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Abstract—In free viewpoint video systems, a user has the freedom
to select a virtual view from which an image of the 3D scene is
rendered, and the scene is commonly represented by color and depth
images of multiple nearby viewpoints. In such representation, there
exists data redundancy across multiple dimensions: a 3D voxel may
be represented by pixels in multiple viewpoint images (inter-view
redundancy), a pixel patch may recur in a distant spatial region
of the same image due to self-similarity (inter-patch redundancy),
and pixels in a local spatial region tend to be similar (inter-
pixel redundancy). It is important to exploit these redundancies
during inter-view prediction towards effective multiview video
compression. In this paper, we propose an encoder-driven inpainting
strategy for inter-view predictive coding, where explicit instructions
are transmitted minimally, and the decoder is left to independently
recover remaining missing data via inpainting, resulting in lower
coding overhead. Specifically, after pixels in a reference view are
projected to a target view via depth-image-based rendering (DIBR)
at the decoder, the remaining holes in the target view are filled
via an inpainting process in a block-by-block manner. First, blocks
are ordered in terms of difficulty-to-inpaint by the decoder. Then,
explicit instructions are only sent for the reconstruction of the most
difficult blocks. In particular, the missing pixels are explicitly coded
via a graph Fourier transform (GFT) or a sparsification procedure
using DCT, leading to low coding cost. For blocks that are easy
to inpaint, the decoder independently completes missing pixels
via template-based inpainting. We apply our proposed scheme to
frames in a prediction structure defined by JCT-3V where inter-view
prediction is dominant, and experimentally we show that our scheme
achieves up to 3 dB gain in PSNR in reconstructed image quality
over a comparable 3D-HEVC implementation using fixed 16 × 16
block size.

I. Introduction

In free viewpoint video systems [1], color maps (RGB im-
ages) and depth maps1 (per-pixel distance between physical
objects and capturing cameras) of the 3D scene as observed
from multiple closely spaced cameras are captured at the
encoder into a color-plus-depth representation [4]. Armed with
color and depth images of multiple views, images of intermedi-
ate virtual viewpoints can be synthesized at decoder via depth-
image-based rendering (DIBR) [5], enabling new applications
such as free viewpoint TV [1], immersive video conferenc-
ing [6], etc.
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1Depth images can be acquired directly using depth sensors [2],
or computed from neighboring color images using stereo-matching
algorithms [3].

It is apparent that this multiview color-plus-depth repre-
sentation contains various types of data redundancy spatially
and across views. First, a voxel of an object in the 3D scene
that is visible from multiple camera-captured views will be
represented as pixels in multiple viewpoint images (inter-view
redundancy). Assuming that the 3D scene is Lambertian2, a 3D
voxel reflects the same color value to different viewpoints, and
recording the same value across multiple viewpoint images
leads to redundancy. Second, it is well understood that values
of neighboring pixels of the same object in a viewpoint im-
age tend to be correlated statistically (inter-pixel redundancy).
Finally, it is observed that natural images tend to be self-
similar: similar image patches tend to recur in different spatial
regions throughout the same image (inter-patch redundancy).
Previous computer vision research efforts have successfully
exploited this nonlocal self-similarity characteristic of images
for denoising [7] and inpainting [8] (completion of missing
pixels in a spatial region).

While temporal redundancy is crucial for video coding, for
frames where temporal prediction is either not possible (e.g.,
random access I-frames) or not effective (e.g., P-frames with
distant temporal predictor frames in a pre-determined frame
structure), it is critical to exploit these spatial and inter-view re-
dundancies inherent in the color-plus-depth representation for
efficient data compression. The vast majority of conventional
inter-view prediction schemes [9]–[11] attempt to eliminate this
redundancy following the traditional video coding paradigm
of hybrid signal prediction / residual coding, e.g., video cod-
ing standards like H.264 [12] and HEVC [13]. Specifically, to
reconstruct a given target block, a sender transmits explicit
instructions like motion vector (MV) to guide the receiver to
the location of the most similar block, which serves as a
predictor signal. Then, the difference between the predictor
and target block—the prediction residual—is transform coded
and transmitted to the receiver to improve the reconstruction
quality. This paradigm has a long legacy in video coding
research, dating back to the first ISO video coding standard
MPEG1 and ITU-T standard H.261 in the late 1980’s, where one
of the crucial design criteria was a computationally inexpensive
video decoder. In that light, the hybrid signal prediction /
residual coding paradigm where the encoder dictates exactly
how each code block should be reconstructed is a suitable
design choice that results in today’s many practical codecs
across many platforms.

Given that the cost of computation has drastically decreased,
the strict requirement that the video decoder must be com-
putationally simple is no longer necessary in many practical
cases. In this paper, we argue that one can leverage on the com-

2Reflective surfaces such as wine glasses and mirrors are not Lamber-
tian. However, for closely spaced capturing cameras, the Lambertian
surface assumption is nonetheless a good approximation.
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putation power of a decoder to recover a desired signal and
lower the overall transmission cost. In particular, we propose
an encoder-driven inpainting strategy for inter-view predictive
coding, where explicit directions are transmitted minimally
from the encoder, and the decoder is left to independently
recover missing pixels via inpainting, resulting in lower coding
overhead. Our strategy efficiently exploits the aforementioned
inter-patch, inter-pixel and inter-view redundancies inherent in
color-plus-depth representation, and can complement existing
3D coding tools such as those in the 3D-HEVC standard by
coding frames that depend heavily on inter-view prediction
for coding efficiency.

In details, first we directly project pixels from one (or more)
reference view(s) to a target view via DIBR, thus eliminating
inter-view redundancy. This projection results in a number
of disocclusion holes—spatial areas that are occluded in the
reference view by foreground objects but become exposed after
the view change. To complete these holes, we first order the
blocks with missing pixels in terms of decreasing difficulty
for inpainting. For the most difficult blocks, we transmit ex-
plicit instructions called Auxiliary information (AI) to guide the
decoder in the reconstruction process. AI typically consists
of the location information of the best predictor block for
inpainting, and color values for missing pixels. The incomplete
blocks typically contain known pixels projected from neigh-
boring view via DIBR as well as missing pixels, but only the
missing pixels are explicitly coded via a graph Fourier transform
(GFT) [14]–[17] or a sparsification procedure using the discrete
cosine transform (DCT) [18], [19], in order to achieve low coding
cost. Finally, the decoder can independently complete missing
pixels in the blocks that are easy to inpaint via a template-
matching algorithm such as [8]. We apply our proposed inter-
view prediction strategy to selected frames in a prediction
structure defined by JCT-3V where inter-view prediction is
dominant, and experimentally we show that our strategy can
outperform a comparable implementation of 3D-HEVC using
fixed block size 16×16 by up to 3 dB in PSNR in reconstructed
image quality, demonstrating the potential of our inter-view
predictive coding strategy for 3D video compression.

The outline of the paper is as follows. We first discuss related
works in Section II. We then overview our encoder-driven
inpainting based coding system in Section III. We describe
our design of AI used to guide the inpainting of disocclusion
holes at decoder in Section IV. Methods for sparsification of
DCT and GFT of code blocks are described in Section V. The
order in which the missing holes are completed is crucial in
our proposal; we show that finding the optimal filling order
is an NP-hard problem and present a heuristic ”hard-to-easy”
order in Section VI. Finally, we discuss our experimentation
and conclude in Section VII and VIII, respectively.

II. RelatedWork

We divide our discussion of related works into two sections.
We first discuss previous works in multiview image and video
coding in the literature. We then discuss existing art in em-
ploying decoder-side inpainting techniques for compression of
2D image and video.

A. Multiview Image and Video Coding
Multiview image & video coding refers to the compression

of multiple color images of the same 3D scene captured using
an array of closely spaced cameras. Many papers on this

topic focus on the efficient coding of the entire set of images
by exploiting the inter-view data redundancy inherent in the
camera setup. A straightforward way to achieve it is to use
disparity-compensated prediction. Similar to motion-compensated
prediction in single-view video coding, for each block in the
target view, disparity compensation finds the best matching
block in a reference view, then encodes and transmits the dis-
parity vector (DV) and the prediction residual for reconstruction
at the decoder. In [20], motion compensation and disparity
compensation are combined to encode stereo sequences. The
concept of Group of Group of Pictures (GoGOP) for inter-view
prediction is introduced in [21], where a picture can refer to
decoded pictures in other views even at different time in-
stants. In [9], [22], various modified hierarchical bidirectionally
predicted structures are developed for inter-view prediction.
In [23], the problem of optimal Group of Pictures (GOP)
prediction structure for multiview video coding is studied.
However, simple 2D translational inter-view motion assumed
by disparity compensation cannot accurately represent the
geometry transformation in a view-switch from one camera
viewpoint image to another; hence, disparity compensation is
not always efficient.

