a priori which SI frame Pq | p will be available at the decoder
buffer for prediction. This illustrates the need for our proposed
merge frame (called M-frame in the sequel) Mq, which is an
extra frame corresponding to Πq. Decoding of M-frame Mq
guarantees a unique reconstruction of Πq, no matter which SI
frame Pq | p is actually available at the decoder.

As an illustration, in Fig. 4 two P-frames, P(1)
1,3 and P(2)

1,3,
generated from predictors P1,2 and P2,2 respectively, are the
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SI frames. An M-frame M1,3 is added to merge the SI frames
to produce an identical reconstruction for Π1,3. During a
stream-switch, the server can transmit any one of the two SI
frames and M1,3 leading to the same reconstructed frame for
Π1,3, thus avoiding coding drift in the following frame P1,4.
An alternative approach based on SP frames would require
sending a primary SP-frame S1

1,3 (using P1,2 as the predictor)
for the switch Π1,2 → Π1,3, or a losslessly coded secondary
SP-frame S2

1,3 (using P2,2 as the predictor) for the switch
Π2,2 → Π1,3. SP-frame approaches are asymmetric; rate is
much lower when only a primary SP-frame is needed. In
contrast, the switching cost using M-frame is always the same
(a pair of P- and M-frames). We will show that a pair of P-
and M-frames requires lower rate than a secondary SP-frame.

C. Merge Frame Overview

In our proposed M-frame, each fixed-size code block in
an SI frame is first transformed to the DCT domain. DCT
coefficients are then quantized. The quantized coefficients
across SI frames (called q-coeffs in the sequel) are then
examined. If the q-coeffs of a given block are very different
across SI frames, then the overhead to merge their differences
to targeted q-coeffs would be large. Thus, we will encode the
block as a conventional intra block. On the other hand, if the
q-coeffs of a given block are already identical across all SI
frames, then we can simply inform the decoder that the q-
coeffs can be used directly2. Finally, if the q-coeffs across SI
frames are not identical but are similar, then each q-coeff is
merged identically to a target value via our proposed merge
operator. Hence, together there are three coding modes for
each code block: intra, skip and merge. We will focus our
attention on optimizing the parameters in merge mode, since
the intra and skip modes are straightforward.

IV. PROBLEM FORMULATION

A. Notation

We first define the notation that will be used in the sequel;
see Table I for quick reference. We denote the N SI frames
by S1, . . . ,SN, one of which is guaranteed to be available at
the decoder buffer when M-frame M is decoded. We denote
a desired target picture by T, and for notational convenience
we will include it in the set of SI frames as S0 = T.

We denote the group of fixed-size code blocks in M that
are encoded in merge mode by BM. Each block has K pixels.
We denote by xn

b the b-th block in SI frame Sn coded in
merge mode. Each block xn

b is transformed into the DCT
domain as Yn

b = [Yn
b (0), . . . ,Yn

b (K−1)], where Yn
b (k) is the k-th

DCT coefficient of xn
b . We denote by Xn

b (k) the k-th quantized
coefficient (q-coeff ) given uniform quantization step size Q:

Xn
b (k) = round

(Yn
b (k)

Q

)
, (1)

where round(x) rounds x to the nearest integer.

2This is equivalent to the case when there is only a single SI frame, and
thus no merging operation is necessary for identical reconstruction.

TABLE I
TABLE OF NOTATIONS

N number of SI frames
Sn SI frame n
T desired target frame
M M-frame

R(M) rate of M-frame M
D(T, T̄(M)) distortion of reconstructed M wrt T

λ weight parameter to trade off distortion with rate
BM block group encoded in merge mode
K number of pixels in a code block
xn

b block b of SI frame Sn

Yn
b (k) k-th DCT coefficient of block b of SI frame Sn

Xn
b (k) k-th q-coeff of block b of SI frame Sn

Q quantization step size
X̄b(k) k-th reconstructed q-coeff of block b
Z∗b(k) max. pair difference between any pair of Xn

b (k)
Z∗
BM

(k) group-wise max. pair difference, i.e. maxb∈BM Z∗b(k)
WBM (k) step size for k-th q-coeff of block group BM

cb(k) shift parameter for k-th q-coeff of block b
Fb(k) feasible range of shift cb for identical merging
Zb(k) max. target diff. between target X0

b (k) and any Xn
b (k)

ZBM (k) group-wise max. target difference, i.e. maxb∈BM Zb(k)
W#
BM

(k) step size for k-th q-coeff for fixed target merging

B. Formulation

We consider two different problems based on the recon-
struction requirement with respect to the desired target T.
One typically chooses T a priori, e.g., by encoding the target
picture independently (intra only) and using the decoded
version as T. The first problem requires the M-frame to
reconstruct identically to the desired target T:

Problem 1. Fixed Target Merging (Section V). Find M-frame
M such that the decoder, taking as input any one of the SI
frames Sn and M, can reconstruct T identically as output.

Because of the differences between the SI frames Sn and
the desired target T, there may be situations where a high rate
is required for M. In this case, we allow the reconstruction to
deviate from the desired target T in order to reduce the rate
required for M by optimizing an RD criterion:

Problem 2. Optimized Target Merging (Section VI). Find
M∗ and T̄(M∗) so that the decoder, taking as input any one
of SI frames Sn and M∗, can always identically reconstruct
T̄(M∗) as output, and where M∗ is an RD-optimal solution for
a given weight parameter λ, i.e.,

M∗ = arg min
M

D(T, T̄(M)) + λR(M), (2)

where D(T, T̄(M)) is the distortion incurred (with respect to
T) when choosing T̄(M) as the common reconstructed frame,
and R(M) is the rate needed to encode M.

The second problem essentially states that the reconstruc-
tion target T̄(M) is RD-optimized with respect to the desired
target T, while the first problem requires identical reconstruc-
tion to target T. Note that in both problem formulations we
avoid coding drift since they guarantee identical reconstruction
for any SI frame, but a solution to Problem 2 will be shown
to lead to significantly lower coding rates.
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C. Piecewise Constant Function for Single Merging

A merge operation must, given q-coeff Xn
b (k) of any SI

frames Sn, n ∈ {1, . . . ,N}, reconstruct an identical value X̄b(k),
for all frequencies k. We use a PWC function f (x) as the
chosen merging operator, with parameters shift c and step size
W selected for each frequency k of each block b encoded in
merge mode (see Fig. 1). The selection of these parameters
influences the RD performance of this merging operation for
the optimized target merging case. We now discuss how c and
W are selected for each coefficient. Because the optimization
is the same for each frequency k, we drop the frequency index
k for a clearer presentation.