Color-plus-depth format is an alternative data representation
that is particularly useful for free viewpoint video [4]. Color
and depth images from multiple camera viewpoints are en-
coded together, and at the decoder one can synthesize novel
intermediate viewpoint images via DIBR [5]. In this kind of
representation, an alternative to translational disparity predic-
tion is view-synthesis-based prediction [24]–[26], where a syn-
thesized version of a target view is used for predictive coding.
Our proposal is an example of this class of view-synthesis-
based methods for inter-view predictive coding, but combines
inpainting and advanced transform coding in a “hard-to-easy”
block order for improved compression performance.

Layered depth video (LDV) [27] is another alternative repre-
sentation of multiview video data, where in addition to the
color and depth maps of the main view, residual layers of
other views not visible from the main view are constructed
for coding. Because our proposal is also view-synthesis based,
it is similar to LDV, but we focus on the efficient coding of
the disocclusion hole pixels in a synthesized image (akin to
the residual layers in LDV) through an intricate system of
techniques described earlier.

As depth images are used only for view synthesis and are
not themselves directly viewed, different rate-distortion (RD)
optimization procedures have been designed for depth map
coding to optimize the synthesized view quality [18], [19], [28],
[29]. In particular, since depth images possess unique signal
characteristics such as piecewise smoothness (PWS), new coding
tools such as graph Fourier transform (GFT) designed specifically
for depth signals have been proposed [14]–[17], [30].

Recently, HEVC has been extended to support encoding
of 3D video, namely multiview video and associated depth
data [31], [32], similar to the MVC extension of H.264/AVC
[33]. There are mainly two types of tools employed: disparity
compensation and view synthesis prediction. As discussed
earlier, this is the hybrid signal prediction / residual coding
paradigm used in conventional video coding standards, where
the encoder dictates exactly how a target signal should be
constructed at the decoder.

The key differentiator for our proposal is that we leverage on
the self-discovery power of the decoder, so that the decoder can
recover remaining missing pixels in the reconstructed view-
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point image via inpainting procedures. Instead of disparity
compensation, our proposal exploits inter-view redundancy by
mapping pixels from a reference view to a target view to create
a starting image, and then transmits auxiliary information to
assist the decoder in the completion of the rest of the image
in a RD optimal manner, thus avoiding the aforementioned
shortcomings of disparity compensation.

B. Inpainting for Image and Video Coding

Employing inpainting at the decoder to aid compression
was first proposed in [34] for 2D images. In a nutshell, the
work in [34] essentially advertises an advanced intra-prediction
scheme based on (local) inpainting. This inpainting is more so-
phisticated than uni-directional pixel copy employed in video
coding standards like H.264 intra [12], where texture in the
target block is predicted using observed pixels from adjacent
causal blocks that have already been reconstructed. To further
improve inpainting quality, edge information (called assistant
information) for the target block is optionally sent, so that
sharp edges in the reconstructed block can be preserved. The
success of [34] has inspired a set of follow-up works that
also employ inpainting for 2D image and video coding [35]–
[39]. For example, the authors in [37] generalize the notion
of assistant information to a set of parameters for different
model distributions; i.e., instead of simple edges, other assistant
information can be transmitted to aid inpainting. Blocks with
statistics that do not fit with model distributions are classified
as non-featured blocks and coded using traditional DCT-based
methods. The authors in [38] propose an inpainting procedure
based on Laplace partial differential equation (PDE) and total
variation (TV) for HEVC intra coding, and later for depth map
coding as well [39].

Though also employing inpainting at the decoder, our work
differs from these works fundamentally in the following re-
gard: inpainting for intra-prediction as described above ex-
ploits local inter-pixel data redundancy in images, while our
proposed encoder-driven inpainting strategy exploits also data
redundancy in non-local pixel patches due to self-similarity in
images. Specifically, our inpainting scheme is derived from
inpainting schemes based on template-matching such as [8]
that identify and copy non-local pixel patches from distant
spatial regions to the target patch. This concept is similar to
our previous work [40], which is significantly extended here
in many aspects. In particular, we introduce a new order of
encoding / decoding in our proposal, where our goal is to
first transmit the hard-to-inpaint blocks, so that the remaining
blocks can be filled independently by the decoder using non-
local template-matching. Second, in order to code prediction
residuals or intra blocks, we introduce DCT sparsification and
GFT as additional coding modes to code only unknown pixels
in a target block and improve coding performance. Finally, be-
cause the “hard-to-easy” order entails non-stationary statistics
over time, we design a statistical context to efficiently encode
AI modes, resulting in non-negligible coding gain at low
bitrates when the coding of modes accounts for a significant
portion of the bit budget.

We note that template-matching-based intra prediction has
been proposed previously in [41]–[44] for video coding. Specif-
ically, DIP (displacement intra prediction) and MTP (Marko-
vian texture prediction) in [41] share similar ideas with our
proposed coding modes. However, the coding strategies are
fundamentally different. These works employ the traditional

top-down left-to-right block order during the encoding pro-
cess. In contrast, we propose a block order so that explicit
information is transmitted only for difficult-to-inpaint blocks,
after which decoder must complete the remaining missing
pixels via inpainting. Our unique block filling order also means
that the blocks requiring completion have varying numbers of
missing pixels, leading to novel transform coding techniques
(graph Fourier transform and DCT spasification) that are not
considered in [41]–[44].

III. Coding System Overview

A. System Overview

We propose a coding strategy based on encoder-driven
inpainting for color-plus-depth representation of multiview
video data. Specifically, the objective of our coding strategy
is to code color and depth image pairs of multiple views in a
RD optimal manner. For the sake of simplicity, we describe
our coding strategy for two neighboring viewpoint images
(two pairs of color and depth images). The application of our
strategy to multiple views with more complex frame prediction
structure is straightforward, and experimental results will be
reported in Section VII.

We first independently code color and depth images of one
view with the help of a video codec; this view is called the
independent view. Then we propose to code the second view
(the dependent view) as follows. We project the decoded color
pixels of the independent view to the dependent view image
via DIBR, where the geometric information provided by the
depth map of the independent view and the camera calibration
parameters are used to identify pixel correspondences between
the two views. We assume in this work that the view-to-view
projections via DIBR are of sufficient quality and do not require
further refinements at the decoder3. After the projection step,
there are two kinds of holes in the DIBR-synthesized image
that require filling in order to have a good reconstruction of the
dependent view; these are: i) rounding holes, and ii) disocclusion
holes. First, the disparity values of the pixels in the independent
view likely have fractional values; when projected to the de-
pendent view they are rounded to the nearest integers to land
on the 2D grid of the rendered image. This rounding operation
can result in rounding holes. By assuming a rectified camera
setup where the relative camera positions correspond to pure
horizontal shifts, the pixel disparities have only horizontal
components. Thus we can identify the rounding holes simply
as follows. For a given hole in the projected image, we check
if the nearest available pixels to the left and right of the hole
have almost identical depth values (namely, less than a pre-
defined threshold δ). If so, we identify the hole as a rounding
hole and perform simple horizontal linear interpolation to fill
in the missing pixel(s).

After identification and filling of the rounding holes in the
projected image, disocclusion and out-of-view holes remain.
Out-of-view holes are spatial regions that newly enter the
visible image real estate due to the change of camera position.
Our coding schemes can efficiently treat them in the same
way as the disocclusion holes.4 Disocclusion holes represent

3If projections are poor due to illumination differences in color maps
or estimation errors in depth maps, they should be corrected in a
pre-processing step prior to the start of encoding for better coding
performance.

4We thus use disocclusion holes to denote the two types of holes
hereafter.
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(a) view 1 (b) original view 5 (c) rendered view 5

Fig. 1. Illustration of disocclusion holes left after DIBR for sequence
Undo Dancer. The forward warping via DIBR is performed from view
1 to view 5. The black regions close to the right side of the foreground
(the man) show the missing pixels that have to be filled after projection.

spatial regions in the dependent view that are not visible in
the independent view due to occlusion by foreground objects.
An example of such disocclusion holes is shown in Fig. 15.
Unlike rounding holes, disocclusion holes may contain novel
information that cannot be easily extrapolated from available
neighboring pixels. Hence, the encoder has to provide infor-
mation to the decoder so that it can properly reconstruct the
dependent view. In this paper, we assume that the decoder has
the computational resources to execute inpainting procedures.
Thus the encoder only provides carefully chosen auxiliary in-
formation (AI) to guide the decoder through the reconstruction
of difficult spatial regions, so that the decoder can self-discover
missing pixels in the remaining holes in the dependent view
via inpainting. The construction of this AI data is described in
the next section.

The depth pixels of the independent view are also projected
to the dependent view, and rounding holes are identified and
filled in the same manner as in the color image6. However, the
disocclusion holes are simply extrapolated using adjacent back-
ground depth pixels. This is because depth images are known
to be piecewise smooth [14]–[16]. We further find empirically
that adjacent background depth pixels are good predictors for
signal extrapolation into the disocclusion holes. The overall
procedure of the proposed coding strategy is summarized in
Fig. 2.

B. Encoder-driven Disocclusion Hole Filling

We provide now more details about our coding strategy that
relies on inpainting to fill in disocclusion holes. In the computer
vision literature, there exist many inpainting algorithms [8],
[46]–[49] to complete holes in a given image. The key difference
between our work and inpainting schemes like [8] is that,
in our multiview coding scenario, the target image to be
inpainted is known at the encoder. Hence, the encoder can
provide additional information to guide the image completion
process at the decoder. Inspired by the patch-based template-
matching inpainting algorithm in [8], we will employ a similar
inpainting framework and complete the rendered image on
a per-patch basis. In a nutshell, our patch-based inpainting
framework performs the following operations. We first select
a pixel on the boundary of disocclusion holes in the DIBR

5Video sequence Undo Dancer can be found from
ftp://mpeg3dv.research.nokia.com

6The corresponding depth values for the two views are the same if
we assume the two viewpoints are rectified [45].
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Fig. 2. The block diagram of the proposed strategy. Dependent views
are obtained by DIBR estimation from the decoded independent view,
along with encoder-driven inpainting of the disocclusion holes.

projection of the dependent view; the selected pixel is the
center of a target patch that will be inpainted. Missing pixels
in the target patch are then filled using known pixels in the
reconstructed dependent view via template-matching, possibly
with help of AI provided by the encoder. Then, another target
patch is selected for filling, and the process continues until all
missing pixels are completed. The order in which the patches
are selected for filling is called the patch order. Given this patch-
based inpainting framework, there are two key questions to
solve for effective coding performance: i) for a given target
patch, how to best complete it, possibly with the aid of AI?
ii) what is the optimal patch order to complete the rendered
image?

We first observe that, given a local target patch to be
completed, the level of difficulty in inpainting it—called local
hardness in the sequel—depends on the degree of self-similarity
exhibited between the target patch and already completed
spatial regions in the predicted image. If the missing pixels
in the target patch can be found in the completed spatial
regions, then the encoder only needs to convey a simple
message (called the skip mode) to the decoder to signal that the
missing information can be self-discovered using an unassisted
inpainting procedure such as template-matching [8]. If the
missing pixels are available in the completed spatial regions
but it is difficult for the decoder to discover them unassisted,
then the encoder can provide lightweight search instructions
(called the vec mode) to guide the discovery process. Finally, if
the missing pixels are entirely innovative, then the encoder has
no choice but to explicitly encode the missing pixels (called the
intra mode).

Note that only the subset of missing pixels in a target block
requires intra coding. This observation can be exploited for novel
patch-based transform coding that can outperform conven-
tional schemes like DCT that typically code the entire pixel
block, regardless of whether pixels in the block are missing or
not. These different kinds of information compose the set of
AI that the encoder convey to the decoder on a patch-by-patch
basis for encoder-guided inpainting. Finally, we remark that
the different kinds of AI have different coding costs, and the
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choice of AI is determined by a RD criterion. The details of
the AI design is discussed in Section IV and the patch-based
transform coding is described in Section V.

The second question is related to the order of patches in the
inpainting process. Clearly, a left-to-right top-to-bottom raster
scanning order employed in conventional block-based image /
video coding algorithms is not appropriate. A key innovation
in Criminisi’s inpainting algorithm [8] is the order in which
target patches should be selected for inpainting: the main idea
is to select easy-to-inpaint patches first, so that propagation of
likely errors in hard-to-inpaint patches to other regions will
be minimized. This patch ordering problem is called the global
hardness of patches in the inpainting process. In stark contrast
to the ”easy-to-hard” patch order in Criminisi’s algorithm,
we propose a ”hard-to-easy” patch order for our encoder-
assisted inpainting algorithm. The basic idea is that, once the
hardest patches are filled in (with ample assistance from the
encoder), the remaining patches are all easy-to-inpaint. They
can be completed by the decoder unassisted, and hence the
encoder can directly save bits from reduction in AI signaling
cost. Note that the problem of error propagation from hard-to-
inpaint patches to other spatial regions can be easily contained
in our setting, since the encoder-guided inpainting process can
implicitly control the inpainting quality at the decoder. The
details of our proposed ”hard-to-easy” patch order is presented
in Section VI.

Note that we focus on the development of new coding tools
for inter-view predictive coding, rather than the optimization
of the inter-view prediction frame structure itself, which is
outside the scope of this paper.

IV. Inpainting Based Coding And Auxiliary Information
Towards a solution to address local hardness in encoder-

driven image inpainting, we first overview a well-known
template-matching inpainting algorithm [8]—we use a similar
variant in our system. We then discuss the design and imple-
mentation of auxiliary information (AI).

A. Overview of Criminisi’s Inpainting Algorithm
Criminisi’s inpainting algorithm [8] is a well-known method

to propagate texture patterns from known pixel regions to spa-
tial regions with missing pixels, assuming that self-similarity
typically exists in natural images. While there are more re-
cent inpainting algorithms designed specifically for DIBR-
synthesized images [50]–[53], we construct our algorithm based
on [8] for its simplicity. For convenience and consistency, we
reuse some notations from Criminisi’s algorithm. We denote
the image by I, and denote by Φ and Ω = I \ Φ respectively
the source and target regions in the inpainting process. As
illustrated in Fig. 3, the pixels in Ω that are neighbors of Φ
form the boundary, denoted by δΩ. The region Φ includes the
rendered and decoded pixels, while Ω represents the remaining
holes. A square-shaped target patch Ψp centered at pixel p
on the boundary δΩ is chosen by a given patch selection
procedure, namely the easy-to-hard order in Criminisi’s algo-
rithm. The patch Ψp has two non-overlapping parts: the known
region Ψp∩Φ (also called template in the sequel) and the target
unknown region Ψp ∩Ω.

For a given a target patch Ψp, template matching is performed
in [8] to find the patch Ψq in Φ that is the most similar to known
pixels in Ψp ∩Φ:

Ψ∗q = arg min
Ψq∈Φ

d(Ψp,Ψq) (1)

Fig. 3. Notation diagram of Criminisi’s inpainting algorithm [8]. The
regions Φ and Ω respectively denote the known and unknown region
in the inpainting process.

where the distortion term d( ) is computed using only known
pixels in Ψp and their corresponding pixels in Ψq. After the
optimal Ψ∗q is found, the pixels in Ψ∗q that correspond to
missing pixel locations in Ψp ∩ Ω will be copied over for
completion of Ψp.

B. Encoder-driven Patch Completion
Given a target patch Ψp, we now discuss our encoder-driven

patch completion procedure using AI to fill in the missing
pixels in Ψp. In a nutshell, we seek to design a set of AI modes
{ϕ} for the completion of missing pixels in the target region and
to eventually choose for each target patch Ψp the AI mode that
minimizes the RD cost, i.e.,

ϕ∗ = arg min
ϕ

d (p, ϕ) + λ · r (p, ϕ), (2)

In (2), r(p, ϕ) is the coding rate of the mode ϕ for patch Ψp

centered at p, d(p, ϕ) is the distortion between missing pixels
in Ψp∩Ω and the reconstructed pixels using mode ϕ, and λ is a
pre-defined weighting parameter that trades off the importance
of distortion and rate. We use sum of squared differences as
distortion in this paper. The index of the coding mode in (2) is
compressed via a context-based arithmetic coder.