Examples of PWC functions are ceiling, round,
floor, etc. In this paper, we employ the floor function3:

f (x) =
⌊x + c

W

⌋
W +

W
2
− c. (3)

From Fig. 1, it is clear that there are numerous combinations of
parameters W and c such that identical merging is ensured—
i.e., all Xn

b map to the same constant interval. Note also that
the choice of W depends on how spread out the collection
X0

b , . . . ,X
N
b are, that is, how correlated the SI blocks are

to each other. In contrast, c is used to select a desired
reconstruction value X0

b . Thus, because the level of correlation
can be assumed to be relatively consistent across blocks, a step
size WBM is selected once for all blocks b ∈ BM for a given
frequency. On the other hand, since the actual reconstruction
value will be different from block to block, the shift cb will
be selected on a per block basis for a given frequency.

The computation complexity of our proposed merge mode
at the decoder can be analyzed as follows. For each q-coeff
Xn

b in a merge mode block b of SI frame Sn, we compute
the merged coefficient X̄n = f (Xn

b ) using floor function (3),
which involves only one round-down operation, three additions
and two multiplications (constant W/2 can be pre-computed).
Thus the computation cost at the decoder is minimal beyond
a JPEG-like block-based transform coder.

Before formulating the problem of optimizing the choice of
c and W, we derive constraints under which this selection is
made by determining:
• Minimum value of W that still enables identical merging,
• Given W, choices of c that lead to identical merging,
• Effective range of c.
We first compute a minimum step size W to enable identical

merging for blocks b in BM. Let Z∗b be the maximum pair
difference between any pair of q-coeffs of a given frequency
in block b, i.e.,

Z∗b = max
i, j∈{0,...,N}

Xi
b − X j

b = Xmax
b − Xmin

b , (4)

where Xmax
b and Xmin

b are respectively the maximum and
minimum q-coeffs among the SI frames, i.e.,

Xmax
b = max

n=0,...,N
Xn

b , Xmin
b = min

n=0,...,N
Xn

b . (5)

Given Z∗b, we next define the group-wise maximum pair

3We define floor function to minimize the maximum difference between
original x and reconstructed f (x), given shift c and step size W.
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Fig. 5. Two examples of probability distribution of Z∗b with three SI frames
at Q = 1 for Balloons at frequency k = 16 and k = 32.

difference Z∗
BM

for the blocks in group BM:

Z∗
BM

= max
b∈BM

Z∗b. (6)

Since all Xn
b are integer, Z∗

BM
is also an integer. We can now

establish a minimum for step size WBM , above which identical
merging for all blocks b ∈ BM is achievable:

Fact 1. Minimum Step Size for Identical Merging: a step
size WBM > Z∗

BM
, is large enough for floor function f (Xn

b )
in (3) to merge any Xn

b in BM to a same value X̄b.

Since each Sn is an approximation of (and thus is similar
to) target T, the Sn’s themselves are similar. Hence, the
largest difference Z∗b should be small in the typical case.
Indeed, we observe empirically that Z∗b follows an exponential
distribution (one-sided because Z∗b is non-negative). Fig. 5
shows Z∗b probability distribution for k = 16 and k = 32.
We observe that 80% of the blocks have Z∗b ≤ 5. Assuming
that Z∗b follows a Laplacian distribution, the maximum Z∗

BM
is

typically much larger than the average Z∗b. This will be shown
to be useful for the optimized merging case in Section VI.

Fact 1 states that step size WBM is wide enough so that
X0

b , . . . ,X
N
b can all fall on the same interval in f (x), as

shown in Fig. 1. However, given WBM , shift cb must still be
appropriately chosen per block to achieve identical merging.

Mathematically, identical merging means that the floor
function with parameters cb and WBM produces the same
integer output for all inputs Xn

b , that is:⌊Xn
b + cb

WBM

⌋
=

X0
b + cb

WBM

 , ∀n ∈ {1, . . . ,N}. (7)

Thus for all Xn
b , we must have for some m ∈ Z that:

mWBM ≤ Xn
b + cb < (m + 1)WBM , ∀n ∈ {0, . . . ,N} (8)

Instead of considering all Xn
b ’s, it is sufficient to consider only

the maximum and minimum values, so that the range for cb
that guarantees identical reconstruction is:

mWBM − Xmin
b ≤ cb < (m + 1)WBM − Xmax

b (9)

for some integer m. Note that given step size WBM , cb and
cb + mWBM lead to the same output:

f (x) =

⌊
x + cb + mWBM

WBM

⌋
WBM +

WBM

2
− (cb + mWBM )

=

⌊
x + cb

WBM

⌋
WBM +

WBM

2
− cb
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Fig. 6. Two cases of Xmin
b and Xmax

b (left: α < β and right: α > β) and their
implications on the feasible range of shift cb.

Thus it will be sufficient to consider at most W different values
of cb as possible candidates.

Define α = Xmin
b mod WBM and β = Xmax

b mod WBM and
consider the two possible cases.

1) In case (i), Xmin
b = mWBM + α and Xmax

b = mWBM + β,
where α < β, so that Xmin

b and Xmax
b fall in the same

interval when shift cb = 0. Hence we can have −α ≤
cb < WBM − β in order to keep both Xmin

b and Xmax
b in

the interval [mWBM , (m + 1)WBM ).
2) In case (ii), Xmin

b = mWBM +α and Xmax
b = (m+1)WBM +

β, where β < α, i.e., when cb = 0, Xmin
b and Xmax

b fall in
neighboring intervals. Here we can have −α ≤ cb < −β
to move Xmax

b down to the interval [mWBM , (m+1)WBM ),
or have WBM − α ≤ cb < WBM − β to move Xmin

b up to
the interval [(m + 1)WBM , (m + 2)WBM ).

Note that the selection of WBM (Fact 1) implies that Xmax
b −

Xmin
b < WBM , and α = β only if Xmin

b = Xmax
b , in which case

there is no merging needed and any cb would suffice.
The two cases (α < β and α > β) are illustrated in Fig. 6.