In this paper, we design three AI modes with different
coding costs r(p, ϕ) and different degrees of influence on patch
reconstruction. The AI “skip” mode results in zero rate beyond
the signaling cost of the mode itself. AI “vec” mode encodes a
motion or disparity vector to inform the decoder the location
of the best matching patch in the known region. The AI “intra”
mode encodes the intensity of missing pixels in the target
patch, and thus usually results in the highest rate. The encoder
chooses among these three modes for a given target patch Ψp

in order to solve the optimization problem in (2). We describe
in details the three coding modes in the rest of this section.

C. AI Modes
1) AI “skip”: The AI “skip” mode instructs the decoder to

self-discover missing pixels in Ψp using only information in
source region Φ. This can be done either locally or nonlocally.
Local skip means that, given the strong inter-pixel redundancy
exhibited in the local patch, the missing pixels in Ψp ∩Ω can
be deduced from neighboring known pixels via simple signal
extrapolation schemes such as [46]. In contrast, nonlocal skip
instructs the decoder to perform template matching to com-
plete missing pixels in the target patch Ψp using its template
Ψp ∩Φ. This is similar to the template matching in [8], except
that the search region includes not only the known region
Φ in the same image, but also designated decoded pictures
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in the decoder’s buffer. Designated pictures could include LT

previous decoded pictures in time from the same view and LV

decoded pictures of the same time instant but from neighboring
views. For simplicity, only the decoded picture of previous time
instant from the same view is used as reference in our paper.
Local skip and nonlocal skip finally translate to different AI
mode indices for arithmetic encoding.

The AI “skip” mode is expected to be a dominant mode at
low rate when coding rate is of higher priority than distortion.
At high rate, however, because of the lack of direct control in
the pixel completion process, the patch quality reconstruction is
limited. We present two other modes with more direct control
on the inpainting results (reconstruction quality).

2) AI “vec”: When the template matching of “nonlocal skip”
fails to identify a good match for Ψp ∩ Ω, we offer the AI
“vec” mode as an alternative to improve the reconstruction
quality by directly locating the pixels in the known region
that are the most similar to the missing pixels in the target
patch. We stress here the difference between ”nonlocal skip”
and “vec”. ”Nonlocal skip” relies on the known pixels in the
target region of Ψp for template-matching with known patches,
which may not always lead to the best completion results. The
“vec” mode, on the other hand, simply informs the decoder
about the location of the pixels in the known region that are
the most similar to the missing pixels in the target patch; it
does not rely on template-matching at all.

To leverage on both self-similarity of still image and tempo-
ral redundancy of video sequences, we propose two kinds of
“vec” mode, namely intra-frame AI “vec” and inter-frame AI
“vec”. For intra-frame ”vec”, a similarity vector (SV) pointing
to the known region in the same image is signaled to the
decoder. On the other hand, the inter-frame “vec” is akin to
motion estimation in differential coding for single-view video:
a motion vector (MV) is used to represent the displacement of
the current block to the most similar one in a reference picture
(i.e., the previous frame in time in the same view).

3) AI “intra”: When no pixels similar to Ψp∩Ω are found in
the search space of nonlocal “skip” and “vec” modes, e.g., in
the case of disocclusion of novel objects, the AI “intra” mode is
used to directly code the missing pixels in the target patch Ψp.
In this mode, the block is first predicted, then the prediction
residual signal is transformed, quantized, and entropy-coded.
Since the shapes of known pixels Ψp ∩Φ and causal neighbors
of Ψp are arbitrary, the directional intra prediction used in
conventional block-based video coding such as HEVC [54] is
not suitable here. Instead, we propose to use the signal ex-
trapolation scheme in AI “local skip” as the prediction, and to
code only the resulting prediction residual. Another noticeable
deviation from conventional block-based video coding is that,
in our scenario, only missing pixels in a block requires coding
and not the full block of pixels. We discuss in Section V two
methods to encode only the missing pixels in a square target
block for AI “intra”.

4) Arithmetic Coding of AI Mode Indices: The coding modes
are compressed with arithmetic coding. Let us consider a
set of AI mode decisions Υ = {ϕi}i=1..N for N consecutive
patches. In order to transmit this vector Υ, we use an arithmetic
coder, which needs the mode probabilities as input, both at
the encoder side and decoder side. As mentioned above, we
have designed an encoder-driven inpainting algorithm that
adopts the “hard-to-easy” order. It means that “hard” modes
such as AI “intra” or “vec” are chosen more frequently at the
beginning, while “easy” mode AI “skip” is likely chosen at the

1 2

3 4

boundary

1

1

Fig. 4. An example graph from a 2 × 2 patch.

end of the coding process. In order to take into account this
evolution in the coding of Υ, we adapt the input probabilities
of the arithmetic coder. For a given mode flag ϕi to code, we
evaluate the probabilities pi,l of each coding mode l = 1, ...,L
over the W last mode decisions

pi,l =

∑W
j=1 bi− j,l

W
, (3)

where

bi− j,l =

{
1 if ϕi− j = l
0 otherwise . (4)

The L probabilities, available at the decoder side also, are the
contexts of our arithmetic coding of mode indices. Note that we
code the mode index directly and do not have a binarization
process.

V. Transform Coding ofMissing Patch Pixels

In our proposed patch-based coding scheme, the center p
of a K × K target square patch Ψp is always on the boundary
of known and unknown regions as shown in Fig. 3. Hence,
the patch Ψp contains known pixels in Ψp ∩ Φ as well as
missing pixels in Ψp ∩ Ω. If one naı̈vely use regular block-
based DCT to encode the patch (or the prediction residual of
the patch), then the resulting K × K transform coefficients will
contain information belonging to both known and unknown
pixels, resulting in undesirable representation redundancy. In
this section, we propose two block-based coding procedures to
encode only the missing pixels in a patch, namely i) the graph
Fourier transform (GFT), and ii) the sparsification of DCT.

A. Graph Fourier Transform

GFT has recently been proposed for transform coding of
a block in a piecewise smooth image like a depth map that
straddles a sharp boundary, so that filtering across discontinu-
ities is avoided. This results in a sparser signal representation
in transform domain than DCT [14]–[17]. The key idea is to
represent pixels in the block as nodes in a graph G, and
connect each pixel with each of its four neighbors with an
edge of weight 1 only if both pixels reside on the same side
of a boundary. In essence, a block of pixels is divided into
connected sub-graphs, as illustrated in Fig. 4.

The graph G is described by a few matrices. First, an
adjacency matrix A describes the connectivity of the graph G,
where Ai, j = 1 if nodes i and j are connected via an edge and
0 otherwise. For the graph in Fig. 4, the adjacency matrix is

A =


0 1 0 0
1 0 0 1
0 0 0 0
0 1 0 0

 . (5)
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A degree matrix D is a diagonal matrix, where Di,i =
∑

j Ai, j. For
the graph in Fig. 4, the degree matrix is

D =


1 0 0 0
0 2 0 0
0 0 0 0
0 0 0 1

 . (6)

Finally, the graph Laplacian matrix L is defined as the difference
between the degree matrix and the adjacency matrix [55]:

L = D −A. (7)

For the graph in Fig. 4, the graph Laplacian matrix is

L =


1 −1 0 0
−1 2 0 −1
0 0 0 0
0 −1 0 1

 . (8)

GFT is then defined as follows. It is a linear transform
matrix Φ composed of the eigenvectors of L, i.e., Lφi = λiφi,
where φi is the i-th row of Φ written as a column vector,
and λi is the i-th eigenvalue of Φ, which could be seen as
the i-th graph frequency of the graph G. A given pixel block
x is then interpreted as a graph-signal on graph G. After
computing GFT coefficients α = Φx, the coefficients α are
quantized and entropy-coded. Unlike block transforms such as
DCT where the same transform is applied for every pixel block,
GFT is an adaptive transform; i.e., different signal-dependent
transforms Φ are used for different input graph-signals x, since
the graph construction is dependent on the signals. Previous
works [14]–[17] have shown that this overhead of encoding
side information to describe GFT is not expensive for depth
maps, and there is overall substantial coding gain for GFT over
fixed transforms like DCT for coding depth maps.

Based on the success of GFT to code depth maps, we propose
here to use GFT to encode only the missing pixels Ψp ∩ Ω in
a given patch Ψp. We first construct a graph G only for these
missing pixels: each missing pixel in Ψp ∩ Ω is denoted by a
node, and there is an edge of weight 1 connecting two nodes if
they represent two missing pixels that are neighbors. See Fig. 5
for an illustration. In this way, the graph is composed only of
nodes that represent the n missing pixels.

Given this graph of missing pixels, one can compute the
adjacency and degree matrices A and D accordingly. The graph
Laplacian L = D − A can also be computed, and its eigen-
decomposition can be performed to obtain the GFT matrix Φ.
To encode missing pixels x (stacked together as a vector), we
simply compute the GFT coefficients α = Φx, and quantize and
entropy encode them into bits. Note that, unlike the classical
DCT that has K × K transform coefficients for K × K pixels in
the patch Ψp, the number of GFT coefficients is only equal to
the number of missing pixels in Ψp. Since the locations of the
missing pixels are known at decoder already, a graph can be
readily constructed, and the GFT matrix Φ can be computed
to permit reconstruction of the missing pixels. We will show
in Section VII that usage of GFT to encode missing pixels in a
patch can outperform DCT in coding performance.

B. Sparsification Procedure using DCT

We introduce here another option to encode missing pixels in
a patch by sparsification of the DCT coefficients. While the GFT
leads to good coding performance, the complexity required to
compute the GFT via eigen-decomposition both at the encoder

Fig. 5. An example of graph construction for an 8 × 8 patch. White
circles denote unknown pixels. Black circles denote known pixels.
Edges connect neighboring unknown pixels. The weights assigned to
every edges are unity.

and decoder can be high, especially, if the number of missing
pixels is large. Compared to the GFT, the DCT sparsification
procedure is less complex.

Since the values of rendered pixels in a patch are known
at encoder and decoder prior to any transform encoding, the
known pixels in Ψp∩Φ can be viewed as degrees of freedom at
encoder side: they can be manipulated in order to reduce the
cost of coding the patch Ψp as their decoded values are simply
discarded. Specifically, we propose a sparsification procedure
in the DCT domain that exploits these degrees of freedom
to minimize the number of non-zero DCT coefficients. The
fraction of non-zero quantized transform coefficients has an
approximately linear relationship with bitrate [56], hence min-
imization of the number of non-zero coefficients corresponds
to a reduction in the coding rate.

Let x be pixels in a K × K patch, stacked into a column
vector. Let Θ be the DCT transform; the DCT coefficients y
can be computed simply: y = Θx. Let V be a K2

× K2 diagonal
matrix where entry Vi,i = 1 if the i-th pixel in x is an unknown
pixel and 0 otherwise. Our objective is to minimize the rate-
distortion cost of AI “intra” for the patch Ψp by manipulating
the coefficients y in the transform domain

min
y
‖V(Θ−1y − x)‖22 + λ ‖y‖0, (9)

Note that λ = λmode ∗B, the product of the Lagrange multiplier
used in AI mode decision (λmode) and the average bits to code
a non-zero quantized coefficient (B), and hence B‖y‖0 is the
coding rate of the patch. In Eq. (9), the l0-norm is a rate proxy,
while the l2-norm is a measure of distortion, counting only the
distortion contributed by the unknown pixels.

The minimization of the l0-norm in (9) is in general a non-
convex and NP-hard problem. For efficient computation, one
can use an iterative re-weighted least squares algorithm and
replace the l0-norm with a sparsity-promoting weighted l2-norm
[19]:

min
y

[V(Θ−1y − x)]T[V(Θ−1y − x)] + yTWλy, (10)

where the weight matrix is

Wλ =


λw1 0 · · · 0

0 λw2 · · · 0
...

...
. . .

...
0 0 · · · λwK2

 , (11)

where {w1,w2, · · · ,wN2 } are iteratively updated. The optimal
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solution to Eq. (10) can be found by solving the linear system

(ΘṼΘ−1 + Wλ)yo = ΘṼx, (12)

where Ṽ = VTV = V.
Iteratively updating the weights in Wλ and solving the linear

system in (12) can achieve transform domain sparsity [19], [57]
and minimum rate-distortion cost given λ. The detailed proce-
dure is written in Algorithm 1. After the algorithm converges,
the optimal transform coefficients are quantized and entropy
coded. Finally, we note that the parameter τ in the iterative
weight computation process (see Algorithm 1) can control the
speed of the algorithm, i.e. the complexity of encoder, while at
decoder side we only need to inverse-transform the received
coefficients.

Algorithm 1 Iterative re-weighted least squares (IRLS) for DCT
coefficients sparsification

1. Initialize weights: wi = 1/(|yt
i | + ε)

2, where yt
i = (Θx)i.

2. Find the solution to Eq. (12): yo
i .

3. Update weights: wi = (|yo
i |

2 + ε2)−
2−τ

2 if |
yo

i
Q | ≥ 0.5; wi = ε2−τ

otherwise, where Q is quantization step.
4. Repeat Step 2 to 3 until convergence.

VI. “Hard-to-Easy” Order for Target Patch Selection

In this section, we address the following problem: how
target patches Ψp in the target region Ω should be selected
for completion. The order of target patches to be filled can be
denoted by a sequence of positions p on the boundary between
known and target regions, i.e., p ∈ δΩt, where Ωt denotes the
target region that contains all missing pixels at iteration t, until
all missing pixels in the image are filled. Our goal is to find a
patch order so that the overall RD cost to fill all missing pixels
in Ω0 is minimized. The total number of possible orders is, in
the worst case, exponential in the number of missing pixels in
Ω0, so clearly an exhaustive search for the optimal order is not
practical.

We discussed earlier that the Criminisi’s inpainting algo-
rithm [8] proposed an ”easy-to-hard” order for patch selection
to minimize the chance of error propagation from hard-to-
fill patches to other spatial regions. However, in our encoder-
driven inpainting framework, the encoder can transmit AI to
guide the decoder in completing missing pixels. Therefore, the
error propagation from hard-to-fill patches can be contained
proactively, and Criminisi’s order is not necessarily the optimal
order in this case7. In this section, we first show that finding
the optimal order is an NP-hard problem. We then propose a
heuristic “hard-to-easy” order, which can be computed in poly-
nomial time, and has better performance than the Criminsi’s
order.

A. NP-Hardness Proof for Patch Selection Order

In the most general setting, the optimal patch ordering
problem can be formulated as follows. Let Pt = {pt, . . . , p1} be
the first t selected patch centers, and let Υt = {ϕt, . . . , ϕ1} be the
t selected AI modes for the first t selected patches Pt. Assuming

7Interestingly, one can argue that at zero rate, Criminisi’s “easy-to-
hard” order is a good solution in RD performance. We will in fact
show our proposed order defaults to the Criminsi’s order when the
rate constraint is extremely tight.

that it requires T selected patches before all the missing pixels
are filled in the initial target region Ω0, the optimal patch order,
expressed in patch centers and AI modes P∗T and Υ∗T, is defined
as:

(P∗T,Υ
∗

T) = arg min
PT ,ΥT

T∑
t=1

d (pt, ϕt |Pt−1,Υt−1) + λ· r (pt, ϕt |Pt−1,Υt−1)

(13)
where d (pt, ϕt |Pt−1,Υt−1) and r (pt, ϕt |Pt−1,Υt−1) are respectively
the distortion and rate of completing the patch centered at
pt using mode ϕt, given previous selected patch centers and
modes Pt−1 and Υt−1. The selected patch centers and modes P∗T
and Υ∗T must satisfy two conditions. First, each center pt must
lie on the boundary δΩt, where the target region of missing
pixels Ωt for each iteration t is updated as follows:

Φt = Φt−1 ∪Ψt−1, Ωt = I \ Φt (14)

In words, the known region Φt in iteration t is updated with
completed pixels in patch Ψt−1, and Ωt is the target region of
remaining missing pixels.

Second, by completing all T patches, there should be no
remaining pixels:

ΩT+1 = ∅ (15)

The optimal patch order problem in (13) is hard for two
reasons. First, the distortion term d (pt, ϕt |Pt−1,Υt−1) depends
on the history of previously selected modes Υt−1, where each
mode ϕt can be selected from a discrete AI mode set {ϕ}. This
means that the total number of these distortion terms d( ) is
at least on the order of |{ϕ}|T, i.e., exponential in the number
of selected patches T. Thus, the time required just for data
collection of these terms is time-consuming. This is analogous
to the dependent quantization problem for video coding [58],
where the distortion dt(Qt | Qt−1, . . . ,Q1) of a differentially
coded frame t depends on not only its own quantization
parameter (QP) Qt, but also QPs of all previous frames in the
dependency chain as well.