Note that given Xmax
b ≥ Xmin

b by definition, we will be in Case
(ii) whenever β < α. We can summarize this result as:

Fact 2. Maximum Feasible Range Fb for Shift cb: For the
shift cb to provide identical merging of q-coeffs X0

b , . . .X
N
b to

a same value X̄b, given step size WBM

cb ∈ Fb = [−α,WBM − β) if α < β

and
cb ∈ Fb = [WBM − α,WBM − β) if α > β

with α = Xmin
b mod WBM and β = Xmax

b mod WBM .

D. Formulation of Merge Frame RD-Optimization

In order to formulate the PWC function parameter opti-
mization problem, we first define distortion, db, as the squared
difference between coefficient Y0

b of the desired target T and
reconstructed coefficient f (X0

b) Q:

db = |Y0
b − f (X0

b) Q |2. (10)

Because shift cb will be always chosen within the feasible
range defined in Fact 2, all q-coeffs Xn

b will map to the same
value f (Xn

b ),∀n ∈ {0, . . . ,N}. Thus we only need to compute
the distortion for f (X0

b) in (10).
For the k-th q-coeff in block group BM, the encoder will

have to transmit to the decoder:
1) one step size WBM (k) > ZBM (k) for each group BM.

2) one shift cb(k) for each block b in group BM.

The cost of encoding a single WBM (k) for all k-th q-coeffs
in group BM is small, while the cost of encoding |BM| shifts
cb(k) for each of the k-th q-coeffs can be significant. Thus we
consider only the rate associated to cb(k) in our optimization.

Note that since the high-frequency DCT coefficients of a
given code block are very likely zero, we can insert an End of
Block (EOB) flag Eb to signal the remaining high-frequency
q-coeffs in block b in a raster-scan order are 0. Effective use
of Eb can reduce the amount of transmitted PWC function
parameters4. In summary, we can define the RD optimized
target merging problem as:

min
WBM (k), cb(k)

∑
b∈BM

Db + λRb,
WBM (k) > ZBM (k)
cb(k) ∈ Fb(k) (11)

with distortion Db and rate Rb for block b calculated as:

Db =

Eb∑
k=0

db(k) +

K−1∑
k=Eb+1

Y0
b(k)2

Rb =

Eb∑
k=0

R(cb(k)),

where db(k) is defined in (10) and R(cb(k)) is the rate to
encode cb(k). We discuss how we tackle this optimization in
Section VI.

V. FIXED TARGET MERGING

In certain applications, such as the static view switching
scenario discussed in Section III and illustrated in Fig. 3,
the PIG is cyclic, so that we may have that Πp → Πq
and Πq → Πp. Because of this interdependency, one cannot
directly define a simple target merging optimization, since
optimizing the reconstruction for Πq would require first fixing
a representation (frame) for Πp, but optimizing Πp would in
turn require first fixing a representation for Πq. As a simple
alternative we propose fixed target merging, where the recon-
struction target T for each picture is chosen independently
from the SI frames. For example, T can be the I-frame of the
target picture for a given QP.

A. Fixed Target Reconstruction using Merge Operator

We first show that given a target reconstruction value a and
a step size W, we can always find a shift c so that f (x) in
(3) is such that f (x) = a for all inputs x in the interval [a −
W/2, a + W/2). To see this, first write target reconstruction
value a = a1W + a2, where a1 and a2 = a mod W are integers
and 0 ≤ a2 < W. Similarly, we write input x = a1W + x2

4In the fixed target merging case, Eb is inserted when the remaining high-
frequency q-coeffs of a block b in target T are exactly zero. In the optimized
target case, Eb can be inserted in an RD-optimal manner on a per-block basis,
similar to what is done in coding standards such as H.264 [14].
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where integer x2 can be bounded:

a −
W
2
≤ x < a +

W
2

a1W + a2 −
W
2
≤ a1W + x2 < a1W + a2 +

W
2

a2 −
W
2
≤ x2 < a2 +

W
2

(12)

We now set c = W
2 − a2. We show that this ensures f (x) = a

for x ∈ [a −W/2, a + W/2):

f (x) =

a1W + x2 + W
2 − a2

W

 W +
W
2
−

(W
2
− a2

)
(13)

= a1W + a2 = a.

where the second line is true because x2 + W
2 − a2 in the

numerator of the floor operator argument can be bounded
in [0,W) using (12):

a2 −
W
2

+
W
2
− a2 ≤ x2 +

W
2
− a2 < a2 +

W
2

+
W
2
− a2

0 ≤ x2 +
W
2
− a2 < W (14)

Next, recall from Section IV-C that we include the desired
target T as the first SI frame S0. For a given frequency of
a particular block b, we first compute the maximum target
difference Zb as the largest absolute difference between target
q-coeff X0

b and Xn
b of any SI frame Sn, i.e.,

Zb = max
n∈{1,...,N}

∣∣∣X0
b − Xn

b

∣∣∣ (15)

We choose step size and shift based on the following lemma.

Lemma V.1. Choosing step size W#
b = 2Zb + 2 and shift

cb = W#
b/2−X0

b,2, where X0
b,2 = X0

b mod W#
b , guarantees that

f (Xn
b ) = X0

b , ∀n ∈ {0, . . . ,N}.

Note that W#
b is an even number, and c is an integer as

required.
Proof: Given shift cb = W#

b/2−X0
b,2, showing Xn

b ∈ [X0
b−

W#
b/2,X

0
b + W#

b/2) implies f (Xn
b ) = X0

b , ∀n ∈ {0, . . . ,N}.
Given step size W#

b = 2Zb + 2, the interval [X0
b −W#

b/2,X
0
b +

W#
b/2) can be rewritten as [X0

b − Zb − 1,X0
b + Zb + 1). By the

definition of Zb, we know X0
b − Zb ≤ Xn

b ≤ X0
b + Zb. Hence

the required interval for Xn
b is met.

Note that we can achieve fixed target merging for a given
X0

b as long as the step size is larger than W#
b . For example, we

can assign the same step size W#
BM

for all blocks in a group
BM, so that we reduce the rate overhead:

W#
BM

= 2 + 2ZBM (16)

where ZBM = maxb∈BM Zb is the group-wise maximum target
difference, and Zb, the block-wise maximum target difference
for block b, is computed using (15). In summary:

1) We define a set of blocks BM and use W#
BM

(k) computed
using (16) for frequency k of all blocks in BM.

2) For block b, we set shift cb(k) = W#
BM

(k)/2 − X0
b,2(k),

where X0
b,2(k) = X0

b(k) mod W#
BM

(k). A different shift is
used for each frequency k and block b, and transmitted

as part of the M-frame along with W#
BM

(k).

VI. OPTIMIZED TARGET MERGING

We now propose a merging approach based on selecting
WBM (k) and cb(k) so as to find a solution to the optimization
problem described in Section IV-D, where we allow the
reconstructed value to be different from X0

b(k).
If WBM is chosen large enough, i.e. WBM ≥ 2 + 2Zb, then

we have shown (Lemma V.1) that one can select shift cb
to reconstruct target q-coeff X0

b exactly. However, the shifts
are a function of X0

b,2 = X0
b mod WBM (Lemma V.1), and

thus we can expect them to have a uniform distribution. It
would mean that a rate of the order log2(WBM ) would be
required as overhead. In order to reduce this rate, we use
two approaches: i) we allow WBM to be smaller than required
by Lemma V.1, and ii) when multiple choices of cb provide
identical reconstruction, we optimize this choice based on the
criteria introduced in Section IV-D.

A. Selection of WBM

Note that the definition of Z∗
BM

ensures that all Xn
b of SI

frames Sn can be mapped to the same constant interval of
size WBM in the floor function (3), as long as WBM > Z∗

BM
,

assuming an appropriate cb is chosen (Fact 1). A small WBM

would in general mean a small rate for coding cb, since cb can
take at most WBM different values.

As shown in Fig. 5, we observe empirically that Z∗b follows
a Laplacian distribution. Thus, for a large block group BM,
Z∗
BM

= maxb∈BM Z∗b will be in general much larger than Z∗b.
Since Z∗b ≥ Zb, in practice for many blocks b it is possible
to reconstruct target X0

b since W∗

BM
≥ 2 + 2Zb. That means

using a step size WBM much larger than Z∗
BM

would reap
very small additional benefit in distortion reduction, while
potentially increasing the rate of coding cb. Thus, we select
WBM = Z∗

BM
+1, which is the minimum step size to guarantee

that Xn
b of any block b can be mapped to the same interval,

with appropriate choice of cb to be discussed next.

B. RD-optimal Selection of Shifts

Given a chosen WBM , according to Fact 2 there will be
multiple values of cb that guarantee identical reconstruction for
all Xn

b . To enable efficient entropy coding of cb, it is desirable
to have a skewed probability distribution P(cb) of cb. We design
an algorithm to promote a skewed P(cb) iteratively. We first
propose how to initialize P(cb), and then discuss how to update
P(cb) in subsequent iterations.

We optimize shift cb via the following RD cost function:

min
0≤cb<WBM | cb∈Fb

db + λ(− log P(cb)) (17)

where the rate term is approximated as the negative log of the
probability P(cb) of candidate cb, and db is the distortion term
computed using (10). The difficulty in using objective (17)
to compute optimal c∗b lies in how to define P(cb) prior to
selecting cb. Our strategy is to initialize a skewed distribution
P(cb) to promote a low coding rate, perform optimization (17)
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Fig. 7. Two examples of shift distribution P(cb). Left distribution has small
number of spikes and has low entropy (1.22). Right distribution is smooth but
has high entropy (4.38).

for each block b ∈ BM, then update P(cb) based on statistics
of the selected cb’s, and repeat until P(cb) converges.

In order to choose an initial distribution P(cb), we note
that a distribution with a small number of spikes has lower
entropy than a smooth distribution (see Fig. 7 as an example).
Choosing cb values following such a discrete distribution (e.g.,
Fig. 7 (left)) means that we reduce the number of possible cb,
which may increase db. Thus, if λ in (17) is small, in order
to reduce distortion one can increase the number of spikes in
P(cb). We propose to induce a multi-spike probability P(cb),
where the appropriate number of spikes depends on the desired
tradeoff between distortion and rate in (17).

Since cb is constrained to be in the feasible region Fb
defined in Fact 2, it is possible that when we restrict cb to just
a few values as in Fig. 7 (left), there will be some blocks b for
which none of the spikes in P(cb) fall within their Fb. In order
to guarantee identical reconstruction, they must be allowed to
select non-spike values as shifts cb. Thus we propose a “spike
+ uniform” distribution P(cb):

P(cb) =

{
ps

i if cb = cs
i

pc o.w. (18)

where {cs
1, . . . , c

s
H} are the H spikes, each with probability ps

i ,
and pc is a small constant for non-spike shift values. pc is
chosen so that P(cb) sums to 1.

1) Computing distribution P(cb) for fixed H: We now
discuss how we compute P(cb) for given H. Empirically we
observe that for a reasonable number of spikes (e.g., H ≥ 3),
the majority of blocks (typically 99% or more) in BM have at
least one spike in their feasible region Fb. Thus, to simplify
our computation we first ignore the feasibility constraint and
employ an iterative rate-constrained Lloyd-Max algorithm (rc-
LM) [35] to identify spike locations.

We illustrate the operations of rc-LM to initialize H spike
locations for H = 3 as follows. Let co

b be the shift value
that minimizes only distortion for block b. Let g(co) be the
probability distribution of distortion-minimizing shift co for
blocks in Bm, where 0 ≤ co < WBM . g(co) can be computed
empirically for group Bm. Without loss of generality, we define
quantization bins for the three spikes cs

1, cs
2 and cs

3 as [0, b1),
[b1, b2) and [b2,WBM ) respectively. The expected distortion
D({cs

i }) given three spikes is:

b1−1∑
co=0

|co
−cs

1|
2g(co)+

b2−1∑
co=b1

|co
−cs

2|
2g(co)+

WBM−1∑
co=b2

|co
−cs

2|
2g(co) (19)

where D({cs
i }) is computed as the sum of squared difference

between co and spike cs
i in the bin that co is assigned to. Having

defined distortion D({cs
i }), the initial spike locations cs

i given H
spikes can be found as follows: i) construct H spikes evenly
spaced in the interval [0,WBM ), ii) use conventional Lloyd-
Max algorithm with no rate constraints to converge to a set of
H bin centroids cs

i .
Next, adding consideration for rate, the RD cost of the three

spikes can then be written as:

D({cs
i }) + λ

− log(
b1−1∑
co=0

g(co)) − log(
b2−1∑
co=b1

g(co)) − log(
WBM

−1∑
co=b2

g(co))


(20)

(20) is essentially the aggregate of RD costs (17) for all blocks
in BM.