Second, we have the difficulty of choosing an appropriate
patch order for mode selection in our problem. This means
that, in addition to the set of patch centers Pt−1 selected in
previous iterations, the order in which these patch centers have
been selected also influences the rate term r (pt, ϕt |Pt−1,Υt−1)
and the distortion term d (pt, ϕt |Pt−1,Υt−1). To illustrate this
second difficulty, let us consider the simple case where the
rate term r (pt, ϕt |Pt−1,Υt−1) depends only on the current patch
center and the lone previous patch center, i.e., r (pt | pt−1). This
corresponds to the case where the location of the next patch
center pt is differentially coded from the previous center pt−1,
while the AI mode coding cost is negligible, resulting in a rate
cost r (pt | pt−1). We will assume that the rate cost for the first
patch center r (p1) is the same for all centers, and therefore can
be safely ignored in the optimization. To further simplify our
complexity analysis, we also assume that the distortion cost is
negligible; this will correspond to the case when λ in (13) is set
so large that the rate term dominates. We now show that even
in this special case, the optimal patch order problem is NP-
hard via a reduction from a well-known NP-hard problem—
the traveling salesman problem (TSP) [59].

TSP is formulated as follows. There exists a finite set of cities
C = {c1, . . . , cM} and a distance l(ci, c j) between each pair of cities
ci, c j ∈ C. The question is how to find a tour of all the cities,
π = {π(1), . . . π(M)}, where π(m) ∈ C, such that the total distance
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traveled is minimized:

π∗ = arg min
π

L(π) =

M−1∑
i=1

l(cπ(i), cπ(i+1)) + l(cπ(M), cπ(1)) (16)

TSP remains NP-hard if we do not require a cycle and remove
the last distance term l(cπ(M), cπ(1)).

We now argue that the above simple case of patch selection
includes TSP as a special case. First, we construct M non-
overlapping patches that require separate filling in the target
region Ω0; each patch i will correspond to a city ci ∈ C in
the TSP problem. Then we set the rate cost r(i | j) of selecting
patch center i after previous selection of patch center j, as well
as the reverse r( j | i), to be l(ci, c j) in TSP. It is now clear that
the optimal patch order in our simplified problem—one that
minimizes the total rate

∑M
t=2 r(pt | pt−1)—maps to a minimum

distance tour in TSP. Hence, our optimal patch order problem
is at least as hard as TSP, which means that our optimal patch
order problem is actually NP-hard.

B. “Hard-to-Easy” Order

Given that the optimal patch order problem in (13) is NP-
hard, we propose a simple ”hard-to-easy” heuristic to de-
termine a good patch order. The key idea is that, if all the
difficult-to-fill patches are first filled, then the missing pixels
in the remaining easy-to-fill patches can be self-discovered
at the decoder exploiting self-similarity in images, such that
no more AI is required. Further, bundling the difficult-to-fill
patches in the beginning of AI coding means that there is
stronger statistical correlation among chosen modes for these
patches, resulting in coding gain when the chosen modes are
compressed using arithmetic coding, as described in Section IV.

In order to determine the “hard-to-easy” order, for each
iteration t of the inpainting algorithm we compute a metric
for each candidate target patch Ψp centered at p ∈ δΩt using
known pixels in Φt. The metric is the distortion between
candidate patch Ψp and the best matching block Ψq in Φt

chosen via template-matching, see Eq. (1), and computed using
only the known pixels in Ψp, i.e., Ψp ∩ Φt. The candidate
patch Ψp with the largest metric value will be deemed the
hardest and is selected as the next target patch for filling.
The intuition here is that the candidate patch Ψp with no
good matching patch Ψq in the known region Φt likely lacks
the self-similarity characteristics that are required for nonlocal
template matching to recover missing pixels. Hence this patch
is deemed difficult-to-fill. Note that using this method, there
is no need to explicitly inform the decoder about the location
of the next target patch center p, as it can perform the exact
same operations as the encoder to deduce the same target patch
location.

The patch selection process is first computed until there are
no missing pixels left. Then, a binary search is performed to
identify the best end point, at which the encoder stops all AI
transmission and the decoder is left to fill the remaining holes
on its own via Criminisi’s algorithm in the default ”easy-to-
hard” order. At each candidate end point, the RD cost including
both the AI-assisted patches and the decoder’s self-discovered
patches is computed, and the candidate point with the smallest
RD cost is selected as the optimal end point. In practice, an
”end-of-transmission” flag is coded to signal to the decoder the
end of AI information and the start of the classical Criminisi’s
algorithm to fill in the remaining holes.

VII. Experimentation

A. Experimental Setup

To test the performance of our proposed encoder-driven
inpainting strategy for inter-view predictive coding, we per-
form extensive experiments to compare our method against
3D-HEVC reference software HTM-13.0. The view synthesis
software used is the VSRS-1D-Fast algorithm included in HTM-
13.0.

In our codec, independent views are coded using 3D-HEVC.
We only apply our strategy to code P-frames in the dependent
views where inter-view prediction is dominant. The remaining
B-frames in the dependent views are also coded using 3D-
HEVC. Note, however, that the depth maps of all frames (P-
and B-frames) in the dependent views are not explicitly coded
but are reconstructed using our proposed procedure described
in Section III. This amounts to a further bitrate reduction com-
pared to 3D-HEVC. We use the same view synthesis algorithm
as in 3D-HEVC. More implementation details and complexity
analysis of our codec are discussed in Section VII-C.

Our tests generally follow the Common Test Conditions
(CTC) [60]. We mainly use two JCT-3V standard test se-
quences [60], namely Undo Dancer and GT Fly from Nokia at
1920×1080-pixel resolution. Since they are synthetic multiview
video sequences with accurate depth values, we can obtain
satisfactory view synthesis quality via DIBR. In addition, we
show the performance of two other JCT-3V standard test se-
quences, namely Balloons and Kendo from Nagoya University
at 1024 × 768-pixel resolution. They are natural multiview
sequences with imperfect depth maps, which penalizes the
quality of the view synthesis via DIBR.

Views 1, 5, and 9 for Undo Dancer and GT Fly are tested.
Each view has 250 frames with a frame rate at 25 frames
per second (fps). As for Balloons and Kendo, view 1, 3, and
5 are used. There are 300 frames with a frame rate at 30
fps. The coding order of views is center-left-right. The center
view is independently coded, and the left and right views
are predicted by the center view. The size of group of picture
(GOP) is 8. The period of I-frame for independent view and
inter-view-only P-frame for dependent views is 24.

As the reconstruction quality using our proposal is bounded
by the synthesized view quality via DIBR, our experimental
results are under 36 dB for synthetic sequences and 31 dB
for natural sequences on average in Peak-Signal-to-Noise-Ratio
(PSNR). Hence, in addition to the default QP set (40, 35, 30,
25) for independent views, QP values 51, 48, 46, 43, and 37
are used for coding of the dependent views to match the
DIBR-synthesized image quality stemming from the coded
independent views. In general, to code dependent views both
3D-HEVC and our scheme use higher QP than the independent
views. The QP pair for each RD point is specified in the
following figures, in form of (QPi,QPd), where QPi is for
independent views and QPd is for dependent views.

In our proposal, we try several λ’s for RD optimization
and QP’s for our AI “intra” mode such that the operational
RD convex hulls are found. Additionally, lossless network
transmission is assumed in the following experiments.

The patch size in our proposed strategy is chosen to be
8× 8. In theory we could also use variable patch sizes and the
quadtree structure to further improve performance, but in this
paper we fix the patch size to better evaluate the performance
of encoder-driven inpainting. Accordingly, we fix the size of
coding tree unit (CTU) in the reference 3D-HEVC to be 16×16,
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which is the smallest option of CTU and the closest to the
patch size in our scheme. Since the 16 × 16 CTU in 3D-HEVC
includes the 8×8 coding unit as one of its candidate modes, one
might expect that the 3D-HEVC with 16× 16 CTU would have
better performance than our scheme with the fixed 8×8 coding
patch. However, we will show that our method can actually
outperform 3D-HEVC with 16 × 16 CTU, thanks to a more
thorough exploitation of spatial and inter-view redundancies
by our scheme.

Note that for sequences Undo Dancer and GT Fly, at the
low bitrate range where our scheme operates, the unrestricted
3D-HEVC (64 × 64 CTU) achieves about 3-7dB gain over the
restricted 3D-HEVC with 16 × 16 CTU. We leave it as a future
topic to generalize our scheme to other patch sizes, so that
a direct comparison with the unrestricted 3D-HEVC could be
eventually made possible.