To minimize (20), rc-LM alternately optimizes bin bound-
aries bi and spike locations cs

i at a time until convergence.
Given spikes cs

i are fixed, each bin boundary bi is optimized
via exhaustive search in the range [cs

i , c
s
i+1) to minimize both

rate and distortion in (20). Given bin boundaries bi are fixed,
optimal cs

i can be computed simply as the bin average:

cs
i =

∑bi+1−1
co=bi

g(co)co∑bi+1−1
co=bi

g(co)
(21)

where b0 = 0 and b3 = WBM .
Upon convergence, we can then identify the small fraction

of blocks with no spikes in their feasible regions Fb and
assign an appropriate constant pc so that P(cb) is well defined
according to (18). Computing P(cb) with H spikes where
H , 3 can be done similarly.

2) Finding the optimal P(cb): To find the optimal P(cb),
we add an outer loop for this P(cb) construction procedure
to search for the optimal number of spikes H. Pseudo-code
of the complete algorithm is shown in Algorithm 1. We note
that in practice, we observe that the number of iterations until
convergence is small.

Algorithm 1 Computing the optimal shift distribution P(cb)
1: for each number of spikes H ∈ [1,WBM ] do
2: Initialize distribution Po(cb) via LM;
3: t = 0;
4: repeat
5: t = t + 1;
6: Update H spike locations cs

i via (21);
7: Update bin boundaries bi by minimizing (20);
8: Compute pc for a new Pt(cb);
9: until ‖Pt−1(cb) − Pt(cb)‖ ≤ ε

10: end for

On the complexity of the M-frame encoder, we note first
that the computation load is dominated by Algorithm 1 to
compute P(cb). For a given number of spikes H, LM is used
to compute initial Po(cb), then rc-LM is iterated to compute
P(cb). Experimentally we found that fewer than three iterations
are needed for both LM and rc-LM to converge. We found
also that the number of spikes required for optimal RD
performance for all bitrates of interest is no larger than three.
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Thus we conclude that the encoder complexity is manageable.
Finally, we note that because the distribution P(cb) is computed
independently for each frequency k, a fast implementation to
compute P(cb) for different frequencies in parallel is possible.

C. Comparison with Coset Coding

We now discuss the similarity between our proposed ap-
proach and coset coding methods in DSC [12]. Consider first
fixed target merging of one q-coeff of a single block b. In a
scalar implementation of coset coding, given possible SI values
Xn

b ,n ∈ {1, . . . ,N}, seen as “noisy” versions of a target X0
b , the

largest difference Zb = maxn |Xn
b − X0

b | with respect to X0
b is

first computed. The size of the coset W is then selected such
that W > 2Zb. The coset index ib = X0

b mod W is computed
at the encoder for transmission.

At the decoder, the reconstructed value X̂b is the integer
closest to received SI Xn

b with the same coset index ib, i.e.,

X̂b = arg min
X∈Z
|Xn

b − X| s.t. ib = X mod W (22)

Using the aforementioned coset coding scheme for blocks
b ∈ BM, coding of ib = X0

b mod W = X0
b,2 per block is

necessary, where coset size W is chosen such that W > 2ZBM .
In our fixed target merging scheme using the floor function
(3), we code a shift cb = W#

BM
/2−X0

b,2 for each block b, where
step size W#

BM
is also proportional to 2ZBM . Comparing the

two schemes, one can see that the number of choices that
needs to be sent to the decoder is the same (one of W#

BM
possible values in both cases). Both the shift value cb and ib are
functions of X0

b,2, the remainder or least significant bits (LSB)
of X0

b , which are likely to have an approximately uniform
distribution. Thus the overhead rate should be the same for
both coset coding and fixed target merging.

Consider now the optimized merging case. In this scenario,
we are able to choose WBM = Z∗

BM
+ 1—likely much smaller

than 2ZBM ≤ 2Z∗
BM

—so that we can still guarantee identical
reconstruction, with a reduction in rate that comes at the cost
of an increase in distortion. As for the coset coding approach,
if we were to reduce to choose a smaller WBM as well, we
in fact can no longer guarantee identical reconstruction. This
is because when WBM < 2ZBM there will be cases where not
all the Xn

b are in the same interval, and thus the same ib will
lead to two different values at the decoder depending on the
SI received. This imperfect merging will lead to undesirable
coding drift in the following predicted frames, as discussed in
Section III.

VII. EXPERIMENTS

We first discuss the general experimental setup and M-
frame parameter selection (Section VII-A). We then verify the
effectiveness of our proposed “Spike + Uniform” distribution
(Section VII-B). Next, we compare the performance of our
M-frame in three different situations: 1) static view switching
(Scenario 1 in Section VII-C); 2) switching among streams
of different rates for the same single-view video (Scenario 2
in Section VII-D), and 3) dynamic view switching of multi-
view videos of different viewpoints and encoded in the same
bit-rate (Scenario 3 in Section VII-E).

TABLE II
VIEWPOINTS OF EACH MULTIVIEW SEQUENCES.

Sequence Name Viewpoints
Balloons 1, 3, 5
Kendo 1, 3, 5

Lovebird1 4, 6, 8
Newspaper 3, 4, 5

A. Experimental Setup

We use four different multiview video test sequences with
resolution 1024x768 for scenarios 1 and 3: Balloons,
Kendo5, Lovebird1 and Newspaper6. The viewpoints
of each sequence are shown in Table II. For scenario 2,
we use four single-view video sequences with resolution
1920x1080: BasketballDrive, Cactus, Kimono1 and
ParkScene7.

We compare the coding performance of our proposed
scheme against two schemes8: SP-frame [13] in H.264 and
D-frame proposed in [36]. QP for D-frame is set to be equal
to QPSI to maintain consistent quality. QPSI is set to 22,
26, 30 and 34 to induce different RD tradeoffs. For multi-
view scenarios 1 and 3, we encoded three streams from three
viewpoints: the center view was set as the target, to which the
other two side views can switch at a defined switching point.
For Scenario 2, we encoded the single-view video in three
different bit-rates and then switched among them. QPs for
the three streams were adjusted according to additive increase
multiple decrease (AIMD) rate control principle in TCP and
TFRC [37]: one stream has twice the target stream’s bit-rate,
while the other has slightly smaller bit-rate (0.9 times of the
target stream’s bit-rate). The results are shown in plots of
PSNR versus coding rate for a switched frame.