We stress again that our proposed strategy is designed
specifically for frames where temporal prediction is either not
possible or not effective, and thus must rely solely on inter-
view prediction for coding efficiency. As it will be demon-
strated in our experiments, our new frame type in this case
leads to noticeable performance gain at mid- to low-bitrate re-
gions, and is useful as a complementary option in the situation
where temporal coding is not effective.

B. Experimental Results

1) Comparison of Rate-Distortion Performance: We first com-
pare the RD performance of the dependent views using our
approach and the restricted 3D-HEVC with 16 × 16 CTU size.
Here we use all the proposed coding tools, including the new
transforms and “hard-to-easy” patch order. Some components
will be examined individually later.

The RD performance for the two competing schemes is
shown in Fig. 6 for the luma component of each sequence. The
proposed method has about 3 dB gain due to the compactness
of our coding strategy. Specifically, inter-view redundancy is
exploited via DIBR; we do not code rendered regions whereas
3D-HEVC needs to code every block. The inter-patch redun-
dancy is exploited via AI “skip” and “vec” while 3D-HEVC
does not have efficient tools designed to exploit nonlocal image
self-similarity. Further, the inter-pixel redundancy is exploited
via image inpainting and novel transforms that are more
suitable to our scenario than intra-prediction and DCT used
in 3D-HEVC.

In Fig. 6, the sequence GT Fly has a larger gain than
Undo Dancer, because the faster movement of GT Fly cam-
eras (that greatly weakens temporal prediction) can be better
compensated by our efficient inter-view coding. The second
reason is that the disocclusion holes of GT Fly are easier to be
filled than Undo Dancer because its background is smoother.

We observe that, for the two natural video sequences
Balloons and Kendo, our scheme achieves noticeable coding
gain compared to the restricted 3D-HEVC under 100 kbps.
Multiview sequences with inaccurate depth maps will place a
low upper-bound on the PSNR that our proposed frame type
can achieve (i.e., about 31 dB for Balloons and Kendo). This
limits our performance, and as a result we can only achieve
gain over 3D-HEVC at low bitrates. We believe that this is
a transient problem as depth sensing technologies continue to
improve, and therefore we will focus the following experiments
on sequences GT Fly and Undo Dancer that have good quality
depth maps.
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Fig. 6. Rate-distortion performance comparison between the proposed
scheme (AI) and 3D-HEVC. The rate is the summation of that of
two dependent views, and the distortion is the average PSNR of two
dependent views. The BD gains are given in the parenthesis.
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Fig. 7. Rate-distortion performance comparison including intermediate
virtual views. The BD gains are given in the parenthesis.

The number of frames to which our scheme apply in each
dependent view is 32 out of 250 frames for sequence GT Fly
and Undo Dancer. The 32 frames account for up to 64% of the
bitrates in 3D-HEVC, so focusing bitrate reduction for these
frames are meaningful.

We next evaluate the quality of intermediate virtual views in
Fig. 7. We synthesize three equally-spaced intermediate virtual
views from the coded independent and dependent views.
Similarly to the previous experiment, the dependent views are
coded by our scheme and 3D-HEVC, respectively. The distor-
tion is measured by the average PSNR of the dependent and
intermediate views. As established in the CTC, the PSNR of an
intermediate view is calculated against the synthesized view
from the original color and depth map data of the reference
views, not the original camera-captured views if available. The
rate in Fig. 7 is that of dependent views.

Chroma components are usually smoother than luma com-
ponents, but the general PSNR trends are similar. For sequence
Undo Dancer, our method can obtain up to 4 dB gain in PSNR,
while for sequence GT Fly, the gain can be up to 4.5 dB.

Compared to 3D-HEVC, our proposed scheme can achieve
better visual quality at the same rate. A representative example
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(a) original Undo Dancer (b) zoom in the box in (a)

(c) 3D-HEVC coded patch (d) AI coded patch

(e) AI “skip” in white (f) AI “intra”: DCT in red,
and AI “vec” in yellow GFT in blue, sDCT8in green

Fig. 8. An image segment of Undo Dancer (view 1 frame 9). The
number of bits to code the whole image is 33864 for 3D-HEVC and
31620 for the proposed method (denoted as “AI”). The coding blocks
using different modes proposed in our method are shown in (e) and (f).
Note that the regions that have no coding blocks marked are rendered
via DIBR.

is Fig. 8. Our scheme can reconstruct sharper boundaries
between foreground (e.g., the pillar) and background, as high-
lighted by the top ellipses in Fig. 8(c) and (d). As the rendered
boundaries are not smoothed by the DCT-based coding in 3D-
HEVC, and as the coding blocks along boundaries do not
change the pixel values in the rendered region using most
of our modes, the rendered boundaries are better preserved.
One exception is the AI “intra” mode using regular DCT, but
they are rarely applied to the boundaries as shown by red
rectangles in Fig. 8(f). Secondly, our scheme can preserve more
image details, as highlighted by the bottom ellipses in Fig. 8(c)
and (d), because the bits saved by DIBR, AI “skip” and “vec”
modes, which usually appear in smoother areas as shown in
Fig. 8(e), are allocated to the blocks coding more complex
regions by AI “intra”.

2) Comparison of Inter-view Coding Performance: We now
focus closely on the inter-view coding performance. We con-
sider an application that requires a high degree of temporal
random access, where the I-frame period of independent view
is 8 instead of the default 24 in the CTC, and the frames

8sDCT is in short for the sparsification procedure using DCT.
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Fig. 9. Rate-distortion performance comparison of inter-view coded P-
frames in dependent views. The BD gains are given in the parenthesis.

in dependent views are only inter-view predicted by the I-
frames in independent view at the same time instant. To avoid
temporal prediction, we only measure the performance of the
inter-view coded P-frames (in every 8 frames) in dependent
views9. The results of our scheme and 3D-HEVC can be found
in Fig. 9, showing that our inter-view prediction/coding tools
are better than those in 3D-HEVC. In this experiment, the
coding of sequence GT Fly can take advantage of easy-to-
inpaint holes after DIBR and leads to greater gains over 3D-
HEVC than Undo Dancer.

3) Comparison of Criminisi’s “Easy-to-Hard” Order and the Pro-
posed “Hard-to-Easy” Order: We next examine the effectiveness
of our proposed “hard-to-easy” patch order. First, we show
in Fig. 10 that the “hard-to-easy” order can be achieved by
the proposed heuristic, which iteratively picks the patch that
has the largest distortion with its best match in source region.
We compare our patch order with Criminisi’s ”easy-to-hard”
order. The x-axis of Fig. 10 indicates the iteration index. In
each iteration, we fill a selected patch and then search the next
patch to fill. The y-axis denotes the total number of hard modes
selected before the current iteration. The hard modes include
AI “vec” and “intra”. The decoder cannot reconstruct the hard
modes without any explicit instructions from the encoder.
These curves depict the accumulation process of hard modes
over iterations, comparing our patch order and Criminisi’s
order. Note that the diagonal line y = x in the figure represents
the situation where all modes up to current iteration are hard.
The expected “hard-to-easy” behavior is to first select hard-
to-fill patches (the early part of the curve should be close to
y = x), and when most hard patches have been filled, the curve
should grow as slow as possible due to the following easy-
to-fill patches. In this sense, our heuristic for “hard-to-easy”
order performs as expected. Recall that, using the proposed
“hard-to-easy” patch order, we terminate the signaling of AI
at an optimal RD point, which is determined by a binary
search, as mentioned in Section VI. The remaining holes can be
inpainted by the decoder, so that the number of iterations in
our strategy are often less than the strategy using Criminisi’s
order as shown in Fig. 10.

The next experiment shows the performance improvement
using our proposed “hard-to-easy” order. The setup is the same
as that in Section VII-A, except for the competing scheme,
which replaces the “hard-to-easy” order with Criminisi’s order.
As shown in Fig. 11, the proposed order outperforms Crim-
inisi’s order. Larger gains are observed at low rates, because
more easy modes and fewer hard modes are chosen and the

9The rate should look smaller than the default setup in previous
subsection.
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Fig. 10. Iterative accumulation of hard modes along the iteration of
the coding scheme, for two different patch orders. Test on sequence
Undo Dancer.
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Fig. 11. Rate-distortion performance of our proposed coding strategy
using two different patch orders.

bitstream is likely to be truncated earlier.
Finally, we note that the arithmetic coding of the mode index

can take advantage of the proposed “hard-to-easy” order:
“hard” modes such as AI “intra” or “vec” are chosen more
frequently at the beginning, while “easy” mode AI “skip” is
likely chosen at the middle and end of the coding process.
When we evaluate the probabilities of each mode over W = 100
last mode decisions, we observe a rate reduction of 15.51%
(Undo Dancer) for the coding of mode indices, compared to
the arithmetic coding without a limited-length window whose
probabilities are estimated by all previous mode decisions.