M-frame parameters are selected as follows. In Scenario
1, different QPM will result in different rates, and so we set
QPM to equal to QPSI, as was done for D-frames. However,
for optimized target merging, coding rate is determined mainly
by the number of spikes in the distribution, and not QPM. In
our experiments, as similarly done in High Efficiency Video
Coding (HEVC), we first empirically compute λ as a function
of the SI frame’s QPSI:

λ = 20.6QPSI−12 (23)

The number of spikes in the distribution is driven by the se-
lected λ. We then set QPM = 1 to maintain small quantization
error. For mode selection among skip, intra and merge, for
each block b we first examine q-coeffs Xn

b (k) of N SI frames.
If Xn

b (k) of all K frequencies are identical across the SI frames,
then block b is coded as skip. Otherwise, selection between
intra and merge is done based on a RD criteria.

We note that intra mode is implemented unconventionally
for fixed target M-frame. After intra prediction is performed
to obtain a predicted block, it is first transformed to the

5http://www.tanimoto.nuee.nagoya-u.ac.jp/mpeg/mpeg ftv.html
6ftp://203.253.128.142
7ftp://ftp.tnt.uni-hannover.de/testsequences/
8QPA denotes the QP for quantizing DCT coefficients in approach A.



IEEE TRANSACTIONS ON IMAGE PROCESSING, MAY 2016 10

100 200 300 400 500
30

35

40

45

kBits/Frame

P
S

N
R

Balloons

 

 

ICIP 8x8

4x4

8x8

16x16

(a) Balloons

100 150 200 250 300 350 400
30

35

40

45

kBits/Frame

P
S

N
R

Kendo

 

 

ICIP 8x8

4x4

8x8

16x16

(b) Kendo

200 400 600 800 1000 1200
30

35

40

45

kBits/Frame

P
S

N
R

Lovebird1

 

 

ICIP 8x8

4x4

8x8

16x16

(c) Lovebird1

200 400 600 800 1000
30

35

40

45

kBits/Frame

P
S

N
R

Newspaper

 

 

ICIP 8x8

4x4

8x8

16x16

(d) Newspaper
Fig. 8. PSNR v.s. encoding rate comparison with different block sizes for
sequences Balloons, Kendo, Lovebird1 and Newspaper.

DCT domain and quantized. Then the difference between the
predicted q-coeffs and the target q-coeffs is computed and
losslessly coded via entropy coding. This ensures that target
q-coeffs can be exactly reconstructed in intra mode, just like
merge and skip modes during fixed target merging.

In HEVC, large code block sizes are introduced which bring
significant coding gain on high resolution sequences [38].
Motivated by this observation, we also investigated the effect
of different block sizes (4 × 4, 8 × 8, 16 × 16) on coding
performance. We also compare our current proposal against
the performance of our previous work [11], where block size is
fixed at 8×8, initial probability distribution of shift P(cb) is not
optimized, and no RD-optimized EOB flag is employed. The
corresponding PSNR-bitrate curves for scenario 3 are shown
in Fig. 8.

From Fig. 8, we observe that block size 16 × 16 provides
the best coding performance at all bit-rates. One reason for
the superior performance of large blocks in M-frame is the
following: because SI frames are already reconstructions of the
target frames (albeit slightly different), motion compensation
is not necessary, so the benefit of smaller blocks typical in
video coding is diminished. We note that in general an optimal
block size per frame can be selected by the encoder a priori
and encoded as side information to inform the decoder. In the
following experiments, the block size will be fixed at 16× 16
for best performance.

Further, we observe also that our proposed method achieves
a significant coding performance gain compared to our pre-
vious method in [11] over all bit-rate regions, showing the
effectiveness of our newly proposed optimization techniques.

B. Effectiveness of “Spike + Uniform” Distribution

In order to verify the effectiveness of our proposed “Spike +
Uniform” (SpU) probability distribution P(cb) for shift param-
eter cb, we choose a competing naı̈ve distribution for P(cb)
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Fig. 9. PSNR v.s. encoding rate comparison with different block sizes for
sequences Balloons, Kendo.

as follows: first, we compute distortion-minimizing g(c0) as
the initial probability distribution. Next, we compute the RD-
optimal cb for each block b ∈ BM via (17) for a single iteration
using the initialized probability distribution and compute a new
P′(cb). This P′(cb) is then used to compute the rate to encode
each cb of a merge block b. The difference between P′(cb) and
our proposed Pt(cb) is that P′(cb) in general is an arbitrarily
shaped distribution, not a skewed “spiky” distribution. Experi-
mental results of M-frame using these distributions are shown
in Fig. 9.

We observe from Fig. 9 that our proposed SpU distribution
outperforms the naı̈ve distribution in the high bit-rate region
and is comparable in the low bit-rate region. This is because in
the low bit-rate region λ is very large, so that for any initial
distribution, after one iteration, there will only remain one
spike, and the number of iterations required for convergence
is very small.

C. Scenario 1: Static View Switching

We first test our proposed M-frame in the static view
switching scenario for multi-view sequences. Three views are
encoded using same QP. The fixed target merging algorithm
described in Section V is used to facilitate switching to
neighboring views among pictures of the same instant, as
shown in Fig. 3.

Specifically, we constructed M- / D- frames to enable static
view-switching from view 1 or 3 to target view 2. We first
use H.264 to encode two SI frames (P-frames) using Π2,2 as
the target and Π1,2 and Π3,2 as predictors, respectively. This
results in encoded rates R1,2 and R2,2 for the two SI frames,
respectively. Then we encoded a M- / D- frame to merge these
two SI frames identically to Π2,2. The corresponding rates for
M-frame and D-frame are RM

2,2 and RD
2,2, respectively. Since

SP-frame in H.264 cannot perform fixed target merging, it is
not tested in this scenario.

We assume that the switching probability is equal on both
view 1 and 3, which is 0.5. Then the overall rate for the D-
frame is calculated as:

R
D =
R1,2 + R3,2

2
+ RD

2,2. (24)

Also, the overall rate for our proposed M-frame using fixed
target merging scheme is calculated as:

R
M =

R1,2 + R3,2

2
+ RM

2,2. (25)
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Fig. 10. PSNR v.s. encoding rate comparing proposed M-frame using fixed
target merging scheme with D-frame for sequences Balloons, Kendo,
Lovebird1 and Newspaper in static view switching scenario.

TABLE III
BD-RATE REDUCTION OF PROPOSED M-FRAME USING FIXED TARGET

MERGING SCHEME COMPARED TO D-FRAME IN STATIC VIEW SWITCHING
SCENARIO.

Sequence Name M-frame vs. D-frame
Balloons -31.7%
Kendo -40.1%

Lovebird1 -35.7%
Newspaper -31.1%

The coding results are shown in Fig. 10 and BD-rate [39]
comparison can be found in Table III. We observe from
Table III that our proposed M-frame using fixed target merging
scheme achieved up to 40.1% BD-rate reduction compared to
D-frame. Further, from Fig. 10 we observe that our M-frame
is better than D-frame in all bit-rate regions, especially in low
and high bit-rate region, mainly due to the skip block and EOB
flag tools. In high bit-rate region, due to the small distortion
in SI frames, more blocks will be classified into skip block,
which efficiently reduces the bits to encode the M-frame, while
in low bit-rate region more coefficients are set to zero and
skipped due to the EOB flag. This shows the effectiveness
of our proposed M-frame using fixed target merging scheme
compared to the D-frame.

D. Scenario 2: Bit-rate Adaptation

We next conducted experiments of bitrate adaptation sce-
nario for single-view video sequences. M-frame is encoded
in a RD-optimized manner, described in section VI with the
system framework shown in Fig. 2. Three streams of different
rates are encoded according to AIMD rate control behavior.

We constructed M- / D- frames to enable stream-switching
from stream 1, 2 or 3 to target stream 2 under different bit-
rates. We first encode three SI frames using Π2,2 as target
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Fig. 11. PSNR versus encoding rate comparing proposed RD-optimized
M-frame with D-frame and SP-frame for sequences BasketballDrive,
Cactus, Kimono1 and ParkScene in average case.

and Π1,1, Π2,1 and Π3,1 as reference respectively. This results
in encoded rate R1,1, R2,1 and R3,1 for the three SI frames,
respectively. Then we encoded a M- / D-frame to merge these
three SI frames into an identical frame. The corresponding rate
for M-frame and D-frame are RM

2,2 and RD
2,2, respectively.

We also constructed SP-frames to enable stream-switching
from stream 1, 2 or 3 to target stream 2. We first encoded a
primary SP-frame using Π2,2 as target and Π2,1 as reference.
We then losslessly encoded two secondary SP-frames using
the primary SP-frame as target and Π1,1, Π3,1 as reference
respectively. RS

2,1 denotes the rate for primary SP-frame while
R

S
1,1 and RS

3,1 denote the rate for two secondary SP-frames.
As measure for transmission rate, we consider both the

average and worst case code rates during a stream-switch. For
the average case, in the absence of application-dependent in-
formation, we assume that the probability of stream-switching
is equal for all views9. Thus, the overall rate for RD optimized
M-frame is calculated as:

R
M
TA

=
R1,1 + R2,1 + R3,1

3
+ RM

2,2. (26)

The overall rate for D-frame is calculated as:

R
D
TA

=
R1,1 + R2,1 + R3,1

3
+ RD

2,2. (27)

The overall rate for SP-frame is calculated as:

R
SP
TA

=
R

S
1,1 + RS

2,1 + RS
3,1

3
. (28)

The coding results for the average case are shown in
Fig. 11 and BD-rate comparison can be found in Table IV.

9Note that if the stream-switching probabilities are far from uniform, more
complex coding structure designs using fixed target and optimized target
merge frames as building blocks are possible to minimize the expected
switching cost. See [40] for details.
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TABLE IV
BD-RATE REDUCTION OF RD-OPTIMIZED M-FRAME COMPARED TO D-FRAME AND SP-FRAME OF SCENARIO 2.

Sequence Name
M-frame vs. D-frame M-frame vs. SP-frame

Average Case Worst Case Average Case Worst Case
BasketballDrive -63.4% -63.7% -17.0% -39.4%

Cactus -63.5% -63.2% -18.8% -42.1%
Kimono1 -65.6% -65.4% -36.3% -49.9%
ParkScene -56.3% -56.7% -19.5% -43.8%
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Fig. 12. PSNR versus encoding rate comparing RD-optimized M-frame
with D-frame and SP-frame for sequences BasketballDrive, Cactus,
Kimono1 and ParkScene in worst case.

We observe from Table IV that our proposed RD-optimized
M-frame achieves up to 65.6% BD-rate reduction compared
to D-frame and 36.3% BD-rate reduction compared to SP-
frame. Moreover, from Fig. 11 we observe that our proposed
RD-optimized M-frame is better than D-frame and SP-frame
in all bit-rate regions. Note that for the SP-frame case, if the
switching probability to the primary SP-frame is higher, it will
result in a smaller average rate.

For the worst case, the code rate for M-frame is calculated
as:

R
M
TW

= max(R1,1,R2,1,R3,1) + RM
2,2. (29)

The rate for D-frame is calculated as:

R
D
TW

= max(R1,1,R2,1,R3,1) + RD
2,2. (30)

The rate for SP-frame is calculated as:

R
SP
TW

= max(RS
1,1,R

S
2,1,R

S
3,1). (31)

The coding results for the worst case are shown in Fig. 12
and BD-rate comparison can be found in Table IV. We observe
from Table IV that our proposed RD-optimized M-frame
achieves up to 65.4% BD-rate reduction compared to D-frame
and 49.9% BD-rate reduction compared to SP-frame.

We observe in Table IV that the performance difference be-

tween average and worst case for D-frame is small. However,
for SP-frame the performance difference between average and
worst case is large. This is due to lossless coding in secondary
SP-frames, resulting in a much larger size than primary SP-
frame (typically 10 times larger).

We have also collected statistics to examine the percentages
of code blocks chosen as merge, intra and skip blocks in
our proposed M-frame for different sequences at different
qualities. The results are shown in Table V. We see that the
vast majority of blocks are chosen as merge blocks, which
means that the bulk of the observed coding gain is due to
our carefully designed signal merging operator. For optimized
target merging, because QPM = 1 as discussed earlier, there
are very few blocks with exactly the same q-coeffs for all SI
frames, thus the percentages of skip blocks are very small. On
the other hand, for fixed target merging QPM = QPSI, so it is
reasonable to observe that as QP increases, the percentages of
skip blocks increase also.

E. Scenario 3: Dynamic View Switching

Finally we conducted experiments of dynamic view switch-
ing scenario for multiview video sequences. Three views
are encoded using same QP. The detailed frame structure
for M-frame, D-frame and SP-frame are the same as in
Section VII-D. Also, the overall rate calculation for average
and worst case are the same also.