4) Evaluation of Graph Fourier Transform and Sparsification
Procedure Using DCT: One key difference of our coding strategy
from 3D-HEVC lies in the transform coding step. Instead of
regular DCT, we propose GFT and a sparsification procedure
using DCT (i.e., sDCT) to take advantage of the particular fea-
ture of our coding patches, namely parts of patches are known
and do not need to be coded. Given the default experimental
setup used in Section VII-A, we compare the performance of
AI “intra” mode using 1) DCT; 2) sDCT and DCT; 3) GFT and
DCT; 4) all transforms (DCT, sDCT, and GFT). For Cases 2, 3,
and 4, we pick the best transform in RD sense for each patch
and signal the type of transform used to the decoder. Note that
Case 4 is equivalent to the results in Fig. 6.

For sequence GT Fly, Cases 2, 3, and 4 reduce 1.6%, 2.8%,
and 3.9% BD rate [61], respectively, over Case 1. For sequence
Undo Dancer, Cases 2, 3, and 4 reduce 4.8%, 2.9%, and 6.2% BD
rate, respectively, over Case 1. Since the proposed transforms
are only for AI “intra”, the coding gain is mostly at high rates,
where more AI “intra” modes are selected. As shown in the
next part, our coding strategy prefers low-cost AI “skip”, and
AI “vec” at low rates. Thus when the proportion of selected AI
“intra” is already small, the performance improvement using
our proposed transforms is limited. For sequence GT Fly, the
results shows that, using GFT can get more gain over the
sparsification procedure, but the latter only needs to iteratively
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Fig. 12. Mode statistics for coding GT Fly. Reference QP represents
the one used for coding independent reference view.
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Fig. 13. Mode statistics for coding Undo Dancer. Reference QP repre-
sents the one used for coding independent reference view.

solve the least square problem at the encoder, while at decoder
the regular inverse DCT is only performed once; hence it is less
expensive in computation compared to GFT. The combination
of sDCT and GFT is a better choice than using them individ-
ually.

When τ = 1 and ε = 0.01 ∗Qs (where Qs is quantization step
size), the average number of iterations of the re-weighted least
square for sDCT is 2.0 for sequence Undo Dancer.

5) Statistics of AI Modes: Each AI mode is proposed with its
own purpose. To better understand why they are introduced
and how they work, we show the statistics of AI modes in
different circumstances. As shown in Fig. 12 and 13, we observe
that 1) AI “skip” and “vec” dominate, meaning that there is
a great amount of similarity to exploit from the known region
and reference frame; 2) with larger QP, i.e., lower rate budget,
the number of the cheapest “skip” mode increases while the
expensive “intra” and “vec” modes decrease; 3) the chroma
component selects fewer “intra” mode due to simpler texture;
4) the proposed coding strategy can adapt to the feature of
different sequences by choosing different sets of AI modes.

C. Implementation and Complexity Discussion

In our proposal, both the encoding and decoding of depen-
dent views start from view synthesis via DIBR. In the exper-
iments, our testing sequences are rectified and the disparities
are found only along x-axis. The software package “VSRS-1D-
Fast” is employed to compute disparities for each image pixel
based on coordinate conversions. Since there are no expensive
operations, the rendering is much faster than coding the same
image patches.

After obtaining an incomplete image via DIBR, we first
fill in rounding holes. The complexity of detection are linear
with the number of holes. The filling is a simple averaging of
neighboring known pixels and performed only on the detected
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holes. Both encoder and decoder need to do the same detection
and averaging.

We next fill the disocclusion holes patch-by-patch. In order
to quantify the difficulty of inpainting individual patches,
before the first iteration, the patches whose centers are on
the boundary of the known and missing pixels are checked
by template matching. Since we record the results of match-
ing differences, we only need to perform additional template
matching around the neighborhood of previously inpainted
patch in each iteration. This process is also required to be
performed at the encoder and decoder, because we do not
explicitly encode and signal the patch orders to the decoder.

As described in Section IV, we have three AI modes as
candidates to code a patch: AI “skip”, AI “vec”, and AI
“intra”. AI “skip” includes local and non-local inpainting.
The local inpainting involves the solving of a linear system,
whose complexity depends on the number of unknown pixels.
The non-local inpainting performs template matching, whose
complexity depends on the size of template and the search
range, similar to template-based algorithms in the literature [8],
[51]–[53]. In our proposal, the shape of template varies for each
target patch and it is not larger than 8 × 8. The search range
of template matching is 64× 64. For simplicity of implementa-
tion, the matching has integer-pel accuracy, and full search is
applied. Our scheme can be improved by fractional accuracies
and fast search algorithms. AI “skip” only transmits the mode
index to the decoder, which greatly reduces the transmission
rate, but requires the decoder to perform the same operations
as done at the encoder.

Similar to AI “skip”, AI “vec” is also based on matching
(integer-pel and 64 × 64 full search). Different from AI “skip”,
however, the decoder can directly use the received motion or
similarity vectors to locate the matched patch in the search
region, so the complexity is much lower than AI “skip”.

AI “intra” has three transforms to choose from. The encoder
will run all of them and select the one with minimum RD cost,
and transmit the index of transform to the decoder, together
with the coded residual. At the encoder, the sparsification
procedure with DCT as introduced in Section V iterates several
times to sparsify DCT coefficients and each iteration involves
a matrix inverse. At the decoder, however, same as the regular
inverse-DCT, only one pass (no iterations) is performed to
reconstruct the prediction residual. GFT can achieve better
sparsification, but to generate the adaptive transform matrix
eigen-decomposition is required at both encoder and decoder.
For the three transform options, CABAC in 3D-HEVC is used
to code the quantized transform coefficients.

As discussed in Section VI, the patch selection and coding
process iterate until there are no missing pixels left. Then, a
binary search is performed to identify the best end point, at
which the encoder stops all AI transmission and the decoder
is left to fill the remaining holes on its own via Criminisi’s
algorithm in the default ”easy-to-hard” order, where the major
computation cost at the decoder is to perform template match-
ing. To enable the binary search, we record the RD cost of each
iteration. In each search point, we combine the recorded RD
cost with the the cost of inpainting the remaining holes. We
empirically find that a coarser search on every eight iterations
is good balance between RD performance and complexity.

According to the mode statistics shown in Fig. 12 and 13,
AI “skip” is the dominant mode. Hence, the efficiency of our
decoding can greatly benefit from an efficient implementation
of template matching.

VIII. Conclusion

Compression of color and depth maps from multiple closely-
spaced camera viewpoints is important for 3D imaging appli-
cations and new free viewpoint video communication. In this
paper, we propose an encoder-driven inpainting strategy to
complete disocclusion holes in the DIBR-synthesized image in
an RD optimal manner. Missing pixel regions that are difficult-
to-inpaint are first completed following instructions from the
encoder in the form of auxiliary information (AI). The remain-
ing easy-to-fill holes are then completed without encoder’s
help via nonlocal template matching, which is effective due to
the self-similarity characteristics in natural images. Finally, we
propose two patch-based transform coding techniques (graph
Fourier transform and DCT sparsification), so that only missing
pixels in a target patch are encoded, avoiding representation
redundancy. In doing so, our coding strategy successfully ex-
ploits the three kinds of redundancy inherent in the color-plus-
depth representation for coding gain: i) inter-view redundancy
via DIBR-based 3D warping; ii) inter-pixel redundancy via
patch-based transform coding; and iii) inter-patch redundancy
via nonlocal template matching. Experimental results show
that our proposed encoder-driven inpainting strategy is more
effective than a restricted implementation of 3D-HEVC in RD
performance. Inter-view, inter-patch, and inter-pixel redundan-
cies are greatly reduced by efficient hole filling using the well-
designed AI modes. Our proposed novel transforms boost RD
performance at high rates, and the “hard-to-easy” patch order
improves RD performance mainly at low rates such that our
overall scheme can reap noticeable overall gains.
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