The coding results of dynamic view switching for the
average case and the worst case are shown in Fig. 13 and
14 respectively. BD-rate comparison for average case and
worst case can be found in Table VI. From Table VI we
observe that our proposed RD-optimized M-frame achieves
57.5% BD-rate reduction compared to D-frame and 19.3%
BD-rate reduction compared to SP-frame. From Table VI we
observe that our proposed RD-optimized M-frame achieves
58.7% BD-rate reduction compared to D-frame and 36.4%
BD-rate reduction compared to SP-frame.

F. Sensitivity Analysis

Finally, we investigate M-frame’s sensitivity to two param-
eters in the stream-switching setting: i) QPs of the switching
streams, and ii) the number of SI frames that requires merging.
We conducted bitrate adaptation experiments for single-view
video sequences. For the first part, we first fixed QP of the
target stream as Q, then changed QPs of three reference
streams to be Q − δ, Q and Q + δ, where δ ∈ {1, 2, 4, 8}.
By varying Q, we constructed PSNR versus rate plots for
the constructed M-frames for different δ. The results of four
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TABLE V
PERCENTAGES OF MERGE, INTRA AND SKIP BLOCKS FOR DIFFERENT SEQUENCES AND QPS.

Sequence Name
QPSI = 22 QPSI = 26 QPSI = 30 QPSI = 34

merge intra skip merge intra skip merge intra skip merge intra skip
BasketballDrill (opt) 99.94% 0.06% 0% 99.81% 0.19% 0% 99.87% 0.13% 0% 99.55% 0.45% 0%

BQMall (opt) 99.55% 0.19% 0.26% 97.88% 1.67% 0.45% 98.21% 1.35% 0.45% 98.01% 1.67% 0.32%
Balloons (fixed) 96.26% 3.25% 0.49% 93.52% 3.03% 3.45% 90.98% 1.96% 7.06% 83.01% 2.57% 14.42%
Kendo (fixed) 93.81% 3.29% 2.90% 92.25% 2.70% 5.05% 88.80% 2.80% 8.40% 85.06% 2.12% 12.82%

TABLE VI
BD-RATE REDUCTION OF RD-OPTIMIZED M-FRAME COMPARED TO D-FRAME AND SP-FRAME OF SCENARIO 3.

Sequence Name
M-frame vs. D-frame M-frame vs. SP-frame

Average Case Worst Case Average Case Worst Case
Balloons -55.1% -53.0% -19.2% -35.0%
Kendo -53.8% -53.6% -19.3% -36.4%

Lovebird1 -57.5% -58.7% -11.3% -28.7%
Newspaper -51.6% -50.4% -5.0% -12.9%
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Fig. 13. PSNR versus encoding rate comparing proposed RD-optimized
M-frame with D-frame and SP-frame for sequences Balloons, Kendo,
Lovebird1 and Newspaper in average case.

sequences BasketballDrive, Cactus, Kimono1 and
ParkScene are shown in Fig. 15. We observe that while
±8QP in general has the worst RD performance, the differ-
ences are very small. The reason is that, in our proposal, using
corresponding frames in the switching streams as predictors
we first encode SI frames that are already reconstructions of
the target picture at the target QP (shown in Fig. 4). Hence the
subsequent M-frame is tasked with merging SI frames of the
same QP, and the QPs of the switching streams have minimal
effect on the M-frame’s RD performance.

For the second part, we varied the number switching streams
from 3 to 9 and examined the M-frame’s RD performance. The
QPs settings when the number of SI frames were 3, 5, 7 and
9 were respectively: {Q − 1,Q,Q + 1}, {Q − 2,Q − 1,Q,Q +
1,Q + 2}, {Q − 4,Q − 2,Q − 1,Q,Q + 1,Q + 2,Q + 4} and
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Fig. 14. PSNR versus encoding rate comparing proposed M-frame with D-
frame and SP-frame for sequences Balloons, Kendo, Lovebird1 and
Newspaper in worst case.

{Q − 8,Q − 4,Q − 2,Q − 1,Q,Q + 1,Q + 2,Q + 4,Q + 8}.
The resulting PSNR versus rate plots for the same four
sequences are shown in Fig. 16. We observe that, as the
number of SI frames increased, the RD performance of M-
frame worsened. This agrees with our intuition that as the
number of SI frames increases, the maximum pair difference
Z∗b for a transform coefficient in a block b will likely increase,
making the merging operation more difficult. However, Fig. 16
shows that the RD performance degrades gracefully for all four
sequences, demonstrating that our M-frame remains useful for
challenging stream-switching scenarios.

VIII. CONCLUSION

In this paper, we propose a new merging operator—
piecewise constant (PWC) function—for merging different



IEEE TRANSACTIONS ON IMAGE PROCESSING, MAY 2016 14

0 500 1000 1500 2000
34

36

38

40

42

kBits/Frame

P
S

N
R

BasketballDrive

 

 

± 1 QP

± 2 QP

± 4 QP

± 8 QP

(a) BasketballDrive

0 1000 2000 3000 4000
30

35

40

45

kBits/Frame

P
S

N
R

Cactus

 

 

± 1 QP

± 2 QP

± 4 QP

± 8 QP

(b) Cactus

0 200 400 600 800 1000
34

36

38

40

42

44

kBits/Frame

P
S

N
R

Kimono

 

 

± 1 QP

± 2 QP

± 4 QP

± 8 QP

(a) Kimono1

0 500 1000 1500 2000 2500 3000
30

35

40

45

kBits/Frame

P
S

N
R

ParkScene

 

 

± 1 QP

± 2 QP

± 4 QP

± 8 QP

(b) ParkScene
Fig. 15. PSNR versus encoding rate using different QPs in switching streams
for sequences BasketballDrive, Cactus, Kimono1 and ParkScene.
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Fig. 16. PSNR versus encoding rate using different number of SI frames for
sequences BasketballDrive, Cactus, Kimono1 and ParkScene.

reconstructed versions of a target frame to a unique one—to
enable stream switching while preserving coding efficiency.
Specifically, in order to merge k-th transform coefficients of
different side information (SI) frames to the same value, we
encode appropriate step sizes and shift parameters of a floor
function, so that all the SI coefficients fall on the same constant
interval. We propose two methods to select floor function
parameters for signal merging. In the first method, we selected
parameters so that coefficients are merged identically to a pre-
determined target value. In the second method, the merged
target value can be RD-optimized to induce better coding
performance. Experimental results show that for both cases,
our proposed merge frame has significant coding gain over an

implementation of DSC frame and H.264 SP-frames with a
reduction in decoder complexity.
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